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1 Introduction

With the recent start of the Large Hadron Collider (LHC) at CERN, a new
exciting era of particle physics has begun. As it provides energies which are
high enough to cover the expected mass range of the Higgs boson, one of the
main tasks of the LHC is the discovery or exclusion of the Higgs boson. This is
a crucial test for the Standard Model of Elementary Particle Physics (SM) [1-
3], as the Higgs boson [4, 5] is its only particle which has not been discovered yet.

There are several possible channels for the detection of the Higgs. One of
them is a vector boson fusion process with two photons in the final state. For a
definite detection of a Higgs resonance, all its features have to be identified. One
of these features is the spin, which has to be zero for the Higgs, but whereas a
spin-1 resonance is forbidden for this channel due to the Landau-Yang theorem
[6], a spin-2 resonance is also possible.

So the distinction of a spin-0 and a spin-2 resonance is an important
task for the Higgs detection in this channel. In order to find the characteristic
features of both kinds of resonances, several distributions, like the invariant
mass of the two final state photons and transverse momentum distributions,
are investigated within this thesis. However, the analysis focuses on angular
correlations, as they are known as a powerful tool to study the spin of a resonance.

Due to the high energies which can be achieved with the LHC, it might
also be possible to detect some new, heavy resonances, which are manifestations
of physics beyond the Standard Model, in vector boson fusion processes. For
these resonances, a spin determination is also needed. Whereas heavy spin-1
resonances were already studied extensively (see e.g [7]), this thesis shall reveal
the characteristics of heavy spin-2 resonances. Thereby, the focus is on angular
distributions as well.

So the features of spin-2 resonances in vector boson fusion are studied
within this thesis for two cases: Light, Higgs-like resonances in the photon pair-
production channel and heavy resonances in processes with different four-lepton
final states. These are e+ e− µ+µ−, e+ e− νµνµ, e+ νe µ− νµ, e+ νe µ+µ−

and e− νe µ+µ−, from which the first one will be studied in most detail, since a
final state which does not contain any neutrinos allows for a full reconstruction
of a resonance.

After a short overview of some theoretical background in chapter 2, a
model of spin-2 particles which can only interact with electroweak bosons
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is developed in chapter 3. An effective Lagrangian is constructed and the
corresponding Feynman rules are calculated. This is done for two different
scenarios: a spin-2 state which behaves as a singlet under SU(2) transformations
and a spin-2 triplet in the adjoint representation.

For the simulation of spin-2 resonances in vector boson fusion processes
at the LHC, the Monte Carlo program VBFNLO [8] is used. Chapter 4 illustrates
the general procedure of a VBFNLO calculation as well as the implementation
of the spin-2 model into VBFNLO.

The results of the analysis of spin-2 resonances are presented in chapter
5. First, unitarity constraints are investigated on the basis of longitudinal WW
scattering. Afterwards, the features of spin-2 resonances are studied for the
different kinds of processes.

Finally, chapter 6 gives a summary.
Some additional information can be found in the appendix. It contains the
formulae of a general spin-2 field and its propagator, decay widths of the spin-2
particles, some VBFNLO files, the Wigner d-functions and details about frames
and transformations which are relevant for the analysis.
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2 Theoretical background

2.1 The Standard Model of Elementary Particle
Physics

The Standard Model of Elementary Particle Physics (SM) [1-3] is a relativistic
quantum field theory which describes the fundamental constituents of matter
- the quarks and leptons, which are fermions with spin 1

2
- and three of the

four fundamental interactions: the strong, weak and electromagnetic interaction,
but not gravity. These interactions result from the exchange of force mediating
particles, which are vector bosons with spin 1.

2.1.1 Gauge groups and interactions

An important feature of the Standard Model is the principle of local gauge
invariance. The corresponding gauge group is SU(3)C × SU(2)L × U(1)Y .

SU(3)C is the gauge group of the strong interaction, which is described
by QCD (quantum chromodynamics). The corresponding quantum number is
colour (C). There are three different colours, sometimes called red, green and
blue, and their corresponding anticolours.
A gauge group SU(N) has N2 − 1 generators, so SU(3) has 8 generators.
Therefore, there are eight gauge bosons which mediate the strong interaction:
the eight massless gluons. Gluons couple to all particles which carry colour. As
fermions these are quarks (antiquarks). Since the gluons also carry colour, the
exchange of a gluon changes the colour of the quarks. Furthermore, this means
that the gluons can also interact with each other, which leads to an interesting
feature of QCD: The strong coupling decreases with increasing energy and
therefore becomes small at small distances. This feature is called asymptotic
freedom [9,10].

SU(2)L × U(1)Y is the gauge group of the electroweak interaction.
SU(2)L corresponds to the weak isospin, U(1)Y to the hypercharge Y, which is
a combination of the electric charge Q and the third component of the weak
isospin, I3: Y = 2(Q− I3).

As SU(2)L has three generators, there are three gauge bosons: W 1, W 2

and W 3, whereas U(1)Y has only one gauge boson, B, corresponding to one
generator.

The Lagrangian for these gauge bosons is:

9



L = −1

4
W i

µνW
µν
i − 1

4
BµνB

µν ; (2.1)

where W i
µν and Bµν are the field strength tensors of the fields W i

µ and Bµ:

W i
µν = ∂µW

i
ν − ∂νW

i
µ + gεijkWj,µWk,ν (2.2)

Bµν = ∂µBν − ∂νBµ. (2.3)

g is the gauge coupling of SU(2)L, whereas the gauge coupling of U(1)Y is
denoted as g’.

The quarks and leptons are realized as left-handed isospin doublets(
νe

e−

)
L

,

(
νµ

µ−

)
L

,

(
ντ

τ−

)
L

,

(
u

d

)
L

,

(
c

s

)
L

,

(
t

b

)
L

and right-handed isospin singlets e−R, µ−R, τ−R , uR, dR, cR, sR, tR, bR.

These fermions couple to the gauge bosons via the covariant derivative

Dµ = ∂µ − igW µ
i

σi

2
− ig′YΦBµ (2.4)

where σi are the Pauli matrices.

Only the left-handed fermions can interact with SU(2)L gauge bosons, so the
charged current weak interactions, mediated by W± (eq. 2.11, 2.12), violate
parity maximally.

The principle of gauge invariance does not allow mass terms like 1
2
m2

wW i
µW

µ
i in

the Lagrangian. But experiments have shown that the physical force mediating
bosons of the weak interaction are massive, whereas the photon, which mediates
the electromagnetic interaction, is massless.
The gauge bosons can obtain masses via the Higgs mechanism [4,5,11].
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2.1.2 Spontaneous symmetry breaking: The Higgs mechanism

In order to give masses to the gauge bosons, a complex scalar SU(2) doublet
field with four degrees of freedom is introduced:

Φ =

(
φ1 + iφ2

φ3 + iφ4

)
(2.5)

Its Lagrangian is given by

LHiggs = (DµΦ)† (DµΦ)− V (Φ†Φ) (2.6)

with the Higgs potential

V (Φ†Φ) = V0 − µ2Φ†Φ + λ(Φ†Φ)2 , µ2, λ > 0 (2.7)

and the covariant derivative Dµ (eq. 2.4).

If µ2 < 0, there would be only one trivial minimum and the gauge bosons
would remain massless. But for µ2 > 0, there is a non-trivial minimum, which is
defined as

|Φ0| =
√

µ2

2λ
=

v√
2

(2.8)

There are many possible ground states Φ0. If one of them is chosen arbitrarily,
the symmetry of the theory is not a symmetry of its ground state any more,
since the Lagrangian (2.6) is invariant under rotation, but the ground state is
not. This fact is called spontaneous symmetry breaking.

Expanding Φ around the minimum yields, in a common parametrization

Φ =
1√
2

e
iσiθi(x)

v

(
0

v + H(x)

)
(2.9)

The excitations of the physical Higgs field are described by H(x). θi(x) are
Goldstone fields.

With the following gauge transformation, called unitary gauge,

Φ(x) → Φ′(x) = U(x)Φ(x) = e
−iσiθi(x)

v Φ(x) =
1√
2

(
0

v + H(x)

)
(2.10)
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the three Goldstone fields θi(x) can be rotated away. They turn into longitudinal
degrees of freedom of the massive gauge bosons.

From the kinetic term of the Higgs Lagrangian, one can see how the
gauge bosons acquire masses.

With new linear combinations of W i and B and the Weinberg angle θW :

W+
µ =

1√
2
(W 1

µ − iW 2
µ) (2.11)

W−
µ =

1√
2
(W 1

µ + iW 2
µ) (2.12)

Zµ =
gW 3

µ − g′Bµ√
g2 + g′2

= W 3
µ cos θW −Bµ sin θW (2.13)

Aµ =
g′W 3

µ + gBµ√
g2 + g′2

= W 3
µ sin θW + Bµ cos θW (2.14)

one obtains:

DµΦ = (∂µ − igW µ
i

σi

2
− ig′

1

2
Bµ)

1√
2

(
0

v + H(x)

)

=
1√
2

[(
0

∂µH

)
− i

2
(v + H)

(
g(W µ

1 − iW µ
2 )

−gW µ
3 + g′Bµ

)]

=
1√
2

(
0

∂µH

)
− i

2
(1 +

H

v
)

 gvW µ+

−
√

g2+g′2

2
vZµ

 (2.15)

and

(DµΦ)† (DµΦ) =
1

2
∂µH∂µH +

[(gv

2

)2

W µ+W−
µ +

1

2

(g2 + g′2)v2

4
ZµZµ

]
(1 +

H

v
)2

(2.16)

So the W± and Z bosons acquire the masses

mW =
gv

2
, mZ =

√
g2 + g′2v

2
(2.17)
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and the photon stays massless.

The measured value of the Fermi constant GF yields

v =
√

1√
2GF

≈ 246, 22 GeV.

From the 2H
v

term in (2.16), one can obtain the HWW and HZZ cou-
plings, which are proportional to the masses of W± and Z.

With the Higgs mechanism, also fermion mass terms can be generated.
Terms like −mΨΨ are not gauge invariant, but a Yukawa coupling of the
fermions to the scalar field leads to fermion masses corresponding to gauge
invariant mass terms. Further details about fermion mass terms are not needed
here, because fermion masses are neglected in this thesis.
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2.2 Calculating Feynman Rules from a given
Lagrangian

In order to give theoretical predictions for elementary particle processes, one has
to calculate physical quantities like cross sections or decay widths. Therefore it
is essential to know the Feynman rules of the corresponding theory.
If the Lagrangian of a theory is known, the Feynman rules can be calculated
with the following procedure [12]:

Let L be a sum of terms which contain several fields. Each group of
fields will form a vertex with external lines of these fields and with corresponding
Feynman rules.

1. Take all the terms in iL which contain exactly the fields of the vertex you
want to calculate. If the fields contain upper and lower indices (also if one
field has an upper and another field has a lower index), rewrite the terms
in such a way that all the fields contain only upper or only lower indices.

2. Replace every derivative by (-i) times the incoming momentum of the field
on which it acts.

3. Sum over all permutations of the indices and momenta of equal external
fields.

4. Delete all the external fields.

Example: Let a fictitious Lagrangian be

L = ig(∂µAν)A
µBν + g′AµDµC

There are two vertices: one with the external fields A, A, B and one with A, D, C:

First vertex:

1. → −g(∂µAν)A
µBν = −g(∂µA

α)gανA
µBν

2. → −g(−iq1µ)gανA
αAµBν = ig(q1µgαν)A

αAµBν

3. → ig(q1µgαν + q2αgµν)A
αAµBν

4. → ig(q1µgαν + q2αgµν)

14



Bν

Aα

Aµ

p
q1

q2

ig(q1µgαν + q2αgµν)

Second vertex:

1. → ig′AµDµC = ig′gµνA
µDνC

2. nothing to do

3. nothing to do

4. → ig′gµν

C

Dν

Aµ

p
q1

q2

ig′gµν
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2.3 Effective field theories

If one wants to develop new theories of physics beyond the Standard Model, one
can either try to construct a specific model or use a model-independent ansatz:
the effective Lagrangian formalism ([13], [14]).

In the latter case, the actual new theory (which is not worked out explic-
itly in the effective theory) is assumed to manifest itself above a certain energy
scale Λ. However, this energy scale is assumed to be very high, so it is far from
experimental reach. The effective Lagrangian formalism is understood to be
a low-energy approximation of the actual, unknown theory (where low always
means low in comparison with Λ), so the effective Lagrangian is an expansion
in inverse powers of Λ :

Leff = L0 +
1

Λ
L1 +

1

Λ2
L2 + ... (2.18)

In contrast to the Standard Model Lagrangian, such an effective Lagrangian is
not renormalizable. All terms of a Lagrangian always have dimension four, so
that the action is dimensionless. Due to the factors 1

Λn , the terms Li contain
operators of higher dimensions.

In principle, the effective Lagrangian can contain an infinite number of terms.
However, terms of higher order are suppressed by high powers of 1

Λ
, so they

do not need to be considered. Typically, only the first non-vanishing order is kept.

One of the main assumptions of an effective field theory concerns the
low-energy symmetries. Another one is the low-energy particle content. This
can be the Standard Model particle content, but also new particles can be
added, like the spin-2 particles in this thesis (see chapter 3). The underlying
high-energy theory is assumed to contain additional heavy particles, whose
masses correspond to the energy scale Λ. Although they cannot be produced
directly in low-energy reactions, they influence the low-energy interactions
through their virtual effects.

Now let’s look at a famous example to illustrate the general formalism of
effective field theories, the Fermi theory.
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2.3.1 Example: The Fermi theory

The Fermi theory is the low-energy effective theory of the weak interactions. An
early version of it was written down during the 1930’s as a theory of the beta
decay of nucleons, but it can also describe other weak processes. Let’s take τ
decay as an example to look at the low-energy effects due to the interaction of
the W boson with light particles:

The amplitude for the τ decay τ(k) → ντ (l)fm(q)fn(p) is given by [13]:

M(τ → ντfmfn) = e2
W U∗

mn[uν(l)γ
µ(1− γ5)uτ (k)][un(p)γν(1− γ5)vm(q)]

∗
[
gµν − (k − l)µ(k − l)ν/M

2
W

(k − l)2 −M2
W + iε

]
(2.19)

where U∗
mn is a unitary matrix which accounts for a mixing between leptons of

different generations.

In the low-energy approximation, this amplitude is simplified by expanding the
propagator of the W boson in inverse powers of M2

W :[
gµν − (k − l)µ(k − l)ν/M

2
W

(k − l)2 −M2
W + iε

]
≈ − gµν

M2
W

[
1− (k − l)2

M2
W

+ ...

]
+

(k − l)µ(k − l)ν

M4
W

[1 + ...] (2.20)

If only the lowest order term in this expansion is kept, (2.19) becomes:

M(τ → ντfmfn) = −GF√
2
U∗

mn[uν(l)γ
µ(1− γ5)uτ (k)][un(p)γµ(1− γ5)vm(q)]

(2.21)

where GF is the Fermi coupling constant and GF /
√

2 = e2
W /M2

W .

Exactly the same matrix element (2.21) is obtained at lowest order in
perturbation theory from the effective Lagrangian

L =
GF

2
√

2
U∗

mn[ντγ
µ(1− γ5)τ ][fnγµ(1− γ5)fm] + c.c. (2.22)

As GF has mass dimension -2, this Lagrangian is an example of a 1
Λ2L2 term of

the general effective Lagrangian (2.18). Here, the W mass plays the role of the
energy scale Λ.
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Whereas the matrix element (2.19) corresponds to a Feynman diagram with
virtual W exchange (left hand side of the above figure), the matrix element of
the effective theory, (2.21), corresponds to the effective four vertex Feynman
diagram on the right hand side of the figure.
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3 Lagrangian and Feynman Rules for the in-

teraction of a Spin-2 particle with elec-

troweak bosons

In this chapter, effective Lagrangians for the interaction of a spin-2 particle with
electroweak bosons are constructed and the Feynman rules, which result from
these Lagrangians, are given.
This is done for two cases. In the first part, a spin-2 state which behaves as a
singlet under SU(2) transformations is presented, and in the second part, a spin-2
triplet in the adjoint representation follows.
These states are described by the general spin-2 fields Tµν (singlet) and T j

µν

(triplet) (see appendix A). These fields are symmetric in µ, ν, transverse and
T µ

µ = T µj
µ = 0.

3.1 Spin-2 singlet

3.1.1 Lagrangian

To develop a model for the interaction of a spin-2 singlet particle with electroweak
bosons, a Lagrangian needs to be constructed.
To this end, an effective ansatz (see chapter 2.3) is used:

Leff,singlet =
∑

i

fi

Λ
TµνO

µν
i (3.1)

fi are variable, dimensionless coupling parameters, Λ is the energy scale, at
which the new theory manifests itself, Tµν is the general spin-2 singlet field (see
appendix A) and Oµν

i are operators which have to be constructed.
From the features of the spin-2 field Tµν mentioned above, one can conclude
that the operators Oµν

i must have at least dimension 4.
Λ is supposed to be very high, otherwise effects of the model would have been
visible in earlier experiments. Therefore, terms of higher order are suppressed
and do not have to be considered here.

Now the operators have to be constructed. Therefore, one has to deter-
mine their possible ingredients first:
As this model should treat the interaction of the spin-2 particle with photons,
W and Z bosons, but not with gluons, fermions or any particles which are not
part of the SM, the only suitable ingredients are the vector fields V µ (which can
be W±µ, Zµ or Aµ), the scalar Higgs field Φ and the covariant derivative Dµ

(see chapter 2.1).
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Furthermore, there are several constraints which limit the number of op-
erators:

• As mentioned previously, the dimension of Oµν
i must be four. Thereby, Φ,

Dµ and V µ all have mass dimension one. Also the result must be a rank-2
Lorentz tensor Oµν , with all other Lorentz indices properly contracted.

• Gauge invariance needs to be respected. As the operators Oµν
i have to be

SU(2) invariant, Oµν
i cannot contain a Higgs field Φ without its hermitian

conjugate Φ† and vice versa.

• Furthermore, the operators always have to contain an even number of V µ

and Dµ to ensure Lorentz invariance.

• Oµν cannot be antisymmetric, because Tµν is symmetric (see its definition
in appendix A) and the product of a symmetric and an antisymmetric tensor
gives zero.

• Operators of the form (gµν times a scalar) do not have to be considered,
as they only contribute to off-shell spin-2 states. This can be easily seen by
looking at TµνO

µν
i = Tµνg

µν · scalar = T µ
µ · scalar and showing εµ

µ = 0 from
the explicit form of the polarization vectors (see appendix A). Therefore,
such terms cannot contribute to spin-2 resonances.

