

Moderne Physik für Informatiker

Vorlesung: PD. Dr. S. Gieseke – Übung: Dr. M. Sekulla

Übungsblatt 2

Besprechung: Di, 09.05.2015

Aufgabe 5: Bahn-/Raumkurven

(a) Eine Raumkurve werde durch die Parameterdarstellung

$$\vec{r}(t) = (a\cos(\omega t), b\sin(\omega t)),$$

mit a, b > 0 beschrieben. Skizzieren Sie die Kurve $\vec{r}(t)$.

(b) Eine Raumkurve werde nun durch die Parameterdarstellung

$$\vec{r}(t) = (a\cos(\omega t), a\sin(\omega t), ct),$$

mit a, c > 0 beschrieben.

- (i) Skizzieren Sie die Kurve.
- (ii) Wie groß ist der Abstand $h = z_2 z_1$ zweier in z-Richtung direkt übereinanderliegender Punkte $(a, 0, z_1)$ und $(a, 0, z_2)$, wobei $z_2 > z_1$?
- (c) Es sei nun der Ortsvektor $\vec{r}(t)$ eines Teilchens auf einer Kreisbahn mit konstanter Winkelgeschwindigkeit ω durch

$$\vec{r}(t) = (r\cos(\omega t), r\sin(\omega t), 0)$$

gegeben.

- (i) Berechnen Sie den Geschwindigkeitsvektor $\vec{v}(t) = \dot{\vec{r}}(t)$ und den Beschleunigunsvektor $\vec{a}(t) = \dot{\vec{v}}(t) = \ddot{\vec{r}}(t)$.
- (ii) Skizzieren Sie die Kreisbahn des Teilchens und diskutieren Sie, in welche Richtung $\vec{r}(t)$, $\vec{v}(t)$ und $\vec{a}(t)$ relativ zum Bahnverlauf zeigen.
- (iii) Nehmen Sie nun an, das Teilchen sei ein Satellit der Masse m_s und umkreise die Erde, mit Masse M_E , in einer Entfernung r_s . Berechnen Sie dessen Geschwindigkeit $v = |\vec{v}|$, wobei für die Gravitationskraft gilt $\vec{F} = -Gm_sM_E\vec{r}/r^3$ und G die Newton'sche Gravitationskonstante bezeichnet.

Anmerkung: ω bezeichnet die sog. Kreisfrequenz (oder auch Winkelgeschwindigkeit), t bezeichnet die Zeit. Die Periodendauer T einer Kreisbewegung, wenn eine Umdrehung vollendet ist, ist gegeben durch $T=2\pi/\omega$.

Aufgabe 6: Bewegungsgleichungen (Wurf eines Balles)

Betrachten Sie den Wurf eines Balles mit der Masse m im konstanten Gravitationsfeld, d.h. eine Bewegung beschrieben durch die Bewegungsgleichung

$$m\frac{d^2\vec{r}(t)}{dt^2} = \vec{F} = -mg\vec{e}_z$$

mit den Anfangsbedingungen $\vec{r}(t=0)=(0,0,0)$ und $\vec{v}(t=0)=(v\cos\alpha,0,v\sin\alpha)$, wobei α den anfänglichen Wurfwinkel bezeichnet und $g\approx 9.81~\text{m/s}^2$ die Erdbeschleunigung.

- (a) Bestimmen Sie die Form der Bahnkurve, indem Sie die Bewegungsgleichung unter Benutzung der Anfangsbedingungen integrieren, und berechnen Sie dadurch $\vec{r}(t)$ (am besten Komponentenweise).
 - (i) Welche Form haben x(t) und z(t)?
 - (ii) Drücken Sie dann z in Abhängigkeit von x aus. Welcher Form entspricht z(x)?
- (b) Bei welchem anfänglichen Winkel α_{max} erreicht man die maximale Wurfdistanz x_{max} ?

Hinweis: Hierfür muss zunächst die Zeit $t_{\rm fin}$ berechnet werden, wobei $z(t_{\rm fin})=0$, welche eingesetzt in x(t) eine Gleichung für $x(\alpha)$ ergibt. Für ein bestimmtes $\alpha_{\rm max}$ erreicht $x(\alpha)$ ein Maximum $x_{\rm max}$.

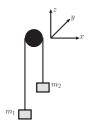
Aufgabe 7: Atwood'sche Fallmaschine

Im dreidimensionalen Raum im Schwerefeld (g) ist am Ursprung eine frei drehbare Rolle befestigt. Über diese läuft eine Schnur mit fester Länge l, die zwei Massen m_1 (z_1) und m_2 (z_2) verbindet, die sich in nur z-Richtung frei bewegen können. Somit können Sie die x- und y-Richtung vernachlässigen.

- (a) (i) Welche Zwangsbedingungen gibt es? Finden Sie passende generalisierte Koordinaten für die verbleibenden Freiheitsgrade.
- (b) Stellen Sie die Lagrange-Funktion auf, indem Sie zuvor folgende Schritte ausführen:
 - (i) Beginnen Sie mit dem Potential V des Gesamtsystems (beide Massen). Das Potentials einer Masse m im Schwerefeld ist gegeben durch

$$V = -mqz$$
.

- (ii) Berechnen Sie nun die kinetische Gesamtenergie T des Systems.
- (c) Bestimmen Sie nun die Bewegungsgleichungen mit Hilfe der Euler-Lagrange-Gleichungen.



https://www.itp.kit.edu/courses/ss2017/mpfi