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Abstract

Classes of binary quadratic diophantine equations (including the standard types of Pell equations)
which follow from the well-known Cassini-Simson-identity for Chebyshev’s polynomials of the second
kind are derived and their solutions are discussed.

1 Introduction and Summary

Chebyshev’s {Sn(x) := Un(x/2)} polynomials of the second kind [10] are defined by the recurrence
relation

(R; x, n) : Sn(x) = xSn−1(x) − Sn−2(x), (1)

with S−1(x) = 0 and S0(x) = 1. Sometimes S−2(x) = −1 is also used. They satisfy the so called
Cassini-Simson identity

(C − S; x, n) : S2
n−1(x) − 1 = Sn−2(x) Sn(x) , for all n ∈ N0, x ∈ R, (2)

The ordinary generating function (o.g.f. ) is S(x; y) :=
∑∞

n=0 Sn(x) yn = 1/(1−x y +y2). Chebyshev’s
polynomials of the first kind will also appear. They satisfy (R; x, n) with offset T0(x) = 1 and T1(x) = x,
Sometimes T−1(x) = x is also used. Tn(x/2) = (Sn(x) − Sn−2(x))/2 = Sn(x) − xSn−1(x)/2 with
o.g.f. T (x/2; y) =

∑∞
n=0 Tn(x/2) yn = (1 − y x/2)S(x; y).

The (C − S; x, n) identity in combination with recurrence (R; x, n) gives rise to the following two types
of quadratic identities:
Type A: α ∈ R \ {−1, +1} , α2 + xα + 1 6= 0, x ∈ R, n ∈ N0

(A; α;x, n) : α2
n(α, x) − (x2 − 4)β2

n(α, x) = 4 (1 + α (α + x)), (3)

with

αn(α, x) := 2Tn+1

(x

2

)
+ α 2Tn

(x

2

)
,

= (2α + x) Sn(x) − (2 + α x) Sn−1(x) , (4)
βn(α, x) := Sn(x) + α Sn−1(x) . (5)
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Type B: n ∈ N0, x ∈ R

(B; x, n) :
1
2

(1 +
x

2
) γ2

n(x) +
1
2

(1 − x

2
) δ2

n(x) = 1, (6)

with

γn(x) := Sn(x) − Sn−1(x)

=
2√

2 + x
T2 n+1

(√
2 + x

2

)
= (−1)n S2n(i

√
x− 2 ) , (7)

δn(x) := Sn(x) + Sn−1(x) = S2n(
√

2 + x)
= (−1)n T2 n+1(i

√
x− 2/2)/(i

√
x− 2/2) . (8)

For α → +1, resp. α → −1, (A; α;x, n) reduces to (B; x, n) provided x 6= −2, resp. 6= +2. From
recurrence relation (R; x, n) it is clear that Sn(x) is integer for all n ∈ N0 iff x ∈ Z (in fact for n ∈ Z
because S−n(x) = −Sn−2(x)). For the diophantine analysis of the two types of quadratic identities
we restrict ourselves to x ∈ N0. Type B leads to four classes of such diophantine equations, each with
parameter p ∈ N0.

(B1; p, n) : (p + 1) γ2
n(2 (2 p + 1)) − p δ2

n(2 (2 p + 1)) = 1 , (9)
(B2; p, n) : (2 p + 1) γ2

n(4 p) − (2 p − 1) δ2
n(4 p) = 2 , (10)

(B3; p, n) : (4 p + 3) γ2
n(4 p + 1) − (4 p − 1) δ2

n(4 p + 1) = 4 , (11)
(B4; p, n) : (4 p + 5) γ2

n(4 p + 3) − (4 p + 1) δ2
n(4 p + 3) = 4 . (12)

In each case one could write a companion identity by using negative arguments, but due to Sn(−x) =
(−1)n Sn(x) this would correspond to the identity with γn and δn interchanged.
For the diophantine analysis of type A we use x ∈ N0 and put α = p/q with p ∈ Z and q ∈ N (q 6= 0).
p = ±q will also be admitted because for α → ±1 the type B identity is recovered.