Although one can think of many combinations of V µ, Φ and Dµ which could
form operators, these constraints exclude most of them. Finally, there are only
five suitable operators left to form the effective Lagrangian of the spin-2 singlet
model:

Leff,singlet =
1

Λ
Tµν

(
f1B

ανBµ
α + f2W

αν
i W iµ

α + f3B̃
ανBµ

α

+f4W̃
αν
i W iµ

α + 2f5(D
µΦ)†(DνΦ)

)
(3.2)

where Bαν and W αν
i are the field strength tensors given by eq. (2.2) and (2.3)

and

B̃αν =
1

2
εανρσBρσ

W̃ αν
i =

1

2
εανρσWiρσ (3.3)

are the corresponding dual field strength tensors.
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The factor 2 in front of the f5 term is a relic of its symmetry. One could
also take the term Tµν(D

νΦ)†(DµΦ), but as Tµν is symmetric, this is equal to
Tµν(D

µΦ)†(DνΦ).

It is interesting to compare the Lagrangian (3.2) with the Lagrangian for
gravitons given in [15]:

LG = − 1

Λ

∑
n

T (n)µνTµν (3.4)

where T (n)µν is the n-th graviton Kaluza-Klein mode, which corresponds to the
general spin-2 field T µν and Tµν is the energy-momentum tensor of the SM
fields. T µν contains terms analogous to BανBµ

α and Wαν
i W iµ

α, but also terms
describing the couplings of the gravitons to fermions and gluons, which are not
part of (3.2), because we restrict ourselves to a model of the interaction of a
spin-2 particle with electroweak bosons.
The terms of Leff,singlet containing B̃αν and W̃ αν

i are not part of the graviton
Lagrangian. As the results will show, these terms do not lead to spin-2
resonances, but they can influence the total cross sections of the considered
processes (see section 5.3.1 and fig. 5.41).
Another important feature of Leff,singlet is the presence of variable prefactors
fi, whereas the prefactors of LG are fixed by the theory.

3.1.2 Feynman Rules

In order to derive the Feynman rules from the effective singlet Lagrangian (3.2),
first B and W i are replaced with W±, Z and A according to eq. (2.11)-(2.14).
This yields a Lagrangian with many terms, from which the Feynman rules can
be calculated by following the procedure given in chapter 2.2. The present
Feynman rules were calculated by hand as well as cross-checked by the programs
FeynRules [16] and LanHEP [17].

All in all, this yields 17 vertices, with 3, 4 or 5 particles attached to the
vertex, like: THH, THW+W−, TγW+W−Z etc.

However, most of them are not needed to analyze processes in vector bo-
son fusion. The four relevant vertices, which will appear, are TW+W−, TZZ,
Tγγ and TγZ.

Note that it is not necessary to symmetrize the following Feynman rules,
since the spin-2 field Tµν is symmetric.
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Tµν

W+
α

W−

β

p1

p2

2if2

Λ
Kαβµν

1 + if4

Λ
Kαβµν

2 + if5g2v2

2Λ
Kαβµν

3

Tµν

Zα

Zβ

p1

p2

2i
Λ
(f2c

2
w + f1s

2
w)Kαβµν

1 +
i
Λ
(f4c

2
w + f3s

2
w)Kαβµν

2 +
if5v2

2Λ
(g2 + g′2)Kαβµν

3

Tµν

γα

γβ

p1

p2

2i
Λ
(f1c

2
w + f2s

2
w)Kαβµν

1 +
i
Λ
(f3c

2
w + f4s

2
w)Kαβµν

2

Tµν

γα

Zβ

p1

p2

2i
Λ
cwsw(f2 − f1)K

αβµν
1 +

i
Λ
cwsw(f4 − f3)K

αβµν
2
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with cw = cosθW , sw = sinθW and

Kαβµν
1 = pν

1p
µ
2g

αβ − pβ
1p

ν
2g

αµ − pα
2 pν

1g
βµ + p1 · p2g

ανgβµ

Kαβµν
2 = p2ρp1σg

αµεβνσρ + p1ρp2σg
βµεανσρ + (p1ρp

µ
2 − p2ρp

µ
1)εαβνρ

Kαβµν
3 = gανgβµ (3.5)

The variables g, g′, v, cosθW and sinθW have already been defined in chapter 2.1.

3.2 Spin-2 triplet

In this section, the Lagrangian and the Feynman rules for a spin-2 triplet are
presented. While the spin-2 singlet involves only one uncharged particle, T , the
triplet consists of three spin-2 particles: T 1, T 2 and T 3, which form charged and
neutral linear combinations analogous to W± from W 1 and W 2 (see eq. 2.11,
2.12):

T± =
1√
2
(T 1 ∓ i T 2)

T 0 = T 3 (3.6)

So the constituents of the spin-2 triplet are one pair of charged particles and one
uncharged particle.

3.2.1 Lagrangian

For the construction of the triplet Lagrangian, the effective ansatz is nearly the
same as for the singlet Lagrangian. It just contains an additional summation over
the index j (j = 1, 2, 3) of the triplet particles.

Leff,triplet =
∑
i,j

fi

Λ
T j

µνO
µν
i,j (3.7)

The operators can be constructed by applying the same rules as in the singlet
case. The resulting triplet Lagrangian is:

Leff,triplet =
1

Λ
Tµνj

(
f6(D

µΦ)†σj(DνΦ) + f7W
jµ

αBαν

+f8 εijkW µα
i W ν

kα

)
(3.8)
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Similar to the singlet Lagrangian, also here terms with dual field strength tensors
would be possible, but as the results of the singlet case show, these do not lead
to spin-2 resonances. Therefore, they are neglected already at this stage.

3.2.2 Feynman Rules

From the triplet Lagrangian (3.8), the following Feynman rules were calculated
by hand by applying the procedure of chapter 2.2. They have also been
cross-checked with LanHEP. The fields B and W i are replaced with W±, Z and
A according to eq. (2.11-2.14) and T j are replaced with T± and T 0 (eq. (3.6)).

This yields 38 vertices in total, which contain 3, 4 or 5 particles, for ex-
ample: T 0HH, T 0HW+W−, T 0γW+W−, T±W∓γZ, T 0ZHH, T±W∓HH,
T 0W+W−ZZ, T±W∓W+W−Z.

However, as in the singlet case, most of them are not needed for the
analysis of processes in vector boson fusion. The relevant vertices are:

T±µν

W∓
α

Zβ

p1

p2

− if6

4Λ
gv2
√

g2 + g′2Kαβµν
3 − if7

Λ
swKαβµν

1

T±µν

W∓
α

γβ

p1

p2

if7

Λ
cwKαβµν

1
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T 0
µν

W+
α

W−

β

p1

p2

if6

4Λ
g2v2Kαβµν

3

T 0

µν

Zα

Zβ

p1

p2

− if6

4Λ
(g2+g′2)v2Kαβµν

3 − 2if7

Λ
cwswKαβµν

1

T 0

µν

γα

γβ

p1

p2

2if7

Λ
cwswKαβµν

1

T 0

µν

γα

Zβ

p1

p2

if7

Λ
(c2

w − s2
w)Kαβµν

1

with Kαβµν
1 and Kαβµν

3 as in the singlet case (see eq. (3.5)).

Note that these vertices do not contain a term proportional to f8. This
coupling only appears when considering vertices with 4 or 5 particles.
So for the following VBFNLO analysis, the f8 term of the Lagrangian (3.8) does
not play any role.
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4 Implementation into VBFNLO

One of the main tasks of this thesis was the implementation of the model for
spin-2 particles developed in chapter 3 into the program VBFNLO [8]. With this
program, it is possible to simulate the influence of this model on electroweak
boson fusion and to get predictions for total cross sections, angular distributions
etc. This chapter illustrates the general features of VBFNLO as well as the
changes which were performed concerning the spin-2 model.

4.1 Vector Boson Fusion and the program VBFNLO

VBFNLO is a parton level Monte Carlo program written in FORTRAN, which
simulates vector boson fusion (VBF) processes at next-to-leading order (NLO)
in the strong coupling constant αs. It was created by D. Zeppenfeld et al. and
is still enlarged by various effects (especially beyond standard model aspects)
at the ITP in Karlsruhe. The main result of a VBFNLO calculation is the total
cross section of a vector boson fusion process at a proton-proton collider like
the LHC. This thesis focuses on electroweak boson fusion processes at leading
order.

The topology of typical electroweak boson fusion processes is shown in
the following figure:

q1 q′
1

q2
q′
2

W±, Z, γ

W∓, Z, γ

W±, Z, γ

W∓, Z, γ

l̄, ν̄

l, ν

l, ν

l̄, ν̄

The circular area involves various subdiagrams which are contained in the
so-called leptonic tensors.

The different processes which can be calculated with VBFNLO are distinguished
by the final states. The initial state consists of two protons, but it is also possible
to switch to a proton and an antiproton.
The following table gives an overview of all the processes which are relevant for
this thesis:
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Process ID Name Final state

200 WPWMjj e+ νe µ− νµ jj

210 ZZjj ll e+ e− µ+ µ− jj

211 ZZjj lnu e+ e− νµ νµ jj

220 WPZjj e+ νe µ+ µ− jj

230 WMZjj e− νe µ+ µ− jj

240 AAjj γ γ jj

101 Hjj AA γ γ jj

where jj denotes two jets in the final state which result from the two quarks
emerging from the interaction process.

The cross section for a general hadron collider process can be written as
[18]

σ =

∫
dx1 dx2

∑
subprocesses

fa1/p(x1, µ
2
F ) fa2/p(x2, µ

2
F )

1

2ŝ

∫
dLIPS 2→n

θ(cuts)
∑
|M|2(a1a2 → b1...bn). (4.1)

Here, fai/p(xi, µ
2
F ) is the parton distribution function (PDF) of the proton for

the parton ai, with xi being the fraction of the proton momentum carried
by the parton ai and µF being the factorization scale. ŝ is the square of the
centre of mass energy for the particular partonic subprocess, dLIPS 2→n is
the Lorentz invariant phase space element for a process with 2 initial particles
going to n final particles and θ(cuts) is a Heaviside step function which sets
some constraints on the final state configurations, e.g. to exclude regions of the
phase space which cannot be seen in a real detector experiment.

∑
|M|2 finally

denotes the square of the matrix element of the particular subprocess, which
includes the sum over the different polarizations and colours of the final state
partons and the average of these for the initial state partons.

This integral cannot be solved analytically, not only because it is very
complex, but also because the PDFs are only known numerically.
Therefore, VBFNLO uses the Monte Carlo integration method to solve the
integral (4.1) numerically.

28



A basic Monte Carlo integration works as follows [19]:
For the calculation of a d dimensional integral over the unit hypercube [0, 1]d

I =

∫
V =[0,1]d

f(~x)ddx (4.2)

a basic Monte Carlo algorithm chooses N uniformly distributed points ~xn

randomly out of V. Then, the Monte Carlo estimate for the integral is given by

IMC =
1

N

N∑
n=1

f(~xn) (4.3)

Due to the law of large numbers, the Monte Carlo estimate converges to the
true value of the integral:

lim
N→∞

1

N

N∑
n=1

f(~xn) = I (4.4)

The error in such a Monte Carlo integration scales like σ(f)√
N

, where σ(f) is the
standard deviation of f .
In order to reduce both error and running time, VBFNLO uses a modified version
of an algorithm called VEGAS [20].

A leading order calculation in VBFNLO proceeds through the following
steps:

First, the parameters of the process are read in. The general parameters
can be set in the data file vbfnlo.dat, the cuts can be set in cuts.dat and
some specific parameters for specific models can be set in other .dat files, like
the spin-2 parameters of this thesis in spin2coupl.dat (for these data files, see
Appendix C). According to these parameters, the random number generator,
the routine for the integration, the histogram routine etc. are initialized.

The actual calculation is executed with two nested loops: The first one
runs over the different iterations of the Monte Carlo algorithm, while the second
one runs over the different points of the phase space. The main routine, where
all the parts of the calculation come together, is vbfnlo main.F.

The contribution of every phase space point of each iteration to the cross
section is calculated in the following way:
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The routine for the integration yields an array of random numbers and
their corresponding weights.
The routine phasespace.F converts these random numbers into the corre-
sponding particle momenta.
A phase space point only contributes to the cross section if it is accepted by the
set of cuts. Otherwise its weight and therefore its contribution is set to zero and
the rest of the calculation process is skipped.
After that, the factorization and renormalization scale for the phase space point
are calculated.
Then, the square of the matrix element is calculated by the corresponding
subroutine which is called by the function amplitudes.F. The result is multiplied
with a phase space factor and is transferred, together with its weight, to the
routine for the integration.

The output of the integration is the total cross section of the process
and its statistical error.

For the last iteration of the calculation, there is the additional option to
use the routine histograms.F, which provides the tools to create some
histograms (like for example the distribution of transverse momenta or angular
distributions) and which can easily be modified by the user for the individual
histograms he is interested in.

For a NLO calculation, there are additional contributions to the cross
section which have to be calculated, but the principal steps of the calculation
are the same.

In order to get a fast calculation, the leptonic tensors are calculated sep-
arately and afterwards included at the desired place.
The topology of a part of a VBF process (see figure) can be written as:

M = J µ
q1J ν

q2Lµν (4.5)

The leptonic tensor Lµν is the part of the amplitude which results from cutting
off the electroweak boson propagators that connect the circular area with the
quarks. It is independent of the QCD part of the different subprocesses and
therefore it has to be calculated only once for each phase space point.
The leptonic tensors are calculated by calling specific subroutines, the so-called
HELAS routines [21]. Often the calls can be generated by the program MAD-
GRAPH, but they can be implemented ’by hand’ as well, which was done for
the spin-2 processes.
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4.2 Overview of the implementation of the Spin-2
model into VBFNLO

For the implementation of the spin-2 model into VBFNLO, the following changes
were performed:

• A switch was implemented, which decides whether the spin-2 model
should be included into the VBFNLO calculation or not. It can be set
in vbfnlo.dat.

• For the parameters of the spin-2 model (couplings, masses, etc.), the
files spin2coupl.dat, spin2coupl.inc and spin2coupl.F were created: In
spin2coupl.inc, the new variables are stored in a common block, they can
be set in spin2coupl.dat and are read in spin2coupl.F.

• New HELAS routines were created which are used to calculate the different
Feynman diagrams involving spin-2 particles.

• The leptonic tensors of the VBF processes for electroweak boson pair pro-
duction with four leptons in the final state (200, 210, 211, 220 and 230)
were enlarged by the additional Feynman diagrams which contain spin-2
particles, where each diagram is calculated by a set of calls of HELAS rou-
tines. Furthermore, a formfactor (see chapter 5.1, eq. 5.4) is defined and
multiplied to the corresponding subamplitudes.

• The new VBF process 240, pp → γγjj via a spin-2 resonance, was created.

• The widths of the spin-2 particles (see Appendix B) were implemented.
They are needed for the calculation of the spin-2 propagators, which is
performed in the HELAS routines.

• Some phase space files were slightly modified in order to adjust them to
spin-2 resonances.

• The subroutine histograms.F was enlarged by various histograms.

4.3 New HELAS routines and extension of the leptonic
tensors

A significant part of the implementation of the spin-2 model into VBFNLO was
the extension of the leptonic tensors. They contain the additional Feynman
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diagrams which include the coupling of a spin-2 particle to electroweak bosons.
Also new HELAS routines for their calculation have been created.

The original files which calculate the leptonic tensors are called toww.F
for process 200, tozz.F for the processes 210 and 211 and towz.F for 220 and
230. The corresponding extended files, which include the spin-2 diagrams, are
called toww spin2.F, etc. For the new process 240, a new leptonic tensor file
called spin2toaa.F was created.

A leptonic tensor file consists of several subroutines which calculate the
Feynman diagrams of the corresponding subprocess by a set of calls of HELAS
routines. For the calculation of new Feynman diagrams involving spin-2 particles,
new HELAS routines, which apply the Feynman rules of the spin-2 model (see
chapter 3), must be used.

The following example shall illustrate the general procedure:

γ

γ

W+

W−

T±

W (1, 1)

W (1, 2)

W (1, 3)

W (1, 4)

W (1, 7)

The diagram on the left is the third dia-
gram of a subroutine of spin2toaa.F. The
corresponding code for its calculation is:

CALL VXXXXX(P(0,3), ZERO, lsign(3), 1, W(1,3))
CALL VXXXXX(P(0,4), ZERO, lsign(4), 1, W(1,4))

CALL VCARTX(Q1(0), WMASS, wwidth, MU, -1, W(1,1))
CALL VCARTX(Q2(0), WMASS, wwidth, NU, -1, W(1,2))

CALL UWAXXX TRIPPM(W(1,1),W(1,3) , W(1,7))
CALL WATXXX TRIPPM(W(1,2),W(1,4), W(1,7) , AMP(3))

The first four lines compute the external lines of the diagram, which are the
same for all diagrams of the corresponding subroutine. Therefore, only lines like
the two last lines need to be added for further diagrams.
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Whereas the first four lines are calls of HELAS routines which were al-
ready implemented before, the last two lines, which contain the spin-2 couplings,
are calls of new spin-2 HELAS routines.
UWAXXX TRIPPM calculates the off-shell tensor current W(1,7) of the charged
spin-2 triplet particle T± from the input wave functions W(1,1) and W(1,3).
WATXXX TRIPPM returns the vertex function AMP(3), which is calculated
from the input functions W(1,2), W(1,4) and W(1,7).
More detailed information about these calculations can be found below (see eq.
4.6 and 4.7).

At the end of a subroutine, the corresponding leptonic tensor is calcu-
lated by adding up all the vertex functions AMP(i) and can be multiplied by a
formfactor, which is implemented in each of the leptonic tensor subroutines as
well.

As the example shows, there are two different kinds of spin-2 HELAS
routines: Those which calculate an off-shell tensor current and those which
calculate a vertex. Furthermore, as there are different Feynman rules for different
electroweak bosons involved in a vertex, there must be two HELAS routines for
each kind of combination of bosons which couple to the spin-2 particle (one for
the current and one for the vertex). Last but not least, each spin-2 particle (the
singlet particle T , the neutral triplet particle T 0 and the charged triplet particles
T±) has its own set of HELAS routines.

So, all in all, there are 20 spin-2 HELAS routines which were created.
The notation is as follows: The name of the 10 tensor current functions begins
with a U and the following two letters indicate which vector bosons are involved.
The first three letters of the 10 vertex functions denote the involved particles.
The three X in both of them are just a convention. The spin-2 singlet functions
are named ... SING, the neutral triplet functions ... TRIPN and the charged
triplet functions ... TRIPPM.

