

QCD and Collider Physics

Dieter Zeppenfeld Lecture supporting slides summer 2018

KIT Center Elementary Particle and Astroparticle Physics - KCETA

Hadron collider basics

To study the deepest layers of matter,

we need the probes with highest energies.

 $p = h/\lambda$

Two parameters of importance:

1. The energy: $\vec{p_1} = \vec{p_2}$ $s \equiv (p_1 + p_2)^2 = \begin{cases} (E_1 + E_2)^2 & \text{in the c.m. frame } \vec{p_1} + \vec{p_2} = 0, \\ m_1^2 + m_2^2 + 2(E_1E_2 - \vec{p_1} \cdot \vec{p_2}). \end{cases}$ $E_{cm} \equiv \sqrt{s} \approx \begin{cases} 2E_1 \approx 2E_2 & \text{in the c.m. frame } \vec{p_1} + \vec{p_2} = 0, \\ \sqrt{2E_1m_2} & \text{in the fixed target frame } \vec{p_2} = 0. \end{cases}$

Hadron collider at 14 TeV = cosmic rays at 100.000 TeV = 10^8 GeV = 10^{17} eV

2. The luminosity:

$\mathcal{L} \propto f n_1 n_2 / a$,

(a some beam transverse profile) in units of #particles/cm²/s $\Rightarrow 10^{33} \text{ cm}^{-2}\text{s}^{-1} = 1 \text{ nb}^{-1} \text{ s}^{-1} \approx 10 \text{ fb}^{-1}/\text{year}.$

Tevatron and LHC

Karlsruher Institut für Technologie

LHC precursor: Tevatron, $p\bar{p}$ collisions at $\sqrt{s} = 1.96 \text{ TeV}$ $\mathcal{L} \approx 2 - 3 \times 10^{32} \text{ cm}^{-2} \text{sec}^{-1} \leftrightarrow 2 - 3 \text{fb}^{-1}/\text{year}$ LHC, designed for pp collisions at $\sqrt{s} = 14 \text{ TeV}$ $\mathcal{L} \approx 10^{33} - 10^{34} \text{ cm}^{-2} \text{sec}^{-1} \leftrightarrow 10 - 100 \text{fb}^{-1}/\text{year}$ lower energy and luminosity at beginning: $\sqrt{s} = 7 + 8 \text{ TeV}$ and $\int \mathcal{L}dt \approx 5 + 20 \text{ fb}^{-1}$ in 2011/12 Run I $\sqrt{s} = 13 \text{ TeV}$ and $\int \mathcal{L}dt \approx 3 + > 20 \text{ fb}^{-1}$ in 2015/16 Beginning of Run II

Advantage: available energy is much larger than at e^+e^- colliders

• *tī* pairs could not be produced at LEP...

Disadvantage: protons are composite \Longrightarrow

- hard scattering is between partons = quarks, anti-quarks, gluons
- useful energy = $\sqrt{\hat{s}}$ of partons $<<\sqrt{s}$
- proton-(anti)proton cross section is large
 σ_{tot}(pp̄) ≈ 100 mb ≥ 10¹¹ times new physics cross sections
 ⇒ Must understand patterns of SM and new physics processes to identify something new

CMS Integrated Luminosity, pp

2016 LHC physics lectures at UNSAM

Dieter Zeppenfeld

The LHC is housed about 100 m underground in a 27 km circumference tunnel straddling the French-Swiss border

Experiments at the LHC

Collisions take place in four experiments

- ATLAS and CMS are general purpose detectors aiming at study of all hard interactions
- LHCb looks for B-mesons and baryons produced in the forward direction
- ALICE is a detector designed for the extremely high particle numbers produced in heavy ion collisions

What to look for at the LHC?

- Jet production = elastic parton-parton scattering
- Top Quarks
- Electroweak gauge bosons: W and Z
- Higgs production and decay
- Combinations of the above
- Evidence for beyond the SM physics
 - Supersymmetry
 - non-standard electroweak interactions
 - extra gauge bosons and more

Expected cross sections in pp collisions

Signatures for processes

W production

decay to leptons and neutrinos: $W^{\pm} \rightarrow l^{\pm} v$

Higgs production

decay to pair of photons: $H \rightarrow \gamma \gamma$

decay to Z boson pair: $H \rightarrow ZZ \rightarrow e^+e^- \mu^+\mu^-$

Top quark

decay to Wb

Quarks and gluons

very energetic partons manifest as jets of hadrons (pions, nucleons, kaons etc.)

 Distinguish electron, muon, photon, pion etc. and measure their four-momenta

Detecting hadrons, leptons and photons

What we "see" as particles in the detector: (a few meters)

For a relativistic particle, the travel distance:

$$d = (\beta c\tau)\gamma \approx (300 \ \mu m)(\frac{\tau}{10^{-12} \ s}) \ \gamma$$

- stable particles directly "seen":
- quasi-stable particles of a life-time $\tau \ge 10^{-10}$ s also directly "seen": $n, \Lambda, K_L^0, ..., \mu^{\pm}, \pi^{\pm}, K^{\pm}...$

 $p, \bar{p}, e^{\pm}, \gamma$

 a life-time τ ~ 10⁻¹² s may display a secondary decay vertex, "vertex-tagged particles":

$$B^{0,\pm}, D^{0,\pm}, \tau^{\pm}...$$

- short-lived not "directly seen", but "reconstructable": $\pi^0, \ \rho^{0,\pm}..., \ Z, W^{\pm}, t, H...$
- missing particles are weakly-interacting and neutral:

 $\nu, \ \tilde{\chi}^0, G_{KK}...$

Basic concept of a general purpose detector

† For stable and quasi-stable particles of a life-time $\tau \ge 10^{-10} - 10^{-12}$ s, they show up as

Charge identification and momentum resolution

Theorists should know:

For charged tracks : $\Delta p/p \propto p$, typical resolution : $\sim p/(10^4 \ GeV)$. For calorimetry : $\Delta E/E \propto \frac{1}{\sqrt{E}}$, typical resolution : $\sim (5 - 80\%)/\sqrt{E}$.

Typical resolution: $d_0 \sim 30 - 50 \ \mu m$ or so

 \Rightarrow need at least two charged tracks, that are not colinear. For theorists: just multiply a "tagging efficiency" $\epsilon_b \sim 40 - 60\%$ or so.

Short lived and "invisible" particles:

† For short-lived particles: $\tau < 10^{-12}$ s or so, make use of kinematics to reconstruct the resonance.

† For missing particles:

make use of energy-momentum conservation to deduce their existence. (or transverse direction only for hadron colliders.)

$$p_1^i + p_2^i = \sum_f^{obs.} p_f + p_{miss}.$$

But in hadron collisions, the longitudinal momenta unkown:

$$0 = \sum_{f}^{obs.} \vec{p}_{f T} + \vec{p}_{miss T}.$$

Cartoon of a general purpose detector

Layout of the CMS detector

Components of the ATLAS detector

Differential cross sections for hadronic collisions and QCD as a quantum field theory