## Ramanujan 1914, approximation to Pi

$O B=1, A T=1 / 3, M C=1 / 3=M N, A M=A P, P Q\|N M, T R\| O Q, A S=A R$ $O W=1 / 2 O S, \angle O V U=90^{\circ}, O U$ approximates $\pi / 3$ with 9 digits
$O U=\frac{1}{3}\left(9^{2}+\frac{19^{2}}{22}\right)^{1 / 4}=\frac{1}{3}(2143 / 22)^{1 / 4} \approx 1.04719755086089 . \pi / 3 \approx 1.04719755119660$.


Found in S. Ramaujan, "Modular Equations and Approximations to $\pi$ ", Collected Papers (G. H. Hardy, P. V. Seshuaigar and B. M. Wilson, Eds.), Chelsea, New ork, 1922, pp. 23-39.
Reprinted in "Pi: A Source Book" (L. Berggren, J. Borwein and P. Borwein, Eds.) Springer, New York, 1997, pp. 241-257. Construction on pp.253-4.

OU, the square root of OS, has been constructed from the geometric mean of OV=1 and OS (not shown in Ramanujan's original figure 2.)
$T$ is obtained as projection of a point $Y$ along the $C O$ direction. $Y$ is the intersection point of the lines $A C$ and $0 X$ where $X$ is the midpoint of the parallel to $C O$ through $A$.

Put on the web by Wolfdieter Lang, June 2007.