The structure of a spin-2 HELAS routine which calculates an off-shell
tensor current, like UWAXXX TRIPPM(w1,a2 , uwa), is:

• w1 and a2 are complex input wave functions (w1 denotes the W boson, a2
the photon) with 6 components. The output of the routine is the complex
tensor current uwa, which has 18 components.

• After reading the four-momenta of the W boson and the photon from
the fifth and sixth component of w1 and a2, the momentum of the spin-
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2 particle is calculated by adding them and stored in the 17th and 18th
component of uwa.

• The tensors Kαβµν
1,2,3 of the spin-2 Feynman rules are computed.

• The numerator and the denominator of the spin-2 propagator (see Ap-
pendix A) are calculated.

• The off-shell tensor current is calculated from the input functions w1 and
a2, the respective Feynman rule and the propagator.
For UWAXXX TRIPPM(w1,a2 , uwa), the corresponding formula is:

ywaγδ = − Bµνγδ

k2 −m2
T + imT ΓT

f7

Λ
cwK1, αβµν w1α a2β (4.6)

The 16 components of ywa are stored in the first 16 entries of uwa.

The structure of a vertex routine, like WATXXX TRIPPM(w1,a2,tc , vertex), is
analogous, apart from the following differences: An additional input, the tensor
function tc of the spin-2 particle, is needed, the momentum of the spin-2 particle
does not need to be calculated (as it is already contained in the input tensor
function) and the propagator is not needed either. The tensor function tc can be
the output of a HELAS routine which calculates an off-shell tensor current, like
uwa from UWAXXX TRIPPM(w1,a2 , uwa). The output, vertex, is computed
from the three input functions and the respective Feynman rule.
For WATXXX TRIPPM(w1,a2,tc , vertex), the corresponding formula is:

vertex =
f7

Λ
cwK1, αβµν w1α a2β ftµν (4.7)

The 16 components of ftµν are equal to the first 16 entries of tc.

4.4 The different processes: New Feynman diagrams
and implementation

In this section, the modifications of the different processes which are relevant
for this thesis are presented, together with all the new Feynman diagrams in-
volving spin-2 particles. Whereas the VBF processes for electroweak boson pair
production with four leptons in the final state (200, 210, 211, 220 and 230) were
already implemented and just had to be enlarged, the VBF process pp → γγjj
via a spin-2 resonance (240) was created completely new.
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4.4.1 200: V V → e+ νe µ− νµ

This process, called WPWMjj, is characterized by the four final state leptons
e+ νe µ− νµ, which emerge from a W+ and a W− boson. All off-shell effects to
this final state are included. Its leptonic tensor file, toww.F, already contained
all the contributing Standard Model diagrams, which are calculated in several
subroutines according to the initial bosons, which couple to the initial quark
legs. The notation V V → e+ νe µ− νµ only denotes the process of the leptonic
tensors. In the full process, there are also the two quarks in the initial state and
the jets in the final state.

For the process 200, the new Feynman diagrams involving a spin-2 parti-
cle are:

Spin-2 singlet and neutral triplet

For the spin-2 singlet particle T , the new diagrams are:

W

W

W

W

V1

V2

W

W

T

T

e+

νe

µ−

νµ

e+

νe

µ−

νµ

with V1, V2 =̂ W+W−, γZ, Zγ, γγ, ZZ

The Feynman diagrams for the neutral spin-2 triplet are the same as for
the singlet particle (just replace T with T 0).
This is a general feature of all the considered processes, as the set of vertices is
identical for both particles.

Charged spin-2 triplet

For the charged triplet particles, the new contributions are:

W

W

W

W

V1

V2

V1

V2

T±
T∓

e+

νe

µ−

νµ

e+

νe

µ−

νµ
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with V1, V2 =̂ γZ, Zγ, γγ, ZZ

Implementation

In order to implement these new Feynman diagrams, the new file toww spin2.F
was created, which is a modification of toww.F. There, the subroutines are
called AAtoWW spin2 instead of AAtoWW for example. The new Feynman
diagrams were implemented into these subroutines by writing a set of calls of
HELAS routines (see the previous section for details). Furthermore, a formfactor
(see chapter 5.1, eq. 5.4), which can be multiplied to the subamplitude, was
implemented into each subroutine.
These modified subroutines are used for the further calculations in the file
m2s qqzqq.F instead of the original ones if the spin-2 switch is set to true.
Also the exchange of the order of the initial electroweak bosons is performed
there: These subroutines are called twice, with interchange of the two initial
bosons, if these bosons are not the same.

For the processes 210, 211, 220 and 230, the procedure is completely
analogous to the one described here.

4.4.2 210: V V → e+ e− µ+µ−

The modified leptonic tensor file of this process, which is called ZZjj ll, is
denoted as tozz spin2.F, its subroutines are called in m2s qqzqq.F, as previously.
The new Feynman diagrams are:

Spin-2 singlet and neutral triplet

Z, γ

Z, γ

V1

V2

T

Z, γ

Z, γ

V ′

1

V ′

2

T

Z, γ

Z, γ

V ′

1

V ′

2

T

µ+

µ−

e−

e+

µ+

µ−

e−

e+

µ+

µ−

e−

e+

with V1, V2 =̂ W+W−, γZ, Zγ, γγ, ZZ and V ′
1 , V

′
2 =̂ γZ, Zγ, γγ, ZZ.

For the two final bosons, there are always four possible combinations:
ZZ, γγ, Zγ, γZ.
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Charged spin-2 triplet

Again, for the final bosons, there are the four possible combinations
ZZ, γγ, Zγ, γZ, but the initial bosons can only be W+W−.

Z, γ

Z, γ

Z, γ

Z, γ

W

W

W

W

T± T±

µ+

µ−

e−

e+

µ+

µ−

e−

e+

4.4.3 211: V V → e+ e− νµνµ

This process, called ZZjj lnu, uses the same modified leptonic tensor file as 210:
tozz spin2.F and its subroutines are called in m2s qqzqq.F as well.
There are only half as much new Feynman diagrams as for process 210, because
the photon can decay into charged leptons, but not into neutrinos.

Spin-2 singlet and neutral triplet

Z

Z, γ

V1

V2

T

Z

Z, γ

V ′

1

V ′

2

T

Z

Z, γ

V ′

1

V ′

2

T

νµ

νµ

e−

e+

νµ

νµ

e−

e+

νµ

νµ

e−

e+

with V1, V2 =̂ W+W−, γZ, Zγ, γγ, ZZ and V ′
1 , V

′
2 =̂ γZ, Zγ, γγ, ZZ

For the two final bosons, there are only two possible combinations: ZZ
and Zγ, instead of four for process 210.

Charged spin-2 triplet

The new diagrams for T± are:
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Z

Z, γ

W

W

T±

νµ

νµ

e−

e+

Z

Z, γ

W

W

T±

νµ

νµ

e−

e+

4.4.4 220: V V → e+ νe µ+µ−

This process is called WPZjj. Its modified leptonic tensor file is denoted as
towz spin2.F, its subroutines are called in m2s qqwqq.F.
The new Feynman diagrams are:

Spin-2 singlet and neutral triplet

W

γ, Z

W

γ, Z

T

e+

νe

µ−

µ+

There are four possible combinations for the two lower boson lines:
ZZ, γγ, Zγ, γZ.

Charged spin-2 triplet

The new diagrams for T± are:

W

γ, Z

γ, Z

W

W

γ, Z

W

γ, Z

T±

T±

e+

νe

µ−

µ+

e+

νe

µ−

µ+
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4.4.5 230: V V → e− νe µ+µ−

This process, called WMZjj, is very similar to the process 220: The only
difference can be found in the final leptons: e− νe instead of e+ νe, which emerge
from a W− instead of a W+. Therefore, this process is implemented in the
same modified leptonic tensor file, towz spin2.F and its subroutines are called in
m2s qqwqq.F as well.
Also the Feynman diagrams are analogous:

Spin-2 singlet and neutral triplet

W

γ, Z

W

γ, Z

T

e−

νe

µ−

µ+

Charged spin-2 triplet

W

γ, Z

γ, Z

W

W

γ, Z

W

γ, Z

T∓

T∓

νe

e−

µ−

µ+

νe

e−

µ−

µ+

4.4.6 240: V V → γγ

This new process is denoted as AAjj and characterized by two photons in the
final state and an intermediate state with a spin-2 particle involved. In contrast
to the other processes discussed before, this one does not contain any Standard
Model background. The only diagrams that contribute to this processes are the
following ones:
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Spin-2 singlet and neutral triplet

γ

γ

γ

γ

γ

γ

V1

V2

V ′

1

V ′

2

V ′

1

V ′

2

T

T T

with V1, V2 =̂ W+W−, γZ, Zγ, γγ, ZZ and V ′
1 , V

′
2 =̂ γZ, Zγ, γγ, ZZ

Charged spin-2 triplet

For T±, only the following diagrams are possible:

γ

γ

γ

γ

W+

W−

W+

W−

T± T±

Implementation

To implement this new process, first, its name AAjj and its number 240 were
defined in process.inc. Furthermore, some new files were created: spin2toaa.F,
qqsp2aaqq.F and tensorsp2aa.inc. tensorsp2aa.inc contains a common block
of the new variables for the leptonic tensors. The leptonic tensors are calculated
from the Feynman diagrams listed above in the file spin2toaa.F, which has
a similar structure as other leptonic tensor files and which also provides the
opportunity to multiply the leptonic tensors with a formfactor. The subroutines
of spin2toaa.F are called in m2s qqzqq.F, and again, the exchange of the order
of the initial electroweak bosons is also performed there: The subroutines are
called twice, with interchange of the two initial bosons, if these bosons are
not the same. The square of the matrix element of the process is calculated
in qqsp2aaqq.F by contracting the leptonic tensors with the hadronic tensors
J µ

q1J ν
q2 (see eq. 4.5).
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The process 240 can also be used in another way: It includes the oppor-
tunity to have a Higgs instead of a spin-2 particle in the leptonic tensor
subroutines. Therefore, spin2toaa.F contains a second part, which is usually
commented out for a normal run of 240 with spin-2 particles. There, two
Feynman diagrams are considered which contribute to the leptonic tensors:
Their structure is like the left one of the spin-2 singlet case, but with a Higgs
instead of T , and with the initial bosons W+W− in one diagram and ZZ
in the other one. The Higgs boson couples to the photons by an effective
dimension-five operator.

There is also another way to simulate the Higgs case: VBF Higgs production
multiplied with the photon branching ratio of the Higgs. This is implemented in
process 101 (Hjj AA), which was used, but not modified for this thesis.

The comparison of the results of process 101 and the Higgs case of process 240
is also a good way to test the implementation of 240: The two results agree well,
some small differences originate from the effective coupling of the Higgs to the
photons.

4.5 Input parameters and selection cuts

4.5.1 Input parameters

The following parameters, which can be set in the input file vbfnlo.dat (see
Appendix C.1), are taken from the 2010 results of the Particle Data Group [22].

The masses of the electroweak bosons are:

mW = 80.399 GeV
mZ = 91.1876 GeV

The Fermi constant is:

GF = 1.16637 · 10−5 GeV−2

α and sin2 θW are calculated from these by using LO electroweak rela-
tions. This is chosen by setting EWSCHEME = 3 in vbfnlo.dat.

The masses of the leptons and the light quarks are neglected. The top
and bottom quark do not contribute to the considered processes.
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The chosen PDF set (only at LO, since no NLO calculations were per-
formed) is: CTEQ6Ll [23].

The factorization scale is set to µF = Q, where Q is the momentum
transfer between the respective initial and final state quarks.

The present analysis focuses on a Higgs mass of

mH = 120 GeV.

This is in agreement with constraints from direct searches at LEP and
Tevatron. Also a relatively light Higgs around this value is favoured by
electroweak precision data.

4.5.2 Selection cuts

A sensible choice of selection cuts is necessary for several reasons: Some basic
cuts are needed to render the calculations finite, the detector geometry has to
be respected, and the background should be suppressed compared to the signal
process.
Therefore, some different sets of cuts can be applied [24]:

1. Inclusive Cuts:
The weakest of the applied constraints are called inclusive cuts and are
summarized in the following table:

Cut VBFNLO Notation

ptag
T,j > 30 GeV PT JET MIN = 30.0d0

|ηj| < 4.5 Y JET MAX = 4.5d0

∆Rjj > 0.7 RJJ MIN = 0.7d0

pT,l > 20 GeV PT L MIN = 20.0d0

|ηl| < 2.5 Y L MAX = 2.5d0

∆Rlj > 0.4 RLJ MIN = 0.4d0

mll > 15 GeV MLL MIN = 15.0d0

where η is the rapidity, the index l denotes the final state lep-
tons, tag stands for tagging (the tagging jets are the two jets
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which have the largest transverse momentum) and ∆R is defined
as: ∆R =

√
(η1 − η2)2 + (φ1 − φ2)2.

These cuts are applied to avoid singularities, to respect the accessi-
ble rapidity range of the detector and to ensure well-observable isolated
particles.

2. VBF cuts:
Vector boson fusion events have some characteristic features, which can
be used to suppress the background: The two tagging jets are located in
the far forward region of the detector and have a large invariant mass and
rapidity gap between them, whereas the final state leptons lie in the central
rapidity range between the two jets.
Therefore, the VBF cuts are chosen as:

Cut VBFNLO Notation

ηtag
j,min < ηl < ηtag

j,max LRAPIDGAP = true

∆ηjj > 4 ETAJJ MIN = 4.0d0

ηtag
j1 × ηtag

j2 < 0 YSIGN = true

mjj > mmin
jj MDIJ MIN (=5.0d2 or 1.0d3)

where MDIJ MIN = 1000 GeV for process 200 (WPWMjj) and 500 GeV
for all other processes considered in this thesis.

3. Cuts on the invariant mass of the final state lepton system:
In order to study distributions of a spin-2 resonance in the processes with
four leptons in the final state (200, 210, 211, 220, 230), it is convenient
to cut off all the contributions which do not stem from this resonance.
Therefore, a minimal and a maximal invariant mass of the final state
lepton system can be required. The corresponding VBFNLO notation of
these cuts is MLEP MIN and MLEP MAX. The values of MLEP MIN and
MLEP MAX are adjusted to the width of the considered resonance.

In addition to these sets of cuts, some other cuts are always applied:

A maximal rapidity for the partons: Y P MAX = 5.0d0 and some photon
cuts: A maximal photon rapidity similar to the maximal lepton rapidity (see
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inclusive cuts): Y G MAX = 2.5d0, a minimal transverse momentum of the
photons: PT G MIN = 20.0d0 (similar to PT L MIN of the inclusive cuts), a
minimal photon-photon R separation: RGG MIN = 0.4d0, a minimal jet-photon
R separation: RJG MIN = 0.4d0 and a photon isolation cut: PHISOLCUT =
0.7d0 with an efficiency: EFISOLCUT = 1.0d0.

All these cuts can be set in the VBFNLO data file cuts.dat, see Appendix C.2.
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5 Results

5.1 Unitarity violation and formfactor in longitudinal
WW scattering

A physical theory has to preserve unitarity. However, as the present model
for the interaction of spin-2 particles with electroweak bosons is an effective
theory, which is a low-energy approximation and can only be used up to a
certain energy scale, it is no surprise that the amplitudes increase with the
centre of mass energy and therefore the theory violates unitarity at a certain scale.

For a detailed treatment, a partial wave analysis is a useful tool. It is ap-
plied to the scattering process of two longitudinal W bosons.

According to Ref. [25], the partial wave decomposition of the matrix ele-
ment for fixed helicity combinations is given by:

M = 16π
∑

j

(2j + 1) aj
λµ dj

λµ(θ) (5.1)

where λ (µ) is the helicity difference between the initial (final) bosons and
dj

λµ(θ) are the Wigner d-functions which are given in appendix E.

The orthogonality of the d-functions (eq. E.3) can be used to obtain the

coefficients aj
λµ: Multiplying eq. (5.1) by dj′

λµ(θ), integrating over cos θ and
inserting eq. (E.3) yields:

aj
λµ =

1

32π

∫ 1

−1

M dj
λµ (θ) dcosθ (5.2)

Unitarity of the S-matrix implies [26]:

|Re(aj
λµ)| ≤ 0.5 (5.3)

The partial wave analysis of longitudinal WW scattering was performed by using
a FORTRAN-program whose original version was written by C. Englert [7] and
which was modified for the present thesis: It uses HELAS routines to calculate
the matrix element and the routine gaussint for the integration over θ.

For the spin-2 case, there are two Feynman diagrams which contribute to
the WW scattering for the singlet case and the same ones for the triplet case
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Figure 5.1: Spin-2 Feynman diagrams of WW scattering
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Figure 5.2: Coefficients of the partial wave analysis in longitudinal WW scattering
for the spin-2 diagrams of fig. 5.1

(fig. 5.1).

Of course, the values of the coefficients aj
λµ depend strongly on the chosen

parameters of the spin-2 model.

The first coefficients of the partial wave decomposition in longitudinal WW
scattering with the two spin-2 singlet graphs of fig. 5.1 are shown in fig. 5.2 for
the following parameters: f1 = f2 = f5 = 1, fi6=1,2,5 = 0, Λ = 200 TeV, mT =
120 GeV, brrat = 1. With these parameters, the VBF photon pair-production
process yields a cross section which is roughly the same for a Higgs and a spin-2
particle (see table 5.1).

a0
00 gives the major contribution, so it determines the unitarity bound: For the
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given set of parameters, unitarity is violated above around 3.4 TeV (see fig.
5.4).

The left hand side of fig. 5.3 depicts the energy dependence of this coefficient:
In the double logarithmic plot, the slope characterizes the exponent of the
functions, so one can see that |Re(a0

00)| ∝ s3 (or ∝ E6, respectively) and
therefore M∝ E6 for the spin-2 diagrams. As illustrated by the right hand side
of fig. 5.3, this is a very good approximation for high energies above around
1 TeV.

In fig. 5.4, the behavior of |Re(a0
00)| is compared to the Standard Model

longitudinal WW scattering: There, unitarity violation is only avoided due to
the Higgs boson.

There is a possibility to evade unitarity violation for the present spin-2 model as
well: The introduction of a formfactor, which is multiplied to the amplitudes
and yields a suppression of high energies.

The chosen parametrization of this formfactor is:

f(q2
1, q

2
2, p

2
sp2) =

(
Λ2

ff

|q2
1|+ Λ2

ff

·
Λ2

ff

|q2
2|+ Λ2

ff

·
Λ2

ff

|p2
sp2|+ Λ2

ff

)nff

(5.4)

where q2
1 and q2

2 are the invariant masses of the initial electroweak bosons and
p2

sp2 is the invariant mass of the sum of the initial boson momenta, equivalent
to that of a s-channel spin-2 particle.
The energy scale Λff and the exponent nff are free parameters.
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Figure 5.4: Unitarity violation: Comparison with the Standard Model
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The influence of this formfactor on the energy dependence of |Re(a0
00)| is illus-

trated in fig. 5.5 for Λff = 4 TeV and nff = 4.