(A; p, q; x, n), x ∈ N0, p ∈ Z, q ∈ N, p2 + q2 + p q x 6= 0 :
α̃2

n(p, q;x) − (x2 − 4) β̃2
n(p, q; x) = 4 (p2 + q2 + x p q) , (13)

with
α̃n(p, q;x) := q 2Tn+1

(x

2

)
+ p 2Tn

(x

2

)

= (2 p + q x)Sn(x) − (2 q + p x) Sn−1(x) , (14)
β̃n(p, q;x) := q Sn(x) + pSn−1(x) . (15)

This can be split into the even and odd x case.

(A1; p, q; k, n), p ∈ Z, q ∈ N, p2 + q2 + 2 p q k 6= 0, k ∈ N0, n ∈ N0 :
α̂2

n(p, q; k) − (k2 − 1) β̂2
n(p, q; k) = (p2 + q2 + 2 k p q) , (16)

with
α̂n(p, q; k) := α̃n(p, q; 2 k)/2 = q Tn+1(k) + p Tn(k)

= (p + q k) Sn(2 k) − (q + p k) Sn−1(2 k) , (17)
β̂n(p, q; k) := β̃n(p, q; 2 k) = q Sn(2 k) + pSn−1(2 k) , (18)
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and

(A2; p, q; k, n), p ∈ Z, q ∈ N, p2 + q2 + (2 k + 1) p q 6= 0, k ∈ N0, n ∈ N0 :
ᾱ2

n(p, q; k) − (2 k + 3) (2 k − 1) β̄2
n(p, q; k) = 4 (p2 + q2 + (2 k + 1) p q) , (19)

with

ᾱn(p, q; k) := α̃n(p, q; 2 k + 1) = q 2Tn+1

(
2 k + 1

2

)
+ p 2Tn

(
2 k + 1

2

)

= (2 p + (2 k + 1) q) Sn(2 k + 1) − (2 q + (2 k + 1) p) Sn−1(2 k + 1), (20)

β̄n(p, q; k) := β̃n(p, q; 2 k + 1) = q Sn(2 k + 1) + p Sn−1(2 k + 1) . (21)

Some special cases

a) +1 Pell equation:
x2 − (k2 − 1) y2 = +1, k = 2, 3, ... (22)

(A1; 0, q; k, n) ≡ (A1; k, n) , n ∈ N0 :

x ≡ xn(k) = α̂n(0, q; k)/q = Tn+1(k),
= k Sn(2 k) − Sn−1(2 k), (23)

y ≡ yn(k) = β̂n(0, q; k)/q = Sn(2 k) . (24)

Note 1: The same eq. is obtained from type (B1; p = k2 − 1, n) but only the solutions T2 n+1(k) and
S2n(2 k) are found this way.
Note 2: This gives the general solution (in the natural numbers) of Pell equation x2 − D y2 = +1,
for D = k2 − 1 (cf.[9], §27, p.92 ff. See also [7], p. 354, ch.7.8, Th. 7.26, with d = k2 − 1 and minimal
solution (x+, y+) = (k, 1) rewritten in terms of Chebyshev polynomials.)
Note 3: This is the generic form of Pell equation x2 − D y2 = +1 with D ∈ N, not a square. If
D 6= k2 − 1 then y+ > 1, and with the definition D̃ := y2

+ D = x2
+ − 1 and ỹ := y/y+ one has to

solve x2 − D̃ ỹ2 = +1 which is of the generic type with minimal solution (x+, ỹ+) = (x+, 1). Hence
xn = Tn+1(x+) and ỹn = Sn(2 x+), i.e. yn = y+ Sn(2x+), are the general solutions. E.g. if D = k2 + 1
then (x+, y+) = (2 k2 + 1, 2 k) with general solution xn = Tn+1(2 k2 + 1) and yn = 2 k Sn(2 (2 k2 + 1)).