So with a suitable choice of Λff and nff , unitarity is preserved.

However, this is only one argument for the introduction of this formfactor.
Another even more important one concerns the distribution of transverse
momenta. This will be discussed in section 5.2.2.

A further analysis of the behavior of different couplings reveals that uni-
tarity violation in longitudinal WW scattering stems from the coupling f5,
whereas the contribution of the other couplings is insignificant.
This is illustrated by fig. 5.6: The left hand side shows the behavior
of |Re(a0

00)| in longitudinal WW scattering for the parameter settings
f1 = f2 = 1, fi6=1,2 = 0, Λ = 200 TeV, mT = 120 GeV, brrat = 1, which is the
same as before, except for the absence of f5. The right hand side shows the
same for transverse W bosons.
Fig. 5.6 demonstrates that, in contrast to f5 (see fig. 5.4), f1 and f2 do not
lead to unitarity violation for longitudinal W bosons, whereas for transverse
ones, they do.

There is another interesting feature which is observable in the partial wave
analysis of WW scattering: As explained in Ref. [27], the numerator of the
spin-2 propagator (eq. A.7) acts as a projector on the on-shell particle
(k2 = m2) if m2

T is replaced with k2 in eq. A.7. Therefore, it is proportional to
d2

λµ.
If the longitudinal W bosons are chosen as off-shell particles in order to get an
on-shell spin-2 particle and m2

T is replaced with k2 in the numerator of the
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propagator, one finds that for the resonance (s1/2 = 120 GeV) only a2
00

contributes, the other coefficients vanish.
Note that this feature is visible in the imaginary part, not in the real part of a2

00,
since for the resonance, the denominator of the propagator is purely imaginary.

In the following sections of this chapter, the formfactor of eq. 5.4 will be used
to preserve unitarity and to suppress unphysical high-energy contributions. Fur-
thermore, in case of the photon pair-production process, it will be used to adjust
the transverse momentum distributions of a spin-2 resonance to those of a Higgs
(see section 5.2.2). Thereby, the absence of a formfactor can be understood as
the limiting case of Λff →∞.
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5.2 Photon pair-production in Vector Boson Fusion
via Higgs and Spin-2 resonances

In this section, the VBFNLO process 240 (see section 4.4.6), which concerns
photon pair-production in vector boson fusion via Higgs and spin-2 resonances,
is analyzed. First, the total cross sections together with their errors are presented
for different cases and parameter settings. Afterwards, pT distributions are
analyzed and the relevance of the formfactor, which was introduced in section
5.1, is illustrated. Then, the resonance peak of the Higgs and the spin-2
resonance are compared and the task of the spin-2 branching ratio parameters
(see Appendix B) is elucidated. Finally, the most important aspect of this
analysis is presented: The various angular distributions.

The main issue of all these facets of the analysis is the comparison of a
Higgs and a spin-2 resonance. Additionally, different cuts and parameter set-
tings are investigated and the spin-2 singlet is compared to the spin-2 triplet case.

If there are no other specifications, the analysis is executed with the fol-
lowing settings (see Appendix C1, C3):

• The VBFNLO calculation is performed with 4 iterations and 224 points.

• The mass of the Higgs and the spin-2 particles are chosen as 120 GeV.

• All the spin-2 branching ratio parameters are set to 1.

• Only the s-channel diagrams of the Feynman diagrams presented in 4.4.6
are considered (see 5.2.3).

• In order to obtain cross sections comparable to the Higgs case (see table
5.1), the usual spin-2 parameter settings are:
Spin-2 singlet, without formfactor: f1 = f2 = f5 = 1, fi6=1,2,5 = 0, Λ =
200 TeV,
spin-2 singlet, with formfactor: f1 = f2 = f5 = 1, fi6=1,2,5 = 0, Λ =
20 TeV, Λff = 400 GeV, nff = 3,
spin-2 triplet, without formfactor: f6 = f7 = 1, fi6=6,7 = 0, Λ = 50 TeV,
spin-2 triplet, with formfactor: f6 = f7 = 1, fi6=6,7 = 0, Λ = 8 TeV, Λff =
400 GeV, nff = 3.

The formfactor is used both for the preservation of unitary (see
section 5.1) and in order to adjust the pT distributions of a spin-2
resonance to those of the Higgs, which will be discussed in section 5.2.2.
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• For figures which compare different values of coupling parameters, the
complete parameter settings can be found in table 5.1. There, couplings
fi which are not given explicitly are set to zero and the parameters of the
formfactor are Λff = 400 GeV, nff = 3.

• The distributions are determined in the laboratory frame.

In order to investigate possible effects of a finite detector resolution, a smearing
of the energy and the transverse momenta of the final state photons and jets
according to a Gaussian distribution was performed by using an in-house routine.
The energy of each jet is smeared according to a parametrization which is based
on a CERN CMS study [28]:

∆Ej

Ej

=

(
a

ETj

⊕ b√
ETj

⊕ c

)
(5.5)

The individual terms are added in quadrature. ETj denotes the transverse energy
of the jet. The parameters a, b and c depend on the rapidity ηj of the jet in the
following way:

a b c

|ηj| < 1.4 5.6 1.25 0.033

1.4 < |ηj| < 3 4.8 0.89 0.043

|ηj| > 3 3.8 0 0.085

For the photons, an energy resolution of 2% is assumed:

∆Eγ

Eγ

= 2% (5.6)

The x and y components of the transverse momenta are smeared in a similar
way.

However, it turned out that this smearing hardly influences the studied
distributions. Therefore, the results which are presented here were performed
without smearing.
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5.2.1 Cross sections

Table 5.1 gives an overview of the cross sections and the corresponding errors
computed by VBFNLO for the photon pair-production process (process 240) for
different scenarios and different sets of parameters. The given errors are statistical
errors from the Monte Carlo integration.

Process and parameters Cross section [fb] Error [fb]

Higgs (mH = 120 GeV), inclusive cuts 4.0978 0.0017

Higgs (mH = 120 GeV), inclusive + vbf cuts 2.1859 0.00105

Spin-2 singlet, without formfactor,
f1 = f2 = f5 = 1, Λ = 200 TeV,
inclusive cuts

2.9301 0.0042

Spin-2 singlet, without formfactor,
f1 = f2 = f5 = 1, Λ = 200 TeV,
inclusive + vbf cuts

0.4870 0.0008

Spin-2 singlet, with formfactor,
f1 = f2 = f5 = 1, Λ = 20 TeV,
inclusive cuts

4.5908 0.0022

Spin-2 singlet, with formfactor,
f1 = f2 = f5 = 1, Λ = 20 TeV,
inclusive + vbf cuts

2.5571 0.00135

Spin-2 singlet, with formfactor,
f1 = f2 = 1, Λ = 20 TeV,
inclusive cuts

4.0376 0.0019

Spin-2 singlet, with formfactor,
f1 = 2, f2 = f5 = 1, Λ = 27 TeV,
inclusive cuts

4.9627 0.0023

Spin-2 singlet, with formfactor,
f1 = 1, Λ = 10 TeV,
inclusive cuts

4.7081 0.0022

Spin-2 singlet, with formfactor,
f2 = 1, Λ = 10 TeV,
inclusive cuts

4.6184 0.0022
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Spin-2 singlet, with formfactor,
f1 = −1, f2 = f5 = 1, Λ = 20 TeV,
inclusive cuts

2.0242 0.00096

Spin-2 singlet, with formfactor,
f2 = −1, f1 = f5 = 1, Λ = 20 TeV,
inclusive cuts

1.3614 0.00066

Spin-2 singlet, with formfactor,
f5 = −1, f1 = f2 = 1, Λ = 20 TeV,
inclusive cuts

3.6160 0.0017

Spin-2 triplet, without formfactor,
f6 = f7 = 1, Λ = 50 TeV,
inclusive cuts

4.5134 0.0066

Spin-2 triplet, with formfactor,
f6 = f7 = 1, Λ = 8 TeV,
inclusive cuts

4.4898 0.0021

Spin-2 triplet, with formfactor,
f7 = 1, Λ = 8 TeV,
inclusive cuts

4.4461 0.0021

Spin-2 triplet, with formfactor,
f6 = 1, f7 = −1, Λ = 8 TeV,
inclusive cuts

4.5925 0.0021

Table 5.1: Total cross sections and errors for process 240

The cross sections are invariant under a global change of the sign of the
coupling parameters.

Including the parameters f3 and f4 (or, more precisely, taking f1 = f2 = f3 =
f4 = f5 = 1 instead of f1 = f2 = f5 = 1) has hardly any effect: The distributions
look similar and up to the 11th decimal place, the cross section is the same.
If f3 and f4 are the only non-vanishing couplings, the cross section is not de-
fined, because in this case, the width of the spin-2 resonance is always zero (see
appendix B).
A similar effect appears if only f5 or f6 are taken. Since for the present analysis
of this process, the masses of the spin-2 particles are set to 120 GeV, the spin-2
particles are too light to decay into WW- or ZZ- pairs, so the partial widths
which contain these coupling parameters only contribute to the total width via
off-shell effects. These are not considered here.
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5.2.2 pT distributions and formfactor

On the left hand side of fig. 5.7, the distribution of the transverse momentum
(pT ) of a final state photon is shown for the spin-2 singlet case, the right hand
side depicts the same distribution for the Higgs case. In both cases, inclusive cuts
are applied.
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Figure 5.7: Transverse momentum of a final state photon (left hand side: Spin-2 singlet
(without formfactor), right hand side: Higgs)

Although the shape of these pT distributions looks similar, the pT scale is very
different: The transverse momentum of the photon is much higher if it is
produced by a spin-2 particle then in the case of the production of a Higgs.
So one could think that such pT distributions provide a nice opportunity to
distinguish between a Higgs and a spin-2 particle.

However, it is a little more complicated: The pT distributions can be understood
by looking at the spin-2 propagator: There, the momentum of the spin-2 particle
appears in the numerator (which is not the case for the Higgs). This leads to
high values of pT . So, the pT distribution is not really determined by the spin of
the resonance, but it is a feature of the propagator structure.
Furthermore, if differences between the Higgs and the spin-2 resonance are
found in the angular distributions, it can also be argued that these differences
could result from the particular structure of the propagator and not from the
different spin.

However, there is a nice tool to avoid this: The formfactor, which was
introduced in section 5.1 (eq. 5.4). By adjusting the parameters of this formfac-
tor, pT distributions can be modulated such that they are almost similar for the
spin-2 and the Higgs case.
To illustrate this effect, fig. 5.8 shows a comparison of the pT distributions
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of a final state photon for the Higgs case, the spin-2 singlet case without a
formfactor and with a formfactor (Λff = 400 GeV, nff = 3).
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Figure 5.8: Transverse momentum of a final state photon

These distributions look identical for the other final state photon because of
Bose symmetry.
Furthermore, the same features emerge for other pT distributions as well: Fig.
5.9 shows the pT distribution of the jet with the largest transverse momentum.
The parameters of the formfactor are the same as before.
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Although the differences between the Higgs case and the spin-2 case without
formfactor are even more grave for this distribution than for the photon pT

distribution, it is possible to adjust them by using the same parameters of the
formfactor.

So, even if the LHC would find pT distributions which look like the ones of the
Higgs, this would not be a proof for a Higgs resonance, they could originate
from a spin-2 resonance with an adequate formfactor as well.

A similar effect has also been investigated concerning anomalous Higgs
couplings [29]. For such couplings, the pT values of the jet with the largest
transverse momentum are higher than those of the SM Higgs as well. However,
the distribution can also be adjusted to the SM case by using a formfactor.

The pT distributions depend slightly on the spin-2 coupling parameters,
which is illustrated exemplarily by fig. 5.10 for the pT,max,jet distribution of a
spin-2 resonance with formfactor (Λff = 400 GeV, nff = 3) and inclusive cuts
for three different spin-2 singlet parameter settings.

The pT distributions of the spin-2 triplet case can be adjusted to the
Higgs case with the same formfactor settings, which is also depicted by fig 5.10.
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Figure 5.10: pT,max,jet, spin-2 singlet and triplet with formfactor for different coupling
parameters, inclusive cuts

Other pT distributions depend on the coupling parameters in a similar way.
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5.2.3 Resonance peak, width and branching ratio

Fig. 5.11 depicts the distribution of the invariant mass of the final state photon
system with inclusive cuts. The red line of this diagram illustrates the Higgs
resonance peak. In order to see the shape of the peak, the narrow width
approximation, which is usually applied in VBFNLO for this process, is switched
off, which hardly influences the cross section and the various distributions.
With a width of 3.265 MeV, the Higgs resonance is indeed very narrow.

The spin-2 resonance, however, is even more narrow: For the singlet case,
with a formfactor, inclusive cuts and the usual settings of the parameters, the
cross section is comparable to the one of the Higgs case, but the width of the
resonance is only 0.0172 MeV (for a branching ratio brrat = 1).

For these settings, the spin-2 resonance is shown on the left hand side of
fig. 5.12. For the green line, only the s-channel diagrams of the Feynman
diagrams (section 4.4.6) are considered, whereas for the red line, all the
diagrams were included.
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Figure 5.11: mγγ , spin-2 singlet with adjusted parameters (brrat= 0.075, Λ = 5.32
TeV) compared to Higgs (inclusive cuts)

Near the resonance, the relative deviation between the two lines (right hand
side of fig. 5.12) is insignificant. Outside the mass range of fig. 5.12, there are
no other contributions from none of the diagrams. In addition, including or
discarding the non-resonant diagrams hardly influences the cross section and
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the other distributions. This is also the case if no formfactor, which could
suppress possibly existing high-energy contributions, is applied. Therefore, the
non-resonant diagrams are discarded for the rest of the analysis of this process.

As elucidated in appendix B, the width of a spin-2 resonance can be varied by
changing the branching ratio (called brrat for the singlet case), which is a free
parameter. By changing brrat and Λ simultaneously, it is possible to adjust the
width of the spin-2 resonance to the one of the Higgs without changing the
cross section too much (one could also change the fi separately, but this is not
necessary).

This is illustrated by the green line of fig. 5.11: For Λ = 5.32 TeV,
brrat= 0.075 and the other parameters as usual, the width of the spin-2 singlet
resonance is 3.24 MeV and the cross section is 4.866 fb. Both of these values
are comparable to the Higgs results. The other distributions are not influenced
by these changes.
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Figure 5.12: Left hand side: mγγ , spin-2 singlet resonance, inclusive cuts, all Feynman
diagrams included (red line) and only s-channel diagrams (green line),
right hand side: relative deviation between both lines

So, similar to the argumentation for the pT distributions, a width of a
resonance like the one of fig. 5.11 is not a proof for a Higgs resonance. It can
also be a spin-2 resonance with adequate parameters.

However, the details of the resonance peak which are discussed in this section
cannot be observed at the LHC, since the resolution of the detectors CMS and
ATLAS is roughly 2 GeV for the mγγ distribution.

5.2.4 Angular distributions

In this section, various angular distributions are presented. They are compared
for a Higgs and a spin-2 resonance and for different spin-2 settings.
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Note that all the presented figures include a normalization factor 1/σ.

ηjets

A first angular distribution which is typically analyzed for a vector boson fusion
process is the rapidity of the tagging jets. Fig. 5.13 and 5.14 show the
jet-rapidity distribution, averaged over the two jets, for the three cases Higgs,
spin-2 singlet with and without formfactor. For fig. 5.13, only inclusive cuts are
applied, whereas for fig. 5.14, vector boson fusion cuts are added.
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Figure 5.13: Jet-rapidity, averaged over
the two jets, inclusive cuts
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Figure 5.14: Jet-rapidity, averaged over the
two jets, inclusive + vbf cuts

While, even if no vbf cuts are applied, the distributions for the Higgs and the
spin-2 case with formfactor are both characterized by a rapidity gap which is
typical for vector boson fusion processes, the distribution for the spin-2
resonance without formfactor looks different without vbf cuts. Since the
momenta of the initial electroweak bosons appear in the Feynman rules (see
section 3.1.2) and the numerator of the spin-2 propagator contains the
momentum of the spin-2 particle, high pT values of the jets are preferred if no
formfactor is applied (see section 5.2.2, fig. 5.9). This also leads to a rapidity
distribution where central jets are preferred.
The distribution of the Higgs and the spin-2 case with formfactor are rather
little affected by additional vbf cuts, but the spin-2 distribution without
formfactor changes significantly, as the vbf cuts enforce a large rapidity gap,
which is not there in the first place.

Furthermore, the jet-rapidity distribution depends slightly on the spin-2 coupling
parameters, which is illustrated by fig 5.15.
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As shown in fig. 5.16, the jet-rapidity distribution of the spin-2 triplet
case with formfactor resembles the singlet case with formfactor for the coupling
parameters f1 = 2, f2 = f5 = 1, fi6=1,2,5 = 0. Different settings of the triplet
couplings hardly influence the distribution, since the contribution of f6 is
negligible. In fact, this is the case for all the considered angular distributions.
A similar effect also appears for the triplet distributions without formfactor.
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Figure 5.16: jet-rapidity, averaged over
the two jets, spin-2 singlet
and triplet with formfactor,
inclusive cuts

These figures illustrate that the jet-rapidity is not a characteristic of the spin of
the resonance, but it depends on kinematics. Similar jet-rapidity distributions
for the Higgs and the spin-2 resonance correspond to similar distributions of
transverse momenta, which are adjusted by the formfactor.

Therefore, this distribution is not suitable for a distinction between a Higgs and
a spin-2 resonance.

Other rapidity distributions and rapidity differences both for jets and pho-
tons do not reveal any characteristics which depend on the spin of the resonance
either.

∆Φγγ

Another angular distribution which can be investigated for this process is the
azimuthal angle difference of the two final state photons, ∆Φγγ.

This distribution is shown in fig. 5.17 for the Higgs case, in fig. 5.18 for
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the spin-2 singlet case without formfactor and fig. in 5.19 for the spin-2 singlet
case with formfactor. All three distributions are generated both for inclusive and
for inclusive + vbf cuts.
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Figure 5.17: ∆Φγγ , Higgs
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Figure 5.18: ∆Φγγ , spin-2 singlet, without
formfactor
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Figure 5.19: ∆Φγγ , spin-2 singlet,
with standard formfactor
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Figure 5.20: ∆Φγγ , spin-2 singlet, with
formfactor, Λff = 700 GeV,
nff = 4

Obviously, there is hardly any difference between the two sets of cuts.

However, the ∆Φγγ-distribution is very sensitive to the formfactor.
Whereas the spin-2 distribution without formfactor looks very different from the
one of the Higgs, fig. 5.19 rather resembles the Higgs case.

This dependence on the formfactor is further exemplified by fig. 5.20,
whose settings are similar to those of fig. 5.19 (with inclusive cuts), except for
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the parameters of the formfactor: They are chosen as Λff = 700 GeV, nff = 4.
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Figure 5.21: ∆Φγγ , spin-2 singlet,
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coupling parameters

 0

 0.05

 0.1

 0.15

 0.2

 0.25

-4 -3 -2 -1  0  1  2  3  4

1/
σ 

dσ
/d

∆φ
γγ

∆φγγ

Triplet, f6=f7=1
Triplet, f7=1

Singlet, f1=2, 
 f2=f5=1

Figure 5.22: ∆Φγγ , spin-2 singlet and
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These figures illustrate the fact that the ∆Φγγ-distribution, which is measured
in the laboratory frame, rather depends on kinematics than on the spin of the
resonance: The large difference between the Higgs case and the spin-2 case
without formfactor corresponds to the differences of the pT distributions (see
section 5.2.2). The formfactor adjusts the pT - distributions of the spin-2 and
the Higgs resonance, so it also adjusts the ∆Φγγ-distribution.

In addition, the ∆Φγγ-distribution depends strongly on the spin-2 coupling
parameters. This dependence is illustrated by fig. 5.21 for the spin-2 singlet case
with standard formfactor.

As for the jet-rapidity distribution, the ∆Φγγ-distribution of the spin-2
triplet case is similar to the singlet case with the coupling parameters
f1 = 2, f2 = f5 = 1, fi6=1,2,5 = 0 (see fig. 5.22).

Due to the the dependence on the formfactor and coupling parameters,
this distribution is not sufficient to distinguish between a Higgs and a spin-2
resonance definitely, but together with other distributions, it can provide useful
information about a potential spin-2 resonance and its parameters.

∆Φjj

∆Φjj is the azimuthal angle difference of the two jets in the laboratory frame.
Note that this distribution corresponds to another one: ∆Φ12 = Φ1−Φ2, where
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Φ1,2 are the azimuthal angles in the Breit frames, which are defined in appendix
D. Indeed, the VBFNLO results show that these two distributions are exactly
the same. This observation agrees with an accordant statement in Ref. [27].

Fig. 5.23 contains the ∆Φjj distribution of the Higgs, fig. 5.24 depicts
the spin-2 singlet case without formfactor and for fig. 5.25, a formfactor is
applied. All three figures include two different sets of cuts: inclusive and inclusive
+ vbf cuts.
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Figure 5.23: ∆Φjj , Higgs

 0

 0.05

 0.1

 0.15

 0.2

 0.25

-4 -3 -2 -1  0  1  2  3  4

1/
σ 

dσ
/d

∆φ
jj

∆φjj

incl. cuts
incl.+vbf cuts

Figure 5.24: ∆Φjj , spin-2 singlet, without
formfactor
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Figure 5.25: ∆Φjj , spin-2 singlet,
with formfactor
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Figure 5.26: ∆Φjj , spin-2 singlet,
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64



 0

 0.05

 0.1

 0.15

 0.2

 0.25

-4 -3 -2 -1  0  1  2  3  4

1/
σ 

dσ
/d

∆φ
jj

∆φjj

f1=f2=f5=1
f1=f2=1

f1=1
f2=1

Figure 5.27: ∆Φjj , spin-2 singlet,
with formfactor, inclu-
sive cuts, different
coupling parameters
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Figure 5.28: ∆Φjj , spin-2 singlet and
triplet, with formfactor, inclu-
sive cuts

The spin-2 case with a formfactor clearly differs from the Higgs case. Although
the ∆Φjj distribution depends slightly on the parameters of the formfactor,
which is illustrated by fig. 5.26, and on the coupling parameters, which is
depicted in fig. 5.27, the characteristic shape of this distribution is nearly
independent from both of these parameters.

Therefore, the ∆Φjj distribution provides a nice tool to distinguish between a
Higgs and a spin-2 resonance.

Without a formfactor, the result is less evident. Especially for the use of
inclusive cuts only, the distribution looks different than for other spin-2 settings
(red line of fig. 5.24 and 5.26), as it is affected by the same kinematic effects
which were discussed for the ηjets and pT distributions.

cos Θ (Spin-2 (or Higgs) rest frame)

Another interesting distribution is cos Θ, with Θ being the angle between the
momentum of the initial electroweak boson (q1) and the outgoing photon (q′1)
in the rest frame of the intermediate particle (Higgs or spin-2) (see appendix
D). As detailed calculations of Ref. [27] show, the dependence of the matrix
element on Θ is contained in a dependence on the Wigner d-functions dj

m,m′(Θ)
(see appendix E). Therefore, the cos Θ distribution should be an indicator of the
spin of the resonance. Of course, one could also take the corresponding rapidity
η = −ln tanΘ

2
, but the analysis reveals that the features of this distribution are

less explicit than those of the cos Θ distribution.
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Fig. 5.29 and 5.30 compare the cos Θ distribution of a spin-2 resonance
to the one of a Higgs resonance for inclusive cuts (left hand side) and inclusive
+ vbf cuts (right hand side). One can see that applying additional vbf cuts
hardly influences these distributions. In fig. 5.30, the spin-2 case includes the
formfactor, in fig. 5.29, it does not.
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Figure 5.29: cos Θ, spin-2 singlet without formfactor versus Higgs. Left hand side:
inclusive cuts, right hand side: inclusive + vbf cuts
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Figure 5.30: cos Θ, spin-2 singlet with formfactor versus Higgs. Left hand side: inclu-
sive cuts, right hand side: inclusive + vbf cuts

Both of these figures reveal a difference between a Higgs and a spin-2
resonance, but without the formfactor, it is less evident.
However, the Higgs distribution is affected by the cuts: As shown in fig. 5.31, it
is flat if the cuts are removed. For the spin-2 case, the cuts cannot be just
removed without running into singularities caused by initial state photons.
These singularities were evaded by excluding the Feynman diagrams with
t-channel photons for the spin-2 case without cuts for a comparison of the
spin-2 and the Higgs case in fig. 5.31.
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Analogous to other distributions (pT , ηjets, ∆Φjj), the cos Θ distribution
depends slightly on the coupling parameters. However, the general shape is the
same. This dependence is illustrated by fig. 5.32 for the spin-2 singlet case with
formfactor and inclusive cuts.

Again, the distribution of the spin-2 triplet case is similar to the singlet
case with the coupling parameters f1 = 2, f2 = f5 = 1, fi6=1,2,5 = 0 (see fig.
5.33).
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Figure 5.31: cos Θ, spin-2 singlet
without formfactor versus
Higgs, without cuts
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Figure 5.32: cos Θ, spin-2 singlet, with
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Figure 5.33: cos Θ, spin-2 singlet and triplet, with formfactor, inclusive cuts

All in all, the cos Θ distribution shows a fundamental difference between a
spin-2 and a Higgs resonance. Therefore, it is an appropriate distribution for a
distinction between the two cases.
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θ1, θ2 (Breit frame)

θ1 and θ2 are the polar angles in the Breit frames of the two initial vector bosons
(see appendix D).

Fig. 5.34 shows the θ1 distribution for inclusive cuts for the three cases
Higgs, spin-2 without formfactor and spin-2 with formfactor. The same cases
are depicted in fig. 5.35 for inclusive + vbf cuts.
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Figure 5.34: θ1, inclusive cuts
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Figure 5.35: θ1, inclusive + vbf cuts

Obviously, these distributions do not depend on the spin, but on the formfactor.
This is because the θ1 distribution corresponds to the pT distribution of the jet,
and as the pT distributions of the spin-2 resonance can be adjusted to the
Higgs case by the formfactor (fig. 5.9), the formfactor influences the θ1

distribution in the same way.

Furthermore, this distribution depends on the cuts, since the vbf cuts set
constraints on the rapidity of the jets, which also influences the θ1 distribution.

The features of the θ2 distribution are exactly the same as those of the
θ1 distribution, as the θ2 distribution is similar to the θ1 distribution mirrored at
θ1 = π/2.

In order to analyze possible correlations between θ1 and θ2, the double-
differential distribution d2σ/(dθ1dθ2) has also been checked, but it did not
reveal any additional effects.

Thus, as the θ1 and θ2 distributions only depend on kinematic effects,
but not on the spin of the resonance, they are not suitable to distinguish
between a Higgs and a spin-2 resonance.
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d2σ/d∆Φ12 dcosΘ

Fig. 5.36 - 5.39 depict the double differential distribution d2σ/d∆Φ12 dcosΘ.
Fig. 5.36 contains the Higgs case, the other figures show the spin-2 singlet case
with standard formfactor for different parameter settings. As illustrated by fig.
5.36 and 5.37, vbf cuts hardly influence this distribution.
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Figure 5.36: Higgs, left hand side: inclusive cuts, right hand side: inclusive + vbf cuts
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Figure 5.37: Spin-2 singlet, with formfactor, left hand side: inclusive cuts,
right hand side: inclusive + vbf cuts
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Figure 5.38: Spin-2 singlet, f1 = 1,
fi6=1 = 0,Λ = 10 TeV,
with formfactor, inclusive cuts
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Figure 5.39: Spin-2 singlet, f2 = 1,
fi6=2 = 0,Λ = 10 TeV, with
formfactor, inclusive cuts

These plots nicely combine the features of the cos Θ and the ∆Φ12

distributions which were presented previously. They also show that there is no
correlation between these two distributions. As mentioned before, the ∆Φ12

distribution is similar to the ∆Φjj distribution.

Since there is a huge difference between the double differential plots of the
Higgs and the spin-2 resonance as well as a significant difference between
different spin-2 couplings, this distribution provides a great tool for a distinction
between a Higgs and a spin-2 resonance and possibly between different spin-2
parameters.

Other angular distributions

Analogous to the cos Θ distribution, cos Θj 1,2 distributions were analyzed,
where Θj 1,2 is the angle between q′1 and the first or second jet in the rest frame
of the intermediate particle (Higgs or spin-2) (see appendix D). They have
characteristics similar to the cos Θ distribution: The distributions of a spin-2
resonance are always steeper than the ones of the Higgs (which are flat if the cuts
are removed) and depend slightly on the formfactor and the coupling parameters.

Furthermore, the distributions corresponding to the various terms of az-
imuthal angle dependences, which were calculated analytically in eq. 5.5 of Ref.
[27], were investigated. Except for the ∆Φ12 distribution (which is exactly the
same as the ∆Φjj distribution presented above) and the 2(Φ1 − Φ2) distri-
bution, all the other distributions are flat both for a Higgs and a spin-2 resonance.

70



Double differential distributions combining these azimuthal angle terms
with Θ or the breit frame angle θ1 or Θ with θ1 did not reveal any additional
effects, they only reflect the characteristics of the two single distributions they
consist of.

5.2.5 Summary of photon pair-production in VBF via Higgs and
Spin-2 resonances

The results presented in this section indicate that it is possible to distinguish
between a Higgs and a spin-2 resonance in the vector boson fusion process
V V → γγ, while the detailed features of a spin-2 resonance depend on their
parameters.
The spin-2 coupling parameters can be tuned such that the cross section is
similar to the Higgs case.
The width of a spin-2 resonance differs from the width of a Higgs resonance
unless the branching ratio is adjusted. However, this is not observable in CMS
and ATLAS.
The pT distributions are different unless a formfactor with adjusted parameters
is applied.

Angular distributions play the most important role. Especially the ∆Φjj

and the cos Θ distribution are clearly different for a Higgs resonance and spin-2
resonance with a formfactor.
Without the formfactor, these differences are less evident, but in this case, the
difference in the pT distributions can be used as an additional tool to distinguish
between a Higgs and a spin-2 resonance.

For all the considered distributions, the spin-2 triplet case resembles the
singlet case with adequate coupling parameters.
This can be understood by looking at the Feynman diagrams of this process
(section 4.4.6): Apart from two additional non-resonant charged triplet diagrams
which hardly contribute, the diagrams are the same for the singlet and the
triplet case.
Therefore, this process is not useful for a distinction between a spin-2 singlet
and a spin-2 triplet resonance.
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5.3 Heavy Spin-2 resonances in four-charged-lepton
production via the VBF process pp → V V jj →
e+ e− µ+µ− jj

In the following subsections, heavy spin-2 resonances in VBF processes with
four leptons in the final state are investigated. This section deals with process
210, which contains four charged leptons and no neutrinos in the final state.
Therefore, a resonance in the invariant mass spectrum of the leptons can be
reconstructed exactly, whereas for the other processes, where the four final state
leptons also contain neutrinos, this is more difficult. This is why process 210 is
analyzed in most detail.

This section contains a list of cross sections for different scenarios and
masses of the spin-2 resonance and an analysis both of invariant mass distribu-
tions of the four final state leptons and of transverse momentum and angular
distributions, which shall reveal the features of heavy spin-2 resonances.

If not indicated otherwise, the analysis is performed with the following
settings (see Appendix C.1, C.3):

• The VBFNLO calculation is done with 4 iterations and 224 points.

• The masses of the spin-2 particles are chosen as 1 TeV.

• All the spin-2 branching ratio parameters are set to 1.

• The usual spin-2 parameter settings are:
Spin-2 singlet: f1 = f2 = f5 = 1, fi6=1,2,5 = 0, Λ = 1500 GeV
Spin-2 triplet: f6 = f7 = 1, fi6=6,7 = 0, Λ = 1500 GeV
If a formfactor is used, its parameters are: Λff = 3 TeV, nff = 4

• The complete Standard Model background as well as all the spin-2 diagrams
shown in chapter 4.4.2 are included.

• Inclusive + vbf cuts are applied.

• Effects of the detector resolution are discarded (see section 5.2).

Note that the cross sections given in table 5.2 (and also all the distributions
presented in this section) correspond to the leptonic final state e+ e− e+ e−. For
µ+ µ− µ+ µ−, they are the same, as lepton masses are neglected in VBFNLO.
For e+ e− µ+ µ−, however, they are twice as high, since for the final states
e+ e− e+ e− and µ+ µ− µ+ µ−, there is a symmetry factor 0.5 due to the
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identical leptons. The cross section for all the possible combinations of final
state leptons together can be obtained by multiplying the given cross sections
with an appropriate multiplicity factor. This is the case for all the considered
processes with four leptons in the final state (210, 211, 200, 220 and 230, see
also chapter 5.4). For some of the final states, there is some interference
between different processes, but this interference is insignificant. One such
example is e+ e− νe νe, which can be generated both as (e+ e−) (νe νe) (process
211) and as (e+νe) (e− νe) (process 200), where the brackets group the
fermions into pairs connected by a continuous fermion line. The first case gives
rise to events with me+e− ≈ mZ ≈ mνeνe while the second case has
me+νe ≈ mW ≈ me−νe .

5.3.1 Cross sections

Table 5.2 gives an overview of the cross sections and the corresponding errors
due to Monte Carlo integration computed by VBFNLO for different scenarios and
different masses of the spin-2 resonance for the leptonic final state e+e− e+e−.
To obtain the total cross sections of the final states e+ e− µ+µ−, e+ e− e+e−

and µ+ µ− µ+µ− together, the given cross sections have to be multiplied by 4.

Process and parameters Cross section [fb] Error [fb]

SM, without spin-2 2.2715 · 10−2 4.4636 · 10−5

Spin-2 singlet, without formfactor,
m = 1000 GeV, f1 = f2 = f5 = 1

8.8837 · 10−2 1.8511 · 10−4

Spin-2 singlet, without formfactor,
m = 1000 GeV, f1 = f2 = f3 = f4 = f5 = 1

0.2427 4.1469 · 10−4

Spin-2 singlet, with formfactor, m = 500 GeV 3.7217 · 10−2 1.6235 · 10−4

Spin-2 singlet, with formfactor, m = 750 GeV 2.5296 · 10−2 2.1982 · 10−4

Spin-2 singlet, with formfactor, m = 1000 GeV 2.3905 · 10−2 1.0464 · 10−4

Spin-2 singlet, with formfactor, m = 1250 GeV 2.2735 · 10−2 1.8740 · 10−4

Spin-2 singlet, with formfactor, m = 1500 GeV 2.2893 · 10−2 1.2104 · 10−4

Spin-2 triplet, with formfactor, m = 1000 GeV 2.2949 · 10−2 1.3888 · 10−4

Table 5.2: Total cross sections and errors for process 210
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5.3.2 Invariant mass distribution of the four final state leptons

Fig. 5.40 depicts the invariant mass distribution of the four final state leptons
from 0 to 11 TeV. For the Standard Model diagrams only (red line), a Higgs
resonance at 120 GeV (which is not visible in this large mass range, but later
in fig. 5.42 and 5.43) is followed by a continuous distribution which vanishes for
high energies. For the spin-2 singlet case without a formfactor (green line), a
spin-2 resonance at 1 TeV is visible. However, there are significant high-energy
contributions resulting from unitarity violation (see chapter 5.1), which only de-
crease and vanish for very high energies due to the suppression by the PDFs. In
order to get rid of these unphysical high-energy contributions, the formfactor (eq.
5.4) is used. For Λff = 3 TeV and nff = 4, these contributions are suppressed
efficiently (blue line).
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Figure 5.40: Invariant mass of the four
final state leptons, with
and without formfactor
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Figure 5.41: Invariant mass of the four
final state leptons, influence of
f3 and f4

In this process, the effects of the couplings f3 and f4 are clearly visible (fig.
5.41). Although these couplings do not lead to a resonance, they increase the
high-energy contributions significantly. This also leads to a large modification of
the total cross section (see table 5.2).

For different masses of the spin-2 singlet particle, the invariant mass
distribution is shown in fig. 5.42 and 5.43. There, the spin-2 resonance peak is
visible even for a mass of 1.5 TeV. The spin-2 triplet case is analogous, except
for the height and width of the resonance, which is shown exemplarily for a
mass of 1 TeV in fig. 5.43. The triplet resonance is generated by the neutral
spin-2 triplet particle, since for the charged particle, there are only non-resonant
Feynman diagrams for this process (see section 4.4.2). Due to the use of the
formfactor, there are no contributions outside the depicted mass range, except
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for a mass of 500 GeV, where a smaller value of Λff has to be used to suppress
these contributions completely.
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Figure 5.42: Spin-2 singlet resonance for different masses
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Figure 5.43: Spin-2 resonance for different masses, singlet and triplet
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Table 5.3 gives an overview of the total widths of the resonances shown in fig.
5.42 and 5.43. For the triplet resonance, this is the width of the neutral
particle. These widths correspond to branching ratio parameters = 1. They are
relatively small, so the choice of larger couplings fi or a smaller value of Λ
would also be sensible. This choice would increase the widths and the observed
rates proportional to

(
fi

Λ

)2
.