b) −1 Pell equation:
x2 − (k2 + 1) y2 = −1, k ∈ N0 . (25)

(B1; p = k2; n), k ∈ N0, n ∈ N0 :

x ≡ xn(k) = k δn(2 (2 k2 + 1)) = k S2n(2
√

k2 + 1)
= k

[
Sn(2 (2 k2 + 1)) + Sn−1(2 (2 k2 + 1))

]

= (−1)n T2 n+1(i k)/i , (26)

y ≡ yn(k) = γn(2 (2 k2 + 1)) =
1√

k2 + 1
T2n+1(

√
k2 + 1 )

= Sn(2 (2 k2 + 1)) − Sn−1(2 (2 k2 + 1)),
= (−1)n S2n(i 2 k) . (27)

Note 4: This gives the general solution of Pell equation x2 − D y2 = −1, for D = k2 + 1 satisfying
the solvability criterion, namely that the regular continued fraction for

√
D has odd (primitive) period
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length. (cf.[9], §30, p.109 . For the general solution see also [7], ch.7.8, problem ∗1, p. 356, with d = k2+1
and minimal solution (x−, y−) = (k, 1) rewritten in terms of Chebyshev polynomials.)
Note 5: This is the generic form of Pell equation x2 − D y2 = −1 with D ∈ N, not a square, satsfying
the solvability criterion mentioned in Note 4. This is because for D = k2 + 1 the minimal solution is
(x−, y−) = (k, 1). If D 6= k2 + 1 satisfies the solvability criterion, then y− > 1, and with the definition
D̃ := y2−D = x2− + 1 and ỹ := y/y− one has to solve x2 − D̃ ỹ2 = −1 which is of the generic type

with minimal solution (x−, ỹ−) = (x−, 1). Hence the general solution is xn = x− S2 n(
√

x2− + 1) and

yn = y− T2 n+1(
√

x2− + 1 )/
√

x2− + 1 with n ∈ N0. E.g. D = 13 with(x−, y−) = (18, 5) and the general

solution xn = 18S2 n(10
√

13) and yn = 5T2 n +1(5
√

13)/(5
√

13). The minimal solution of Pell equation
x2 − (k2 + 1) y2 = +1 is (x+, y+) = (2 k2 + 1, 2 k) (see [9], pp.94-95, and Note 3).
Note 6: For every D which satisfies the solvability criterion mentioned in Note 4 the general (positive
integer) solution of Pell equation x2 − D y2 = −1 and x2 − D y2 = +1 can be combined into the
companion sequences [2]

xn(x−) = (−i)n+1 Tn+1(x− i) , yn(x−, y−) = y− (−i)n Sn(2x− i)

with the minimal solution (x−, y−), where y− ≥ 1, of x2 − D y2 = −1. Then {x2 n, y2 n}∞n=0, resp.
{x2 n +1, y2 n +1}∞n=0, provides the general solution for the −1 , resp. +1, Pell equation. The generating
function for the {xn}, resp. {yn}, is (x− + x)/(1 − 2x− x − x2) = (x− + x) S(2x− i;−i x) , resp.
y− S(2 x− i;−i x), with the generating function S(x; y) of Chebyshev’s Sn(x) polynomials.

c) +4 Pell equation:
x2 − (2 k + 3) (2 k − 1) y2 = +4, k ∈ N . (28)

(A2; 0, q; k, n) ≡ (A2; k, n), n ∈ N0 :

x ≡ xn(k) = α̃n(0, q; k)/q = 2Tn+1

(
2 k + 1

2

)
= Sn+1(2 k + 1) − Sn−1(2 k + 1),

= (2 k + 1) Sn(2 k + 1) − 2Sn−1(2 k + 1), (29)

y ≡ yn(k) = β̃n(0, q; k)/q = Sn(2 k + 1) = S2 k+1(
√

2 k + 3)/
√

2 k + 3 . (30)