Resonance Width [GeV]

Singlet, 500 GeV 0.982

Singlet, 750 GeV 3.238

Singlet, 1000 GeV 7.607

Singlet, 1250 GeV 14.795

Singlet, 1500 GeV 25.505

Triplet, 1000 GeV 1.004

Table 5.3: Total widths of the resonances shown in fig. 5.42 and 5.43

5.3.3 Transverse momentum and angular distributions

In this section, the characteristics of the transverse momentum and angular
distributions of a spin-2 resonance are analyzed for singlet and triplet resonances
at 1 TeV. Thereby, the formfactor with the parameters Λff = 3 TeV and nff = 4
is always applied. If not indicated otherwise, the singlet case with the usual
parameter settings is studied.
Since the spin-2 resonance contributes little to the total cross section, which
can be seen in table 5.2, these distributions would be dominated by the SM
background. In order to reveal the features of the spin-2 resonance, additional
cuts on the invariant lepton mass are applied (see section 4.5.2) to restrict
it to the region of the spin-2 resonance peak. The values of MLEP MIN and
MLEP MAX are adjusted to the width of the resonance.
For the parameter settings f1 = f2 = f5 = 1, fi6=1,2,5 = 0 and
f1 = f2 = 1, fi6=1,2 = 0, they are chosen as MLEP MIN = 950 GeV and
MLEP MAX = 1050 GeV. For the triplet case, MLEP MIN = 990 GeV and
MLEP MAX = 1010 GeV are used and for f5 = 1, fi6=5 = 0, the chosen values
are MLEP MIN = 995 GeV and MLEP MAX = 1005 GeV. The latter cases
are only presented for illustration, since the experimental resolution is worse.
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However, for larger couplings fi or a smaller value of Λ, smaller values of
MLEP MIN and larger values of MLEP MAX could be used.
In order to compare the features of the spin-2 resonance to those of the SM
background, the same cuts on the invariant lepton mass are applied to the SM
background. For the SM distributions shown in this section, MLEP MIN = 950
GeV and MLEP MAX = 1050 GeV are used. For MLEP MIN = 990 GeV and
MLEP MAX = 1010 GeV and MLEP MIN = 995 GeV and MLEP MAX = 1005
GeV, there is hardly any modification of all the SM distributions.
Note that all the figures which are presented in this section include a normaliza-
tion factor 1/σ.

pT of the jet with the largest transverse momentum

Fig. 5.44, 5.45 and 5.46 depict the pT distribution of the jet with the largest trans-
verse momentum. The distributions of the spin-2 resonance are hardly affected
by the SM background, which is exemplified by the blue line of fig. 5.44, except
for the parameter setting f5 = 1, fi6=5 = 0, where the resonance is very small and
narrow. Therefore, fig. 5.46 shows the distribution both with and without the SM
background. This is also the case for the other pT and angular distributions of
this section.
From fig. 5.44 and 5.45, one can see that this distribution is rather similar with
and without a spin-2 resonance for most of the parameter settings. The SM dis-
tribution just peaks at slightly higher values of pT . However, for f5 = 1, fi6=5 = 0,
the distribution changes significantly (fig. 5.46).
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Figure 5.44: pT,max,jet, spin-2 singlet resonance (f1 = f2 = f5 = 1, fi6=1,2,5 = 0)
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Figure 5.45: pT,max,jet,
different parameter settings
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Figure 5.46: pT,max,jet for f5 = 1,
fi6=5 = 0

pT of the final state lepton with the largest transverse momentum

In contrast to the pT,max,jet distribution, the pT distribution of the final state
lepton with the largest transverse momentum (denoted as pT,max,l) is affected
significantly by the spin-2 resonance, which can be seen in fig. 5.47. Whereas
the singlet and triplet case look almost the same for the parameter settings
considered in fig. 5.48, the coupling f5 alone leads to a different, characteristic
distribution (fig. 5.49).

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0.003

 0.0035

 0.004

 0  100  200  300  400  500  600  700

1/
σ 

dσ
/d

p T
,m

ax
,l 

[G
eV

-1
]

pT, max, l [GeV]

SM
SM + spin-2

Spin-2 without SM

Figure 5.47: pT,max,l, spin-2 singlet resonance (f1 = f2 = f5 = 1, fi6=1,2,5 = 0)
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Figure 5.48: pT,max,l,
different parameter settings
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Figure 5.49: pT,max,l for f5 = 1, fi6=5 = 0

cos Θ (Spin-2 rest frame)

As in chapter 5.2.4, the cos Θ distribution is investigated for this process as well.
Θ is the angle between the momenta of an incoming and an outgoing electroweak
boson (q1 and q′1) in frame (III) of appendix D, which is the rest frame of the spin-
2 particle in case of a spin-2 resonance. For the processes with four leptons in the
final state, q′1 is the sum of the two momenta of the respective final state leptons.

There is a clear difference between the cos Θ distribution of the spin-2
resonance and the SM background, which is illustrated by fig. 5.50.
The distributions of the singlet and the triplet resonance are almost identical
(see fig. 5.52).
In contrast to the pT distributions, the cos Θ distribution is affected by the
absence of the coupling f5 (green line of fig. 5.52). This is not an effect of a
larger contribution of the SM background, but a feature of the spin-2 couplings,
which is proven by the black line of fig. 5.52.
The coupling f5 alone again leads to a different, characteristic distribution (fig.
5.53).

Fig. 5.51 depicts the cos Θ distribution of the Higgs resonance for mH = 120
GeV. For this purpose, MLEP MAX is set to 150 GeV. This distribution can be
compared to the right hand sides of fig. 5.29 and 5.30 (red line), which show the
cos Θ distribution of the Higgs resonance in the photon pair-production process
240. Despite the different final state and the absence of any SM background in
process 240, the characteristic shape of this distribution is the same.
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Figure 5.51: cos Θ, Higgs resonance
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parameter settings
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Figure 5.53: cos Θ for f5 = 1, fi6=5 = 0

∆Φjj

The azimuthal angle difference of the two jets in the laboratory frame, ∆Φjj, is
shown in fig 5.54, 5.55 and 5.56. As already mentioned in chapter 5.2.4, this
distribution corresponds to the ∆Φ12 = Φ1 − Φ2 distribution, where Φ1,2 are
the azimuthal angles in the Breit frames, which are defined in appendix D.

The characteristics of ∆Φjj are different for a spin-2 resonance and the
SM background (fig. 5.54). Whereas for the SM case, the jets are mostly
back-to-back, the spin-2 resonance leads to a rather flat ∆Φjj distribution,
where values around zero are slightly preferred.
This distribution is hardly affected by a change of the spin-2 couplings (fig.
5.55), although the characteristic shape is obscured by the SM background in
the case f5 = 1, fi6=5 = 0 (fig. 5.56).
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Figure 5.54: ∆Φjj , spin-2 singlet resonance (f1 = f2 = f5 = 1, fi6=1,2,5 = 0)
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Figure 5.55: ∆Φjj , different
parameter settings
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Figure 5.56: ∆Φjj for f5 = 1, fi6=5 = 0

Angular distributions of the final state leptons

The following figures present some angular distributions between two of the final
state leptons which do not emerge from the same vector boson. There are four
different possible combinations of such leptons. For the distributions presented
here, the two positively charged leptons are chosen. The distributions of the
other combinations of leptons look similar.

∆ηl

Fig. 5.57, 5.58 and 5.59 depict the rapidity difference of the two leptons,
denoted as ∆ηl. There is a clear difference between the distribution of the
spin-2 resonance and the one of the SM, which can be seen in fig. 5.57. The
spin-2 resonance leads to smaller values of ∆ηl.
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Whereas the singlet case with f1 = f2 = f5 = 1, fi6=1,2,5 = 0 looks nearly the
same as the triplet case with f6 = f7 = 1, fi6=6,7 = 0, the absence of f5 in the
singlet case causes a small modification of ∆ηl (fig. 5.58). Again, the coupling
f5 alone leads to a different, characteristic distribution (see fig. 5.59).
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Figure 5.57: ∆ηl, spin-2 singlet resonance (f1 = f2 = f5 = 1, fi6=1,2,5 = 0)
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Figure 5.58: ∆ηl, different
parameter settings

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

-1  0  1  2  3  4  5  6

1/
σ 

dσ
/∆

η l

∆ηl

Singlet, f5=1
Singlet, f5=1, without SM

Figure 5.59: ∆ηl for f5 = 1, fi6=5 = 0

∆Φl

The differences between the SM and the spin-2 resonance are less distinct in the
azimuthal angle difference of the two leptons (∆Φl). In both cases, the leptons
are mainly back-to-back due to the large considered invariant mass of the four-
lepton system (see fig. 5.60). As illustrated by fig. 5.61, the different parameter
settings can hardly be distinguished, except for f5 = 1, fi6=5 = 0, which leads to
a ∆Φl distribution where the leptons are even more back-to-back (see fig. 5.62).
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Figure 5.60: ∆Φl, spin-2 singlet resonance (f1 = f2 = f5 = 1, fi6=1,2,5 = 0)
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Figure 5.61: ∆Φl, different
parameter settings
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Figure 5.62: ∆Φl for f5 = 1, fi6=5 = 0

∆Rl

Fig. 5.63, 5.64 and 5.65 depict the R-separation ∆Rl of the two leptons. Since
∆Rl is defined as ∆Rl =

√
∆η2

l + ∆Φ2
l , this distribution combines the features

of the ∆ηl and the ∆Φl distribution.
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Figure 5.63: ∆Rl, spin-2 singlet resonance (f1 = f2 = f5 = 1, fi6=1,2,5 = 0)
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Figure 5.65: ∆Rl for f5 = 1, fi6=5 = 0

Other angular distributions

Apart from the distributions presented above, various other angular distributions
were investigated.
One of them is the rapidity of the two tagging jets. This distribution does not
reveal any differences between the spin-2 resonance and the SM background, but
shows the rapidity gap which is characteristic for vector boson fusion processes.

Analogous to the cos Θ distribution, cos Θj 1,2 distributions were studied,
where Θj 1,2 is the angle between q′1 and the first or second jet in the rest frame
(III) of appendix D. They have characteristics similar to the cos Θ distribution.

As in case of the photon pair-production process 240, θ1 and θ2, which
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are the polar angles in the Breit frames of the two initial electroweak bosons
(see appendix D), were analyzed. Similar to that process, these distributions do
not reveal any characteristic features of a spin-2 resonance.

Moreover, the distributions corresponding to the various terms of azimuthal
angle dependences, which were calculated in Ref. [27], were studied. Except
for the ∆Φ12 distribution (which is exactly the same as the ∆Φjj distribution
presented above) and the 2(Φ1 −Φ2) distribution, all the other distributions are
flat both for a spin-2 resonance and the SM background.

Double differential distributions which combine these azimuthal angle terms
with the breit frame angle θ1 or Θ or θ1 with Θ did not reveal any additional
effects, they only reflect the features of the two single distributions they consist
of.

5.4 Heavy Spin-2 resonances in other VBF processes
with four leptons in the final state

The features of heavy spin-2 resonances in the other considered processes with
four leptons in the final state, 211, 200, 220 and 230, are very similar to those
of the process pp → V V jj → e+ e− µ+µ− jj (process 210), which was studied
extensively in the previous section. Especially the characteristics of the transverse
momentum and angular distributions are the same in most cases.
Therefore, this section focuses on the invariant mass distributions of the final
state leptons, although it is more difficult to reconstruct resonances which emerge
in the processes considered here, since all these processes contain one or two
neutrinos in the final state.
Additionally, some total cross sections and the corresponding errors due to Monte
Carlo integration computed by VBFNLO are given for all the processes.

5.4.1 Process 211: pp → V V jj → e+ e− νµνµjj

This process is very similar to the process pp → V V jj → e+ e− µ+µ− jj
(process 210), as it contains in principle the same Feynman diagrams, but a
smaller number of them, since photons can only couple to charged leptons, but
not to neutrinos.

All the settings for this process are the same as the standard settings for
process 210 (see section 5.3).
Note that there is no use in investigating the angular distributions of the final
state leptons which were presented in section 5.3.3, since in this process, the
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two charged leptons emerge from the same vector boson and distributions which
involve a neutrino cannot be reconstructed experimentally.

Cross sections

Table 5.4 gives some cross sections and the corresponding Monte Carlo integra-
tion errors for this process.

Process and parameters Cross section [fb] Error [fb]

SM, without spin-2 0.1540 2.2658 · 10−4

Spin-2 singlet, without formfactor 0.3999 1.3388 · 10−3

Spin-2 singlet, with formfactor 0.1636 1.6674 · 10−3

Table 5.4: Total cross sections and errors for process 211

Invariant mass distribution of the four final state leptons

Fig. 5.66 and 5.67 exemplify the invariant mass distribution of the four final state
leptons for a spin-2 singlet resonance at 1 TeV. As in process 210, the spin-2
Feynman diagrams lead to unphysical high-energy contributions, which can be
suppressed by the formfactor. Triplet resonances and resonances at other masses
can be obtained analogously.
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5.4.2 Process 200: pp → V V jj → e+ νe µ− νµ jj

For the analysis of this process, the settings are the same as for process 210,
except for the value of Λ. It is chosen as Λ = 1 TeV in the singlet case and
Λ = 300 GeV in the triplet case, since otherwise, the spin-2 triplet resonance of
fig. 5.69 would not be visible.

Cross sections

Table 5.5 gives some cross sections and the corresponding errors for the process
200.

Process and parameters Cross section [fb] Error [fb]

SM, without spin-2 1.6235 1.9977 · 10−3

Spin-2 singlet, without formfactor 6.8977 1.6023 · 10−2

Spin-2 singlet, with formfactor 1.6739 5.7615 · 10−3

Spin-2 triplet, with formfactor 1.6507 6.6604 · 10−3

Table 5.5: Total cross sections and errors for process 200

Invariant mass distribution of the four final state leptons
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From fig. 5.68, it can be seen that the high-energy contributions are larger than
for all the other considered processes. Nevertheless, they can be suppressed
completely by using the formfactor with the usual parameter settings.

Although Λ was chosen as 300 GeV for the triplet resonance, this resonance
(fig. 5.69) is very small in comparison to the one of process 210, where Λ was
1.5 TeV. This can be understood by looking at the spin-2 triplet Feynman rules
(see chapter 3.2.2): The uncharged triplet particle couples to two W bosons
only via the f6 term, whereas the Feynman rules for vertices involving photons
and Z bosons contain the coupling f7.

Angular distributions
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Figure 5.70: ∆ηl, spin-2 triplet,
f6 = f7 = 1, fi6=6,7 = 0
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Figure 5.71: ∆Φl, spin-2 triplet,
f6 = f7 = 1, fi6=6,7 = 0
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Figure 5.72: ∆Rl, spin-2 triplet,
f6 = f7 = 1, fi6=6,7 = 0
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This specific feature of the Feynman rules also affects the angular distributions.
For the singlet parameter settings f1 = f2 = f5 = 1, fi6=1,2,5 = 0 and
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f5 = 1, fi6=5 = 0, the distributions look similar to those of process 210 and also
the triplet setting f6 = 1, fi6=6 = 0 yields the same distributions as
f5 = 1, fi6=5 = 0.

However, the situation is different for the triplet setting f6 = f7 = 1, fi6=6,7 = 0,
since the Feynman rules of the coupling to the initial vector bosons, which
involve Z bosons and photons, contain f6 and f7 terms, whereas the coupling
to the final W bosons only contains f6. While the pT distributions resemble the
ones for f1 = f2 = f5 = 1, fi6=1,2,5 = 0 and the ∆Φjj distribution looks as usual,
the angular distributions of the final state leptons (fig. 5.70, 5.71 and 5.72) and
the cos Θ distribution (fig. 5.73) are different. Note that in contrast to process
210, there is only one sensible possibility to combine final state leptons which
do not emerge from the same vector boson, as the other ones would involve
neutrinos.

Although these distributions differ from those corresponding to other pa-
rameter settings, there is little chance that their characteristics will be useful for
a distinction between the spin-2 singlet and triplet case. They are obscured by
the SM background even for very large coupling parameters (or low values of Λ,
respectively) and strong cuts on the invariant lepton mass, which is illustrated by
the red lines of fig. 5.70-5.73. For the settings Λ = 300 GeV, MLEP MIN= 950
GeV and MLEP MAX= 1050 (corresponding width: 25.11 GeV), which were
applied for the distributions of fig. 5.70-5.73, the SM background contributes
roughly 50 % to the distributions.

Nevertheless, this process provides a possibility to distinguish between the
singlet and triplet case for certain parameter settings on the basis of the
invariant mass distribution: Due to the small coupling of a neutral spin-2 triplet
particle to two W bosons only via f6, a spin-2 resonance has to be a triplet
resonance, if it is clearly observable in the processes 210 and 211, but very small
or not detectable in process 200.

5.4.3 Process 220: pp → V V jj → e+ νe µ+µ−jj and
process 230: pp → V V jj → e− νe µ+µ− jj

For the analysis of the processes 220 and 230, the settings are the same as for
process 210, except for the value of Λ, which is chosen as Λ = 1 TeV.

Cross sections

The tables 5.6 and 5.7 give some cross sections and the corresponding errors for
the processes 220 and 230.
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Process and parameters Cross section [fb] Error [fb]

SM, without spin-2 0.1728 2.4422 · 10−4

Spin-2 singlet, without formfactor 0.2801 5.6476 · 10−4

Spin-2 triplet, without formfactor 0.1993 3.3130 · 10−4

Spin-2 triplet, with formfactor 0.1748 2.4535 · 10−4

Table 5.6: Total cross sections and errors for process 220

Process and parameters Cross section [fb] Error [fb]

SM, without spin-2 0.0947 1.1288 · 10−4

Spin-2 triplet, without formfactor 0.1025 1.4985 · 10−4

Spin-2 triplet, with formfactor 0.0959 1.3079 · 10−4

Table 5.7: Total cross sections and errors for process 230

From table 5.6 and 5.7, it is noticeable that the cross sections of process 220
are roughly twice as high as the ones of process 230. This difference stems from
the PDFs and is associated with the fact that the three valence quarks of a
proton consist of two u quarks and one d quark.
Apart from that, the two processes have exactly the same features, since their
Feynman diagrams are completely analogous.