Note 7: This gives the general solution of Pell equation x2 − D y2 = +4, for D = (2 k+3) (2 k − 1) =
8

((
k+1
2

) − 1
)

+ 5 ≡ 5(mod 8) (cf.[9], ch. 30, p.107 ff, reformulated for this type of diophantine equation
with the minimal solution (x+, y+) = (2 k + 1, 1) and rewritten in terms of Chebyshev’s polynomials .)
Note 8: This is the generic form of Pell equation x2 − D y2 = +4 with D ∈ N, not a square. Observe
that both, x and y have to be odd, hence D ≡ 1(mod 4). Otherwise there is no solution or the equation
reduces to the +1 Pell case. It is the generic equation because for D = (2 k + 3) (2 k − 1) the minimal
solution is (x+, y+) = (2 k + 1, 1). If D 6= (2 k + 3) (2 k − 1) and D ≡ 1(mod 4) then y+ > 1, and with
the definition D̃ := y2

+ D = x2
+ − 4 = (2 k+ + 1)2 − 4 = (2 k+ +3) (2 k+ − 1) and ỹ := y/y+ one has

to solve x2 − D̃ ỹ2 = +4. This is of the generic type with minimal solution (x+, ỹ+) = (2 k+ + 1, 1).
Hence the general solution is xn = 2Tn+1(x+/2) and ỹn = Sn(x+), i.e. yn = y+ Sn(x+) with n ∈ N0.
E.g. D ≡ D(k) = 4 k (k + 1) + 5 with (x+, y+) = (4 k (k + 1) + 3, 2 k + 1) and general solution
xn = 2Tn+1((D(k)− 2)/2) and yn = (2 k + 1)Sn(D(k)− 2).
Note 9: The same generic form of this Pell equation results from (B4; p = k (k + 1) − 1, n) but here
not all solutions are covered by x ≡ γn(4 k (k + 1) − 1) and y ≡ δn(4 k (k + 1) − 1).

d) −4 Pell equation:
x2 − (4 k (k + 1) + 5) y2 = −4, k ∈ N0 . (31)
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(B4; p = k (k + 1), n) , n ∈ N0 :

x ≡ xn(k) = (2 k + 1) δn(4 k (k + 1) + 3) = (2 k + 1)S2 n(
√

4 k (k + 1) + 5 )
= (2 k + 1) [Sn(4 k (k + 1) + 3) + Sn−1(4 k (k + 1) + 3)]
= −2 i (−1)n T2 n+1((2 k + 1) i/2) , (32)

y ≡ yn(k) = γn(4 k (k + 1) + 3) = T2 n+1(
√

4 k (k + 1) + 5/2)/(
√

4 k (k + 1) + 5/2)
= Sn(4 k (k + 1) + 3) − Sn−1(4 k (k + 1) + 3) ,

= (−1)n S2 n(i
√

4 k (k + 1) + 1 ) . (33)

Note 10: This gives the general solution of Pell equation x2 − D y2 = −4, for D = 4 k (k + 1) + 5
= 5(mod 8) (cf.[9], Bd. I, ch. 30, pp 107 ff, reformulated for this type of diophantine equation with the
minimal solution (x−, y−) = (2 k + 1, 1) and rewritten in terms of Chebyshev polynomials.)
Note 11: This is the generic form of Pell equation x2 − D y2 = −4 with D ∈ N, not a square. Observe
that both, x and y have to be odd, hence D ≡ 1(mod 4). Otherwise there is no solution or the equation
reduces to the −1 Pell case. The solvability criterion for this −4 Pell equation is that the (regular)
continued fraction of (

√
D + 1)/2 has odd period length [9], Satz 3.35, p.109. It is the generic equation

because if D 6= 4 k (k+1) + 5 and D ≡ 1(mod 4) satisfies this solvability criterion then y− > 1, and with
the definition D̃ := y2−D = x2− + 4 = (2 k− + 1)2 + 4 = 4 k− (k−+1) + 5) and ỹ := y/y− one has to
solve x2 − D̃ ỹ2 = −4 which is of the generic type with minimal solution (x−, ỹ−) = (2 k− + 1, 1). Hence

the general solution is xn = x− S2 n(
√

x2
+ + 4 ) and yn = y− T2 n +1(

√
x2− + 4 /2)/(

√
x2− + 4 /2) with

n ∈ N0. E.g. D = 37 with minimal solution (x−, y−) = (12, 2) and general solution xn = 12S2 n(2
√

37)
and yn = 2T2 n+1(

√
37)/

√
37 .

Note 12: For every D which satisfies the solvability criterion mentioned in Note 10 the general (positive
integer) solution of Pell equation x2 − D y2 = −4 and x2 − D y2 = +4 can be combined into the
companion sequences

xn(x−) = 2 (−i)n+1 Tn+1(x− i/2) , yn(x−, y−) = y− (−i)n Sn(x− i)

with the minimal solution (x−, y−), where y− ≥ 1, of x2 − D y2 = −4. Then {x2 n, y2 n}∞n=0, resp.
{x2 n +1, y2 n +1}∞n=0, provide the general solution for the −4 , resp. +4, Pell equation. The generat-
ing function for {xn}, resp. {yn}, is (x− + 2 x)/(1 − x− x − x2) = (x− + x) S(x− i;−i x) , resp.
y− S(x− i;−i x), with the generating function S(x, y) of Chebyshev’s Sn(x) polynomials.
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2 Derivation of the results

Proof of the Cassini-Simson identity eq. 2

Recurrence eq. 1 is related to the transfer matrix R(x) :=
(

x −1
1 0

)
with Det R(x) = 1 for all x.

This is because any recurrence of the type qn = x qn−1 − qn−2 can be rewritten as
(

qn

qn−1

)
=

R(x)
(

qn−1

qn−2

)
(whence the name transfer matrix). Rn(x) := Rn(x) obeys the recurrence Rn(x) =

R(x)Rn−1(x) with offset R0(x) := 1. Due to eq. 1 Rn(x) =
(

Sn −Sn−1

Sn−1 −Sn−2

)
satisfies this recurrence

with the correct offset (with S−2 = −1). In particular, DetRn(x) = (DetR(x))n = 1n = 1 which
is the desired Cassini-Simson identity eq. 2.
If in this identity Sn−2(x) is eliminated with the help of recurrence eq. 1 one finds the following corollary.
Corollary 1: Rewritten (C − s; x, n)

S2
n(x) + S2

n−1(x) − xSn−1(x) Sn(x) = 1. (34)

Proof of the type B and A identities

Rewrite eq. 34 as combination of two squares using parameters A,B, α, β as follows:

A (Sn(x) + α Sn−1(x))2 + B (Sn(x) + β Sn−1(x))2 = S2
n(x) + S2

n−1(x) − xSn−1(x) Sn(x) = 1 . (35)

Comparing coefficients of S2
n, S2

n−1 and Sn Sn−1 one has A + B = 1, Aα2 + B β2 = 1, and Aα + B β =
−x/2. Two cases are distinguished depending on whether α2 − β2 6= 0 or α2 − β2 = 0.
Case 1: α2 − β2 6= 0

A =
1− β2

α2 − β2
, B =

α2 − 1
α2 − β2

, (36)

and (α2 − β2) x
2 = (α β + 1) (β − α), which reduces in this case to the condition

α β + 1 + (α + β)
x

2
. (37)