Invariant mass distribution of the four final state leptons

From fig. 5.74, 5.75 and 5.76, one can see that only the triplet case leads to a
resonance, whereas for the singlet case, there are the usual high-energy contri-
butions, if no formfactor is applied, but no resonance.
This reflects a general feature of the processes 220 and 230: For these processes,
only charged resonances are possible. Therefore, a charged spin-2 triplet particle
leads to a resonance in these processes, whereas the singlet case can only pro-
duce a neutral resonance. This can also be seen from the Feynman diagrams of
section 4.4.
For the same reason, there is no Higgs resonance for these processes.
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Figure 5.74: Invariant mass distribution
of the four final state leptons
for process 220, Λ = 1 TeV,
without formfactor, singlet
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Figure 5.76: Invariant mass distribution of the four final state leptons for process 220,
Λ = 1 TeV, with formfactor, triplet resonance

This feature provides a simple, but powerful tool to distinguish between the
spin-2 singlet and triplet case. Regardless of the parameter settings, a spin-2
resonance in the processes pp → V V jj → e+ νe µ+µ−jj (220) and
pp → V V jj → e− νe µ+µ− jj (230) can only be a triplet resonance.

5.4.4 Summary of heavy Spin-2 resonances in VBF processes with
four leptons in the final state

The implementation of the present spin-2 model into VBF processes with
four leptons in the final state does not only yield spin-2 resonances, but
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also unphysical high-energy contributions due to unitarity violation. These con-
tributions can be suppressed by using the formfactor with appropriate parameters.

Heavy spin-2 resonances cause specific transverse momentum and angular
distributions, which are similar for the different kinds of processes discussed in
section 5.3 and 5.4. Since for the chosen parameters, the spin-2 resonances
contribute little to the total cross-sections, these distributions are dominated
by the SM background if only inclusive and vbf cuts are applied. Therefore,
additional cuts on the invariant mass of the final state lepton system are needed.
With these cuts, it is possible to reveal the characteristic distributions of a spin-2
resonance. For most of the parameter settings, the distributions are not affected
very much by the SM background. Only for f5 = 1, fi6=5 = 0 (and the analogous
triplet setting f6 = 1, fi6=6 = 0), they are obscured significantly. However, they
can still be distinguished from the distributions of the SM background and from
other parameter settings due to their specific features.

Most of the hadronic observables are hardly affected by spin-2 resonances.
However, the azimuthal angle difference between the two jets, ∆Φjj, shows a
characteristic difference between the spin-2 resonance and the SM background,
but it is hardly sensitive to different spin-2 coupling parameters. The pT distribu-
tion of the jet with the largest transverse momentum only changes significantly
for f5 = 1, fi6=5 = 0. The distributions of the final state leptons are more
suitable. The pT distribution of the lepton with the largest transverse momentum
is modified by a spin-2 resonance such that higher values of pT,max,l are preferred.
The angular distributions of the leptons, ∆ηl, ∆Φl and ∆Rl, also present charac-
teristic features of a spin-2 resonance. The same is true for the cos Θ distribution.

Based on the processes 210 and 211, which are dominated by ZZjj pro-
duction, the spin-2 singlet and triplet scenario cannot be distinguished, as
both cases yield the same characteristics. Process 200, which corresponds
to W+W−jj production, can be useful for such a determination for specific
parameter settings due to the different Feynman rules of the coupling of a spin-2
singlet and triplet particle to two W bosons.
However, the most important tools to distinguish between the singlet and
triplet case are the processes 220 and 230, which are dominated by W±Zjj
production. Since only charged resonances are possible for these processes, only
the spin-2 triplet leads to a spin-2 resonance in this case.
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6 Summary

The recent start of the LHC provides the chance both for the detection of
the Higgs boson, which is the only particle of the Standard Model which has
not been observed yet, and the discovery of some manifestations of physics
beyond the Standard Model in the form of new, heavy resonances. For both of
these scenarios, vector boson fusion processes are important possible detection
channels.
For the detection of the Higgs, it is important to verify its spin, which has to
be zero. In the photon pair-production VBF process, which is one of the most
interesting channels for the detection of the Higgs, the spin of a resonance can
also be 2, but not 1 due to the Landau-Yang theorem. Therefore, one of the
main goals of this thesis was the distinction of a spin-0 and a spin-2 resonance
in this channel.
The other one was the investigation of heavy spin-2 reso-
nances in processes with different four-lepton final states, namely
e+ e− µ+µ−, e+ e− νµνµ, e+ νe µ− νµ, e+ νe µ+µ− and e− νe µ+µ−.
In both cases, especially angular correlations were studied in great detail, since
they are known as an important tool for the analysis of the spin of resonances.

For these studies, a model of spin-2 particles, which can only interact
with electroweak bosons, was developed. This was done for two different cases:
a spin-2 state which behaves as a singlet under SU(2) transformations and a
spin-2 triplet in the adjoint representation.
To this end, an effective ansatz was used to construct Lagrangians both for the
singlet and the triplet scenario. Each of the terms contains the spin-2 field, a
dimensionless, variable coupling parameter, which is divided by the new-physics
energy scale, and an operator which contains either two electroweak field
strength tensors (or the corresponding dual field strength tensors) or a covariant
derivative acting on the Higgs field and the hermitian conjugate of this. Thereby,
the number of possible operators was limited by several constraints like Gauge
and Lorentz invariance.
The particle content of these spin-2 models comprises one neutral spin-2 singlet
particle (called T ) and three triplet particles, namely one pair of charged
particles and one neutral particle (denoted as T+, T− and T 0).

From the singlet and triplet Lagrangian, the corresponding Feynman rules
were calculated. Although they consist of 17 vertices in the singlet case and 38
in the triplet case, only few of them were needed for the following analysis. The
relevant vertices for the singlet and the neutral triplet particle are the same,
namely T (0)W+W−, T (0)ZZ, T (0)γγ and T (0)γZ. For the charged triplet
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particles, the relevant vertices are T±W∓Z and T±W∓γ. The Feynman rules
of all these vertices involve the same Lorentz structure, which consists of three
rank-4 tensors.

In order to analyze the effects of the present spin-2 model in electroweak
boson fusion processes, the model was implemented into the Monte Carlo pro-
gram VBFNLO, which simulates vector boson fusion processes at next-to-leading
order in the strong coupling constant. The general procedure of a VBFNLO
calculation was illustrated and the implementation of the spin-2 model into
VBFNLO was presented.

Then, the results of the analysis of spin-2 resonances were illustrated.
First, unitarity constraints were investigated on the basis of longitudinal
WW scattering. Since the present spin-2 model is based on an effective
ansatz, which is a low-energy approximation and can only be used up to
a certain energy scale, the amplitudes increase with the centre of mass
energy, which leads to unitarity violation above a certain scale. However,
a possibility to evade unitarity violation was found as well: The introduction
of a formfactor, whose parameters can be chosen such that unitarity is preserved.

Afterwards, light, Higgs-like spin-2 resonances in the photon pair-production
VBF process were investigated. The results of this analysis indicate that it is
possible to distinguish between a Higgs and a spin-2 resonance in this process,
while the detailed features of a spin-2 resonance depend on their parameters.
The cross-section can be similar for a Higgs and a spin-2 resonance if the spin-2
coupling parameters are tuned in an appropriate way. The transverse momentum
distributions are different unless a formfactor with adjusted parameters is
applied.
Angular distributions are the most important tool for a distinction between the
Higgs and the spin-2 scenario. Especially the ∆Φjj and the cos Θ distribution are
clearly different for a Higgs resonance and spin-2 resonance with a formfactor.
This difference is illustrated nicely by a double differential plot which combines
both distributions.
Without the formfactor, these differences are less evident, but in this case,
the differences in the transverse momentum distributions can be used as an
additional tool to distinguish between a Higgs and a spin-2 resonance.
For all the considered distributions, the spin-2 singlet and triplet case are similar,
since their Feynman diagrams are nearly the same for the photon pair-production
process.
Therefore, this process is not useful for a distinction between a spin-2 singlet
and a spin-2 triplet resonance.
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Finally, the features of heavy spin-2 resonances in the different processes
with four leptons in the final state were presented. Thereby, the process
pp → V V jj → e+ e− µ+µ− jj has been studied in most detail, since a
resonance in the invariant mass distribution of the final state leptons can be
reconstructed exactly if no neutrinos are involved. However, the features of the
other processes with four leptons in the final state are mainly analogous.
The implementation of the spin-2 model into all these processes does not only
yield spin-2 resonances, but also unphysical high-energy contributions resulting
from unitarity violation, which can be suppressed by using the formfactor.
Heavy spin-2 resonances lead to specific features in the transverse momentum
and angular distributions, which are observable despite the presence of the
Standard Model background, if appropriate cuts are applied. The most important
distributions are cos Θ, ∆Φjj, the pT distribution of the lepton with the largest
transverse momentum and the angular correlations of the final state leptons
∆ηl, ∆Φl and ∆Rl.
Based on the processes pp → V V jj → e+ e− µ+µ− jj and
pp → V V jj → e+ e− νµνµjj, the spin-2 singlet and triplet scenario can-
not be distinguished, as both cases yield the same characteristics. The process
pp → V V jj → e+ νe µ− νµ jj can be useful for such a determination for
specific parameter settings due to the different Feynman rules of the coupling of
a spin-2 singlet and triplet particle to two W bosons.
For the processes pp → V V jj → e+ νe µ+µ−jj and pp → V V jj →
e− νe µ+µ− jj, only charged resonances are possible. Therefore, only the spin-2
triplet leads to a spin-2 resonance. Since this feature does not depend on any of
the spin-2 parameters, it provides a both simple and powerful tool to distinguish
between the spin-2 singlet and triplet case.
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Appendix

A Spin-2 field and propagator

A.1 Spin-2 field

The general form of a spin-2 singlet field is:

T µν(x) =

∫
d3k

(2π)32k0

2∑
λ=−2

εµν(k, λ)aλ(k)e−ikx + ε∗µν(k, λ)a†λ(k)eikx

(A.1)

and the general form of a spin-2 triplet field is:

T µν
j (x) =

∫
d3k

(2π)32k0

2∑
λ=−2

εµν(k, λ)aλ,j(k)e−ikx + ε∗µν(k, λ)a†λ,j(k)eikx

(A.2)

a and a† are annihilation and creation operators and εµν is the polarization tensor
of the spin-2 field [15]:

εµν(k,±2) = εµ(k,±)εν(k,±)

εµν(k,±1) =
1√
2

(εµ(k,±)εν(k, 0) + εµ(k, 0)εν(k,±))

εµν(k, 0) =
1√
6

(εµ(k, +)εν(k,−) + εµ(k,−)εν(k, +) + 2εµ(k, 0)εν(k, 0))

(A.3)
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The polarization vectors εµ are the usual ones of vector bosons and can be written
explicitly as [21]:

εµ(k, 1) =
1

|~k|kT

(0, kxkz, kykz,−k2
T )T ,

εµ(k, 2) =
1

kT

(0,−ky, kx, 0)T ,

εµ(k, 3) =
E

m|~k|

(
|~k|2

E
, kx, ky, kz

)T

(A.4)

(
m =

√
E2 − |~k|2, kT =

√
k2

x + k2
y

)
with

εµ(k,±) =
1√
2

(∓εµ(k, 1)− iεµ(k, 2))

εµ(k, 0) = εµ(k, 3) (A.5)

A.2 Spin-2 propagator

As the propagator is the Greens function of the free field equations, it is
independent of the interaction Lagrangian and therefore it is the same as in
other theories ([15],[30]):

iBµναβ

k2 −m2
T + imT ΓT

(A.6)

where mT is the mass of the spin-2 particle, k is its momentum, ΓT is its width
and

Bµναβ(k) =
1

2

(
gµαgνβ + gµβgνα − gµνgαβ

)
− 1

2m2
T

(
gµαkνkβ + gνβkµkα + gµβkνkα + gναkµkβ

)
+

1

6

(
gµν +

2

m2
T

kµkν

)(
gαβ +

2

m2
T

kαkβ

)
(A.7)

98



B Decay widths of the Spin-2 singlet and

triplet particles

B.1 Singlet

For the calculation of the total decay width of the spin-2 singlet particle, the
following formula, which is calculated from a formula taken from [31], is used:

Γtotal =
∑

j

Γj, Γj =
|~p|

8πm2
T

|M|2 (B.1)

where mT is the mass of the spin-2 singlet particle (which is called sp2mass in
VBFNLO) and the sum runs over all possible decay channels.

The matrix element M corresponds to the following diagram, with a spin-2
particle at rest decaying into two electroweak bosons:

ǫ
ρσ

ǫ
µ∗

ǫ
ν∗

p1

p2

pT

iM = εµ∗(p1) εν∗(p2) Vµνρσ ερσ(pT )
(B.2)

Vµνρσ represents the Feynman rules of the corresponding vertex, which can be
TW+W−, TZZ, Tγγ or TγZ.
If the direction of the decay products is defined as the z-axis,
energy-momentum-conservation reads:

pT = p1 + p2 ⇐⇒


mT

0

0

0

 =


√

p2 + m2
v1

0

0

p

+


√

p2 + m2
v2

0

0

−p

 (B.3)

This yields a |~p| which is different for the different decay channels W+W−/ZZ,
γZ and γγ.

From eq. (B.2), |M|2 can be calculated by using the following replace-
ments:

Photon:
∑

λ

εµ∗(q, λ) εν(q, λ) → −gµν (B.4)
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W, Z:
∑

λ

εµ∗(q, λ) εν(q, λ) → −gµν +
qµqν

m2
(B.5)

Spin-2 particle:
2∑

λ=−2

εµν(p, λ) ε∗αβ(p, λ) → Bµναβ(p) (B.6)

where Bµναβ(p) has been given in eq. (A.7).

(B.4) and (B.5) are taken from [31] and (B.6) is taken from [15].

⇒ |M|2 =
1

5
Vµνρσ V ∗

λκγδ Bρσγδ(pT ) (−ĝµλ) (−ĝνκ) (B.7)

with ĝµλ = gµλ for a photon and ĝµλ = gµλ − pµ
i pλ

i

m2
vi

(i = 1 or 2) for a W or Z

boson.
For the decay modes ZZ and γγ, there is an additional symmetry factor 1

2
due

to the identical particles.

The explicit results for Γj are:

ΓW+W− =

(
24f 2

2 (m4
T − 3m2

T m2
W + 6m4

W ) + 40f2f5g
2v2(m2

T −m2
W )

12Λ2

+
f 2

5 g4v4(m4
T + 12m2

T m2
W + 56m4

W )

96Λ2m4
W

)
∗
√

(m2
T /4−m2

W )

(40πm2
T )

(B.8)

ΓZZ =
(
[24f 2

2 c4
w(m4

T − 3m2
T m2

Z + 6m4
Z) + 8c2

wf2(6f1s
2
w(m4

T − 3m2
T m2

Z + 6m4
Z)

+ 5f5v
2(g2 + g′2)(m2

T −m2
Z)) + 24f 2

1 s4
w(m4

T − 3m2
T m2

Z + 6m4
Z)

+ 40f1f5s
2
wv2(g2 + g′2)(m2

T −m2
Z)]/(12Λ2)

+
f 2

5 v4(g2 + g′2)2(m4
T + 12m2

T m2
Z + 56m4

Z)

96Λ2m4
Z

)
∗
√

m2
T /4−m2

Z

80πm2
T

(B.9)

Γγγ =
(f1c

2
w + f2s

2
w)2m3

T

80πΛ2
(B.10)

ΓγZ =
c2
ws2

w(f1 − f2)
2(m2

T −m2
Z)3(6m4

T + 3m2
T m2

Z + m4
Z)

240πΛ2m7
T

(B.11)
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Note that all these widths only contain the parameters f1, f2 and f5, but not
f3 and f4. This means that the corresponding terms in the Lagrangian (3.2) do
not lead to spin-2 resonances (see section 5.3.2, fig. 5.41).

To get the total decay width, one has to sum over all of the widths (B.8) -
(B.11) where the mass of the spin-2 particle is larger than the sum of the final
state particle masses.

There is the possibility of further decay channels beyond the effective theory
considered in this thesis, leading to a larger total width. Therefore, an
additional parameter, called brrat, is introduced, which is the fraction of decays
into electroweak bosons over all possible decays.
This parameter has to be greater than zero and less than or equal to one;
where the last one signifies that no additional decay modes exist.
This yields

Γtotal = (ΓW+W− + ΓZZ + Γγγ + ΓγZ) ∗ 1

brrat
(B.12)

Due to the possibility of modifying the parameter brrat, the width of a spin-2
resonance can be varied. This could provide a useful tool to achieve an agreement
between the present model and a future experimental analysis.

B.2 Triplet

For the decay width of the spin-2 triplet particles, the same basic equations (B.1
- B.7) hold. However, as the Feynman rules are different, of course Vµνρσ (eq.
B.2 and B.7) is different. Also the mass mT does not have to be the same as
in the singlet case. For the neutral triplet particle, it is called msp2tripn and for
the charged particle msp2trippm in VBFNLO.
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For the neutral particle, the results for Γj are:

ΓW+W− =
f 2

6 g4v4(m4
T + 12m2

T m2
W + 56m4

W )

384Λ2m4
W

∗
√

m2
T /4−m2

W

40πm2
T

(B.13)

ΓZZ =
((

768f 2
7 c2

ws2
wm4

Z(m4
T − 3m2

T m2
Z + 6m4

Z) + 640cwf6f7m
4
Zswv2

(g2 + g′2)(m2
T −m2

Z) + f 2
6 v4(g2 + g′2)2(m4

T + 12m2
T m2

Z + 56m4
Z)
)

/(384Λ2m4
Z)
)
∗
√

m2
T /4−m2

Z

80πm2
T

(B.14)

Γγγ =
f 2

7 c2
ws2

wm3
T

80πΛ2
(B.15)

ΓγZ =
f 2

7 (c2
w − s2

w)2(m2
T −m2

Z)3(6m4
T + 3m2

T m2
Z + m4

Z)

960πΛ2m7
T

(B.16)

The widths for the charged particles are:

ΓWγ =
f 2

7 c2
w(m2

T −m2
W )3(6m4

T + 3m2
T m2

W + m4
W )

960πΛ2m7
T

(B.17)

ΓWZ = ((m2
T m2

W (m2
T m2

Z(13f 2
6 g2v4(g2 + g′2) + 256f 2

7 m2
W m2

Zs2
w)

+ 1/4(m2
T −m2

W + m2
Z)2(7f 2

6 g2v4(g2 + g′2)− 96f 2
7 m2

W m2
Zs2

w))

+ 1/4(m2
T + m2

W −m2
Z)2(m2

T m2
Z(7f 2

6 g2v4(g2 + g′2)− 96f 2
7 m2

W m2
Zs2

w)

+ (m2
T −m2

W + m2
Z)2(f 2

6 g2v4(g2 + g′2) + 32f 2
7 m2

W m2
Zs2

w))

+ m2
T (m2

T −m2
W −m2

Z)(1/4(m2
T + m2

W −m2
Z)(m2

T −m2
W + m2

Z)

(128f 2
7 m2

W m2
Zs2

w − f 2
6 g2v4(g2 + g′2)) + 40f6f7gm2

T m2
W m2

Zswv2
√

g2 + g′2)

+ 1/4m4
T (−m2

T + m2
W + m2

Z)2(f 2
6 g2v4(g2 + g′2) + 32f 2

7 m2
W m2

Zs2
w)

+ 40f6f7gm2
T m2

W m2
Zswv2

√
g2 + g′2(m2

T + m2
W −m2

Z)

(m2
T −m2

W + m2
Z))/(96Λ2m4

T m2
W m2

Z))

∗
√

(m2
T −m2

W −m2
Z)2 − 4m2

W m2
Z

80πm3
T

(B.18)

As in the singlet case, a decay channel can only contribute to the total width
if the mass of the spin-2 particle is large enough to produce the final vector
bosons. Whereas the neutral spin-2 particles (singlet and triplet) can always
decay into two photons, a charged spin-2 particle can only decay if its mass is
larger than the mass of the W. Lighter spin-2 particles are not considered within
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this thesis, as these are difficult to achieve with current experimental constraints.