Case 2: α2 − β2 = 0
Now α2 = 1, B = 1−A, and if α = β = +1, or −1, the lhs. of eq. 35 reduces to Sn(x) + Sn−1(x) = ±1
without any restriction on x. If α = +1, β = −1, then A = (1− x/2)/2, B = (1 + x/2)/2 . The case
α = −1, β = +1 is not considered because it is obtained from the latter one after interchanging A with
B. This case 2 leads thus to the identity

1
2

(1 +
x

2
) (Sn(x) − Sn−1(x))2 +

1
2

(1 − x

2
) (Sn(x) + Sn−1(x))2 = 1 . (38)

which is the type B identity, eq. 6 with eqs. 7 and 8.
The first way to rewrite γn(x) := Sn(x) − Sn−1(x), resp. δn(x) := Sn(x) + Sn−1(x), follows from bi-
secting the sequence {Sn(x)} into {S2n(x)} and {S2n+1(x)}, resp. {Tn(x)} into {T2n(x)} and {T2n+1(x)}.
For example, the o.g.f. for {S2n(x)}∞0 is (S(x;

√
y) + S(x;−√y))/2, where S(x; y) = 1/(1 − x y + y2)

is the o.g.f. for {Sn(x)}∞0 . This is (1 + y)/(1 − (x2 − 2) y + y2) = (1 + y) S(x2 − 2; y). Therefore,
S2n(x) = Sn(x2 − 2) + Sn−1(x2 − 2), or

δn(x) = S2n(
√

2 + x ) . (39)

Similarly, the o.g.f. for {T2n+1(x)}∞0 is
(
T (x/2;

√
y) − T (x/2;−√y)

)
/(2

√
y) with the o.g.f. T (x/2; y)

for {Tn(x)}∞0 . Thus, this o.g.f. is (x/2) (1− y)/(1− (x2 − 2) y + y2), whence
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T2n+1(x) = (x/2) (Sn(x2 − 2) − Sn−1(x2 − 2)), or

γn(x) =
2√

2 + x
T2n+1(

√
2 + x/2) . (40)

The identities for δn(x) and γn(x) involving pure imaginary arguments of Chebyshev’s polynomials follow
from the Binet-de Moivre representation of these polynomials, viz.

Tn(
x

2
)/

x

2
=

λn
+(x) + λn−(x)

λ+(x) + λ−(x)
with λ±(x) =

1
2

(x ±
√

x2 − 4 ) , (41)

Sn(x) =
λn+1

+ (x) − λn+1
− (x)

λ+(x) − λ−(x)
. (42)

The third eq. in γn(x), resp. δn(x), from eqs. 7, resp. 8, then results from λ±(
√

2 + x ) =
∓i λ±(i

√
x − 2 ), with correlated signs.

In case 1 (α2 − β2 6= 0) the subsidiary condition eq. 37 can be solved for β = β(α, x) =
−(1 + α x/2)/(α + x/2). α + x/2 6= 0 because otherwise x = ±2, hence α = ∓ 1, which leads to the
uninteresting result (Sn(x) ∓ Sn−1(x))2 = 1 due to eq. 34. Conversely, if α = +1 then the subsidiary
condition becomes (1 + β) (1 + x/2) because β 6= 1, x = −2 in case 1. Similarly α = −1 implies
x = +2. With α2 − β2(α, x) = (α2 − 1) (1 + α2 + α x)/(α + x/2)2 , which implies α2 − 1 6= 0 as
well as 1 + α (α + x) 6= 0, one finds

A = A(α, x) =
1 − x2

4

1 + α (α + x)
, B = B(α, x) =

(α + x
2 )2

1 + α (α + x)
. (43)

In a first step the identity in α, x and n (α 6= ±1, 1 + α2 + α x 6= 0)

(1 − x2

4
) β2

n(α, x) + (α +
x2

4
)2 a2

n(α, x) = 1 + α (α + x) (44)

ensues with

βn(α, x) := Sn(x) + α Sn−1(x) , (45)

an(α, x) := Sn(x) − 1 + α x/2
α + x/2

Sn−1(x) . (46)

With the redefinition αn(α, x) := (2α + x) an(α, x) = (2α + x) Sn(x) − (2 + α x) Sn−1(x) this
coincides with the desired type A identity, eqs. 3 - 5. α + x/2 6= 0 has been assumed.
With the help of the Sn recurrence relation eq. 1, αn(α, x) can be rewritten as

αn(α, x) = α (2Sn(x) − x Sn−1(x)) + (−2Sn−1(x) + xSn(x))
= α (Sn(x) − Sn−2(x)) + (Sn+1(x)− Sn−1(x))

= 2
(
α Tn(

x

2
) + Tn+1(

x

2
)
)

. (47)

This proves eq. 4.
Note 13: If one sends α → ±1 in the type A identity eqs. 3 - 5 then (A; α → 1;x, n) ≡ (B; x, n) with
βn(1, x) = δn(x) and αn(1, x) = (2 + x) γn(x) for x 6= −2, and (A; α → −1;x, n) ≡ (B; x, n) with
βn(−1, x) = γn(x) and αn(−1, x) = (x − 2) δn(x) for x 6= +2.
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Diophantine analysis

For the diophantine properties of the type A or type B identities we restrict ourselves to integer values of
x. Recurrence eq. 1 then guarantees that Sn(x) is integer for all n ∈ Z. It is sufficient to consider n ∈ N0

because S−n(x) = Sn−2(x) which implies γ−n(x) = +γn−1(x), δ−n(x) = −δn−1(x) and α−n(α, x) =
α αn−1(1/α, x), β−n(α, x) = −α βn−1(1/α, x) if α 6= 0, and α−n(0, x) = +αn−2(0, x), β−n(0, x) =
−βn−2(0, x). Therefore, negative n corresponds to a relabelling n → n−1 in type B and n → n−2 when
α = 0. If α 6= 0 in type A then negative n is covered by changing n → n− 1 and α → 1/α.
It is also sufficient to consider only non-negative x because due to recurrence eq. 1 Sn(−x) = (−1)n Sn(x)
which implies γn(−x) = (−1)n δn(x) , δn(−x) = (−1)n γn(x), and αn(α,−x) = (−1)n+1 αn(−α, x) ,
βn(α,−x) = (−1)n βn(−α, x). Therefore, negative x is equivalent to a change of α → −α in type A
identities.
This explains why we consider in the following only n ∈ N0 and x = l ∈ N0.
Type B: eqs. 9 to 12

Depending on the congruence class of x = l ∈ N0 modulo 4, eq. 6 turns into the eqs. 9 to 10. For
example, if x = l ≡ 2 (mod4), i.e. l = 2 (2 p + 1), p ∈ N0, eq. 6 turns into eq. 9 . In each case p ∈ N0

and in eqs. 7 and 8 the x values have to be chosen according to their congruence class.
Type A: eqs. 13 to 15