For the triplet, branching ratios are introduced as additional parameters
as well, for the same reason. They can be different from the singlet case
and from each other. For the neutral triplet particle, it is called brrattripn in
VBFNLO and for the charged particle brattrippm.

C Some VBFNLO files

C.1 vbfnlo.dat

The following text is the content of the file vbfnlo.dat.
Further information about the chosen parameters can be found in section 4.5.1.

! Main i npu t f i l e f o r v b f n l o

! Gene r a l pa ramete r s o f the c a l c u l a t i o n
!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
PROCESS = 220 ! I d e n t i f i e r f o r p r o c e s s
LOPROCESS PLUS JET = f a l s e ! sw i t c h : LO p r o c e s s w i th 1 a d d i t i o n a l j e t
LEPTONS = 12 −11 13 −13 ! f i n a l s t a t e l e p t o n s

! l e p t o n number ing a c co r d i n g to MC p a r t i c l e number ing scheme
! p a r t i c l e s a r e g i v en p o s i t i v e numbers , a n t i p a r t i c l e s n e g a t i v e numbers
! e− ve mu− vm ta− v t
! 1 1 12 13 14 15 16

LO ITERATIONS = 4 ! number o f i t e r a t i o n s f o r LO c a l c u l a t i o n
NLO ITERATIONS = 4 ! number o f i t e r a t i o n s f o r r e a l−em i s s i o n s c a l c .
LO POINTS = 22 ! number o f p o i n t s f o r LO c a l c u l a t i o n (= 2 ˆ . . )
NLO POINTS = 22 ! number o f p o i n t s f o r r e a l−em i s s i o n s c a l c . ( = 2 ˆ . . )
LO GRID = ” g r i d 2 1 ” ” g r i d 2 2 ” ” g r i d 2 3 ” ! names o f g r i d f i l e s f o r LO c a l c u l a t i o n
NLO GRID = ” g r i d 3 1 ” ” g r i d 3 2 ” ” g r i d 3 3 ” ! names o f g r i d f i l e s f o r r e a l em i s s i o n s c a l c u l a t i o n
NLO SWITCH = f a l s e ! sw i t c h : n l o / l o c a l c u l a t i o n

ECM = 14000d0 ! c o l l i d e r c en t e r−of−mass ene rgy
BEAM1 = 1 ! type o f beam 1 (1= proton , −1 = an t i p r o t o n )
BEAM2 = 1 ! type o f beam 2 (1= proton , −1 = an t i p r o t o n )

ID MUF = 1 ! ID f o r f a c t o r i z a t i o n s c a l e
ID MUR = 1 ! ID f o r r e n o rma l i z a t i o n s c a l e
MUF USER = 100d0 ! u s e r d e f i n e d f a c t o r i z a t i o n s c a l e , i f MUF i s s e t to 0
MUR USER = 100d0 ! u s e r d e f i n e d r e n o rma l i z a t i o n s c a l e , i f MUR i s s e t to 0
XIF = 1d0 ! s c a l e f a c t o r x i f o r mu F ( not muˆ 2 ! ! )
XIR = 1d0 ! s c a l e f a c t o r x i f o r mu R

! Phy s i c s pa ramete r s
!−−−−−−−−−−−−−−−−−−−−−−−−
HMASS = 120.0 d0 ! Higgs mass
TOPMASS = 173.3 d0 ! Top mass
BOTTOMMASS = 4.67 d0 ! Bottom Pole mass
CHARMMASS = 1.27 d0 ! Charm Pole mass
ALFA S = 0.1184 d0 ! St rong c oup l i n g con s t an t
EWSCHEME = 3 ! Choose scheme f o r e l e c t r oweak pa ramete r s ( 1 , 2 , 3 , 4 )
FERMI CONST = 1.16637d−5 ! Fermi Constant
ALFA = 7.2973525376d−3 ! Fine−s t r u c t u r e con s t an t
SIN2W = 0.23116 d0 ! Weak mix ing ang l e
WMASS = 80.399 d0 ! W mass
ZMASS = 91.1876 d0 ! Z mass
ANOM CPL = f a l s e ! Anomalous c o u p l i n g s
KK MOD = f a l s e ! Warped H i g g s l e s s Model
SPIN2 = t r u e ! s p i n 2 c o u p l i n g s
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! Parameter s f o r the LHA even t output
!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
LHA SWITCH = t r u e ! Les Houches i n t e r f a c e on l y f o r LO c a l c u l a t i o n
UNWEIGHTING SWITCH = f a l s e ! unwe ighted / we ighted (T/F ) e v en t s f o r LHA
PRENEVUNW = 1000 ! number o f e v en t s to c a l c u l a t e pre−maximal we ight
TAUMASS = f a l s e ! I n c l u d e mass o f the tau l e p t o n ( s ) i n the LHA f i l e f o r VBF p r o c e s s e s

! PDF s e t pa ramete r s
!−−−−−−−−−−−−−−−−−−−−−−−−
PDF SWITCH = 0 ! which pd f s to use : 1 = lhapd f , 0 = hard−wi r ed c teq ( d e f a u l t )
! choose p d f s e t and pdfmember he r e . Look at the LHAPDF manual f o r d e t a i l s .
LO PDFSET = 10042 ! c t e q 6 l l . LHpdf
NLO PDFSET = 10000 ! c teq6 . LHpdf
LO PDFMEMBER = 0
NLO PDFMEMBER = 0

! Parameter s f o r h i s tog ram c r e a t i o n
!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
ROOT = f a l s e ! c r e a t e root−f i l e ?
TOP = f a l s e ! c r e a t e top−drawer f i l e ?
GNU = t r u e ! c r e a t e gnu−p l o t s c r i p t f i l e ?
DATA = t r u e ! c r e a t e data f i l e ?
REPLACE = t r u e ! r e p l a c e output f i l e s ?
ROOTFILE = h i s t og r ams ! name o f root−f i l e ( + ’ . root ’ )
TOPFILE = h i s t og r ams ! name o f top−drawer f i l e ( + ’ . top ’ )
GNUFILE = h i s t og r ams ! name o f gnup l o t f i l e ( + ’ . gp ’ )
DATAFILE = h i s t og r ams ! name o f data d i r e c t o r y ( + ’ . d i r ’ )

C.2 cuts.dat

The following text is the content of the file cuts.dat.
For detailed information about the chosen cuts, see section 4.5.2.

! i n pu t f i l e f o r the cut pa ramete r s

! J e t cu t s
!−−−−−−−−−−−−−
RJJ MIN = 0.7 d0 ! min j e t− j e t R s e p a r a t i o n
Y P MAX = 5.0 d0 ! max p s e u d o r a p i d i t y f o r pa r t on s
PT JET MIN = 30.0 d0 ! min j e t pT
Y JET MAX = 4.5 d0 ! max j e t r a p i d i t y

! Lepton cu t s ( on l y a p p l i e d to charged l e p t o n s )
!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Y L MAX = 2.5 d0 ! max l e p t o n r a p i d i t y
PT L MIN = 20.0 d0 ! min l e p t o n pT
MLL MIN = 15.0 d0 ! min . m l+l − f o r any comb . o f o ppo s i t e charged l e p t o n s
RLL MIN = 0.0 d0 ! min l ep ton−l e p t o n R s e p a r a t i o n
RLL MAX = 50.0 d0 ! max l ep ton−l e p t o n R s e p a r a t i o n

! a d d i t i o n a l l e p t o n ( and n e u t r i n o ) cu t s
!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
PT V MIN = 0.0 d0 ! minimum neu t r i n o pt ( on l y f o r ZZ j j l n u , WPZjj , WMZjj)
MT MIN = 0.0 d0 ! min imal t r a n s v e r s e mass ( on l y f o r ZZ j j l n u , WPZjj , WMZjj)
MZZ MIN = 0.0 d0 ! min imal i n v a r i a n t 4 l e p t o n mass ( on l y f o r Z Z j j l l )
PTLL MIN = 0.0 d0 ! min imal pt o f 2 l e p t o n s ( on l y f o r Z Z j j l l )
PTDIFF MIN = 0.0 d0 ! min imal pt d i f f e r e n c e o f 2 l e p ( on l y f o r WPWMjj)
MLJ MIN = 0.0 d0 ! min imal i n v a r i a n t mass o f a j e t and a l e p t o n ( on l y f o r WPWMjj)

MLEP MIN = 0.0 d0 ! min imal i n v a r i a n t l e p t o n ( and n e u t r i n o ) mass
MLEP MAX = 14000.0 d0 ! maximal i n v a r i a n t l e p t o n ( and n e u t r i n o ) mass
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! Photon cu t s
!−−−−−−−−−−−−−−−−
Y G MAX = 2.5 d0
PT G MIN = 20.0 d0
RGG MIN = 0.4 d0 ! min photon−photon R s e p a r a t i o n
RGG MAX = 50.0 d0 ! max photon−photon R s e p a r a t i o n
PHISOLCUT = 0.7 d0 ! photon i s o l a t i o n cut
EFISOLCUT = 1d0 ! e f f i c i e n c y o f photon i s o l a t i o n cut

! A d d i t i o n a l R−s e p a r a t i o n cu t s
!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
RJL MIN = 0.4 d0 ! min j e t−l e p t o n R s e p a r a t i o n
RJG MIN = 0.4 d0 ! min j e t−photon R s e p a r a t i o n
RLG MIN = 0.0 d0 ! min l ep ton−photon R s e p a r a t i o n

! Vecto r boson f u s i o n cu t s ( on l y a p p l i e d to t agg i ng j e t s i n VBF p r o c e s s e s )
!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
ETAJJ MIN = 0.0 d0 ! j e t− j e t r a p i d i t y s e p a r a t i o n
YSIGN = f a l s e ! j e t s #1 and #2 must have o ppo s i t e s i g n r a p i d i t y
LRAPIDGAP = f a l s e ! l e p t o n s f a l l i n s i d e r a p i d i t y gap
DELY JL = 0.0 d0 ! min y−d i s t o f l e p t o n s from tagg i ng j e t s
GRAPIDGAP = f a l s e ! photons f a l l i n s i d e r a p i d i t y gap
DELY JG = 0.0 d0 ! min y−d i s t o f photons from tagg i ng j e t s

MDIJ MIN = 0.0 d0 ! d i j e t min mass cut on tag j e t
MDIJ MAX = 14000.0 d0 ! d i j e t max mass cut on tag j e t

JVETO = f a l s e ! ve to j e t cu t s
DELY JVETO = 0.0 d0 ! min veto−tag y−d i s t
YMAX VETO = 4.5 d0 ! max | y | f o r ve to j e t
PTMIN VETO = 25.0 d0 ! min pT f o r ve to j e t

C.3 spin2coupl.dat

The following text is the content of the file spin2coupl.dat:

! ! Parameter s f o r Sp in 2 th eo r y

! S i n g l e t c o u p l i n g s

f 1 = 0.0 d0
f2 = 0.0 d0
f3 = 0.0 d0
f4 = 0.0 d0
f5 = 0.0 d0

! T r i p l e t c o u p l i n g s

f 6 = 2.0 d0
f7 = 1.0 d0

lambda = 1.0 d3 ! ene rgy s c a l e o f c o u p l i n g s ( s i n g l e t and t r i p l e t ) i n GeV

! masses ( i n GeV)
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sp2mass = 1 .2 d2 ! mass o f a s p i n 2 s i n g l e t p a r t i c l e
msp2tr ippm = 1.2 d2 ! mass o f a ( pos . o r neg . ) charged s p i n 2 t r i p l e t p a r t i c l e
msp2t r ipn = 1 .2 d2 ! mass o f a n e u t r a l s p i n 2 t r i p l e t p a r t i c l e

! b r anch i ng r a t i o s f o r the widths , 0 .2 <= b r r a t <= 1.0
! ( Sp in 2 p a r t i c l e s cou ld decay i n t o p a r t i c l e s which a r e not c o n s i d e r e d he r e )

b r r a t = 1 .0 d0 ! b r anch i ng r a t i o f o r sp2width ( s i n g l e t width )
b r r a t t r i p pm = 1.0 d0 ! b r anch i ng r a t i o f o r sp2 t r i ppmwid th ( charged t r i p l e t width )
b r r a t t r i p n = 1 .0 d0 ! b r anch i ng r a t i o f o r s p 2 t r i p nw i d t h ( n e u t r a l t r i p l e t width )

! pa ramete r s o f the f o rm f a c t o r

n f f = 2 .0 d0 ! exponent o f f o rm f a c t o r
l ambda f f = 4 .0 d2 ! ene rgy s c a l e o f f o rm f a c t o r ( i n GeV)

D Relevant frames and transformations

This section presents the different frames which are used for the present analysis.
Apart from the laboratory frame, three other frames are very useful: The Breit
frames of the two initial vector bosons and the rest frame of the spin-2 particle
(or the Higgs). They are shown in the following figure:

k1

k3

k2

k4

θ1, φ1

θ2, φ2

Θ
q1

q2

q′

2

q′

1

zI III II

In the Breit frames of the initial vector bosons, the momenta and angles are
parametrized as follows:

(I): q1 Breit frame:

qµ
1 = kµ

3 − kµ
1 = (0, 0, 0, Q1)

kµ
1 =

Q1

2 cos θ1

(1, sin θ1 cos φ1, sin θ1 sin φ1, -cos θ1)

kµ
3 =

Q1

2 cos θ1

(1, sin θ1 cos φ1, sin θ1 sin φ1, cos θ1) (D.1)
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where Q1 =
√
−q2

1, 0 < θ1 < π/2, −π < φ1 < π

(II): q2 Breit frame:

qµ
2 = kµ

4 − kµ
2 = (0, 0, 0,−Q2)

kµ
2 =

−Q2

2 cos θ2

(1, sin θ2 cos φ2, sin θ2 sin φ2, -cos θ2)

kµ
4 =

−Q2

2 cos θ2

(1, sin θ2 cos φ2, sin θ2 sin φ2, cos θ2) (D.2)

where Q2 =
√
−q2

2, π/2 < θ2 < π, −π < φ2 < π

This parametrization follows the conventions of [27], but one difference
should be noted: The numeration of the parton momenta is changed: k1 ↔ k3

and k2 ↔ k4, following the numeration of VBFNLO.

The transformation from the laboratory frame into the q1 Breit frame is
performed in the following way:

First, q1 is rotated to the z-axis, in order to obtain zero in the first two
momentum components.
The angle α of this rotation is given by the angle between q1 and the z-axis:

α = arccos (q1,z/|~q1|) (D.3)

The axis ~a of the rotation is defined by the normalized cross product of q1 and
the z-axis:

~a =


q1,y

−q1,x

0

 · 1√
q2
1,x + q2

1,y

(D.4)

The matrix for the rotation by the angle α about the axis ~a is given by:

R =


cos α + a2

x(1− cos α) ax ay(1− cos α)− azsin α ax az(1− cos α) + aysin α

ax ay(1− cos α) + azsin α cos α + a2
y(1− cos α) az ay(1− cos α)− axsin α

ax az(1− cos α)− aysin α az ay(1− cos α) + axsin α cos α + a2
z(1− cos α)


(D.5)

The rotated four-vector is:

q0
1,rot = q0

1

~q1,rot = R · ~q1 (D.6)

107



Afterwards, a Lorentz boost along the z-axis is performed with the VBFNLO
routine boostn, in order to obtain a zero in the energy component. The reference
vector for this boost is:

rµ = (1, 0, 0,−q0
1,rot/q

z
1,rot) (D.7)

The same transformations are applied to k1 and k3.

For the transformation from the laboratory frame into the q2 Breit frame,
an analogous procedure is performed for q2, k2 and k4, but the z-axis needs to
be replaced by the negative z-axis.

In the rest frame of the spin-2 particle (or the Higgs), frame (III), the
momenta of the outgoing vector bosons, q′1 and q′2, have opposite directions, as
well as q1 and q2.
The transformation from the laboratory frame to this frame is implemented by
using a Lorentz boost with the reference vector

rµ = (P 0,−P 1,−P 2,−P 3), (D.8)

where P µ = qµ
1,lab

′ + qµ
2,lab

′.

The angle Θ is defined as the angle between q1 and q′1 in frame (III).

E Wigner d-functions

The following formulae are taken from [22] and [25].

The Wigner d-functions dj
m,m′ are related to the spherical harmonics Y m

j

by

dj
m,0 =

√
4π

2l + 1
Y m

j e−imφ. (E.1)

Up to j = 2, the explicit forms of the d-functions are
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d0
0,0 = 1

d1
0,0 = cos θ

d1
1,1 = 1+cos θ

2
d1

1,0 = − sin θ√
2

d1
1,−1 = 1−cos θ

2

d2
2,2 = (1+cos θ

2
)2 d2

2,1 = −1+cos θ
2

sin θ d2
2,0 =

√
6

4
sin2 θ

d2
2,−1 = −1−cos θ

2
sin θ d2

2,−2 = (1−cos θ
2

)2

d2
1,1 = 1+cos θ

2
(2cos θ − 1) d2

1,0 = −
√

3
2
sin θ cos θ d2

1,−1 = 1−cos θ
2

(2cos θ + 1)

d2
0,0 = 3

2
cos2 θ − 1

2

Other combinations of m, m’ can be obtained from:

dj
m′,m = (−1)m−m′

dj
m,m′ = dj

−m,−m′ (E.2)

The d-functions obey the following orthogonality relation:∫ π

0

dj
m,m′ (θ) dj′

m,m′ (θ) sin θ dθ = δjj′
2

2j + 1
(E.3)
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