In this case we take a rational parameter α = p/q with p ∈ Z and q ∈ N (q 6= 0), and p 6= ±q. For the
limit p → ±q, in which type B is reached, see Note 13. The change α → 1/α, which is needed because
of our restriction to n ∈ N, is accomplished by the interchange p ↔ −q , and the sign change α → −α,
needed because of the x ≥ 0 restriction, corresponds to the sign change p → −p.
For α = p/q and x ∈ N0 eqs. 3 to 5 become eqs. 13 to 15 with the new quantities α̃(p, q; x) :=
q αn(p/q, x) resp. β̃(p, q; x) := q βn(p/q, x). These are just eqs. 14 resp. 15
Note 14: From the derivation it is not clear that in every case all solutions are covered. See, for example,
Note 1. In the four Pell cases it turned out that in fact all solutions were found. For other cases one
should compare the given Chebyshev solutions with the ones obtained from all fundamental solutions.
The general theory of (indefinite) binary quadratic forms is given in [1]. An English translation of
Gauss’ classical work on this subject is [3]. Chapter 6 of [4] covers this topic as well. Another systematic
treatment of these forms can be found in [12]. In Mathematica 5 [6], section 3.4.9, one finds an explanation
of the Reduce command which helps to find all fundamental solutions of diophantine binary quadratic
eqs. The reader may also try the author’s Maple 9 [5] program [8], based on the reduction of indefinite
forms found in [12], to find all fundamental solutions together with the first few derived ones. See also
the web page Diophantine Equation–2nd Powers [14] where more refs. can be found. See also [11] for
Pell-equations which represent N .
Note 15: Many instances of sequence pairs {xn, yn} treated in this paper can be found in [13]. See the
four tables with some A− numbers for the generic Pell equations considered above.
Note 16: It is clear that other orthogonal polynomial systems, which also satify a Cassini-Simson
type identity, will produce diophantine solutions. However, as was demonstrated above, Chebyshev’s
polynomials provide already all solutions to the standard Pell eqs.
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TAB. 1: +1 Pell Equations for generic D: x2 − Dy2 = +1

D = k2 − 1, from OEIS A005563, [3,8,15,24,35,48,63,80,99,120,143,168,195,224]

D A-number of A-number of
x−sequence y−sequence

3 A001075 A001353

8 A001541 A001109

15 A001091 A001090

24 A001079 A004189

35 A023038 A097308

48 A011943 A057655

63 A001081 A077412

80 A023039 A049660

99 A001085 A075843

120 A077422 A077421

143 A077424 A077423

168 A097308 A0973089

195 A097310 A097311

224 A097312 A097313
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TAB. 2: −1 Pell Equations for generic D: x2 − Dy2 = −1

D = k2 + 1, from OEIS A002522, [2,5,10,17,26,37,50∗,65,82,101,122,145,170,197]

D A-number of A-number of
x−sequence y−sequence

2 A002315 A001653

5 A075796 A007805

10 A097314 A097315

17 A097723 A097724

26 A097726 A0977277

37 A097729 A097730

50∗ A097732 A097733

65 A097735 A097736

82 A097738 A097738

101 A097741 A097742

122 A097766 A097767

145 A097769 A097770

170 A097772 A097773

197 A097775 A097776

∗ not square-free.
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TAB. 3: +4 Pell Equations for generic D: x2 − Dy2 = +4

D = (2k + 3) (2k − 1), from OEIS A078371,
[5,21,45∗,77,117∗,165,221,285,357,437,525∗,621∗,725∗,837∗]

D A-number of A-number of
x−sequence y−sequence

5 A005248 A001906

21 A003501 A004254

45∗ A056854 A004187

77 A056918 A018913

117∗ A057076 A004190

165 A078363 A078362

221 A078365 A078364

285 A078367 A078366

357 A078369 A078368

437 A097777 A092499

525∗ A09779 A09778

621∗ A090733 A097780

725∗ A090248 A09778

837∗ A090251 A097782

∗ not square-free. 12



TAB. 4: −4 Pell Equations for generic D: x2 − Dy2 = −4

D = (4k (k + 1) + 5), from OEIS A078370,
[5,13,29,53,85,125∗,173,229,293,365,445,533,629,733]

D A-number of A-number of
x−sequence y−sequence

5 A002878 A001519

13 3 ·A097783 A078922

29 5 ·A097834 A097835

53 7 ·A097837 A097838

85 9 ·A097840 A097841

125∗ 11 ·A097842 A097843

173 13 ·A097845 A098244

229 15 ·A098246 A098247

293 17 ·A098249 A098250

365 19 ·A098252 A098253

445 21 ·A098255 *A098256

533 23 ·A098258 A098259

629 25 ·A098261 A098262

733 27 ·A098291 A098292

∗ not square-free. 13


