QCD and Collider Physics

Dieter Zeppenfeld
Lecture supporting slides summer 2018
Hadron collider basics

To study the deepest layers of matter, we need the probes with highest energies.

Two parameters of importance:

1. The energy:

 \[
 s \equiv (p_1 + p_2)^2 = \begin{cases}
 (E_1 + E_2)^2 & \text{in the c.m. frame } \vec{p}_1 + \vec{p}_2 = 0, \\
 m_1^2 + m_2^2 + 2(E_1E_2 - \vec{p}_1 \cdot \vec{p}_2) & \text{in the fixed target frame } \vec{p}_2 = 0.
 \end{cases}
 \]

 \[
 E_{cm} \equiv \sqrt{s} \approx \begin{cases}
 2E_1 \approx 2E_2 & \text{in the c.m. frame } \vec{p}_1 + \vec{p}_2 = 0, \\
 \sqrt{2E_1m_2} & \text{in the fixed target frame } \vec{p}_2 = 0.
 \end{cases}
 \]

2. The luminosity:

 Colliding beam

 \[
 \mathcal{L} \propto f n_1 n_2 / a,
 \]

 \((a \text{ some beam transverse profile}) \) in units of \#particles/cm\(^2\)/s

 \(\Rightarrow 10^{33} \text{ cm}^{-2}\text{s}^{-1} = 1 \text{ nb}^{-1}\text{ s}^{-1} \approx 10 \text{ fb}^{-1}/\text{year}. \)

 \[p = h/\lambda \]

Hadron collider at 14 TeV =

cosmic rays at 100,000 TeV

=10\(^8\) GeV = 10\(^{17}\) eV
Tevatron and LHC

LHC precursor: Tevatron, $p\bar{p}$ collisions at
$$\sqrt{s} = 1.96 \text{ TeV} \quad \mathcal{L} \approx 2 - 3 \times 10^{32} \text{ cm}^{-2}\text{sec}^{-1} \leftrightarrow 2 - 3 \text{ fb}^{-1}/\text{year}$$

LHC, designed for pp collisions at
$$\sqrt{s} = 14 \text{ TeV} \quad \mathcal{L} \approx 10^{33} - 10^{34} \text{ cm}^{-2}\text{sec}^{-1} \leftrightarrow 10 - 100 \text{ fb}^{-1}/\text{year}$$

lower energy and luminosity at beginning:
$$\sqrt{s} = 7 + 8 \text{ TeV and } \int \mathcal{L} dt \approx 5 + 20 \text{ fb}^{-1} \text{ in 2011/12} \quad \text{Run I}$$
$$\sqrt{s} = 13 \text{ TeV and } \int \mathcal{L} dt \approx 3 + > 20 \text{ fb}^{-1} \text{ in 2015/16} \quad \text{Beginning of Run II}$$

Advantage: available energy is much larger than at e^+e^- colliders

- $t\bar{t}$ pairs could not be produced at LEP...

Disadvantage: protons are composite

- hard scattering is between
 partons = quarks, anti-quarks, gluons

- useful energy = $\sqrt{\hat{s}}$ of partons $<< \sqrt{s}$

- proton-(anti)proton cross section is large
 $$\sigma_{tot}(p\bar{p}) \approx 100 \text{ mb} \geq 10^{11} \text{ times new physics cross sections}$$
 $$\implies$$ Must understand patterns of SM and new physics processes to identify something new
CMS Integrated Luminosity, pp

Data included from 2010-03-30 11:22 to 2017-11-10 14:09 UTC

- 2010, 7 TeV, 45.0 fb\(^{-1}\)
- 2011, 7 TeV, 6.1 fb\(^{-1}\)
- 2012, 8 TeV, 23.3 fb\(^{-1}\)
- 2015, 13 TeV, 4.2 fb\(^{-1}\)
- 2016, 13 TeV, 40.8 fb\(^{-1}\)
- 2017, 13 TeV, 51.0 fb\(^{-1}\)
The LHC is housed about 100 m underground in a 27 km circumference tunnel straddling the French-Swiss border.
Experiments at the LHC

Collisions take place in four experiments

- **ATLAS** and **CMS** are general purpose detectors aiming at study of all hard interactions
- **LHCb** looks for B-mesons and baryons produced in the forward direction
- **ALICE** is a detector designed for the extremely high particle numbers produced in heavy ion collisions
What to look for at the LHC?

- Jet production = elastic parton-parton scattering
- Top Quarks
- Electroweak gauge bosons: W and Z
- Higgs production and decay
- Combinations of the above
- Evidence for beyond the SM physics
 - Supersymmetry
 - non-standard electroweak interactions
 - extra gauge bosons and more
Expected cross sections in pp collisions
Signatures for processes

- **W production**

 decay to leptons and neutrinos: \(W^\pm \rightarrow l^\pm \nu \)

- **Higgs production**

 decay to pair of photons: \(H \rightarrow \gamma \gamma \)

 decay to Z boson pair: \(H \rightarrow ZZ \rightarrow e^+e^- \mu^+\mu^- \)

- **Top quark**

 decay to Wb

- **Quarks and gluons**

 very energetic partons manifest as jets of hadrons
 (pions, nucleons, kaons etc.)

 ➔ **Distinguish electron, muon, photon, pion etc.**

 and measure their four-momenta
Detecting hadrons, leptons and photons

What we “see” as particles in the detector: (a few meters)

For a relativistic particle, the travel distance:

\[d = (\beta c \tau) \gamma \approx (300 \ \mu m) \left(\frac{\tau}{10^{-12} \text{s}}\right) \gamma \]

- **stable particles** directly “seen”:
 \[p, \ \bar{p}, \ e^\pm, \ \gamma \]
- **quasi-stable particles** of a life-time \(\tau \geq 10^{-10} \text{s} \) also directly “seen”:
 \[n, \Lambda, K_L^0, ..., \mu^\pm, \pi^\pm, K^\pm, ... \]
- a life-time \(\tau \sim 10^{-12} \text{s} \) may display a secondary decay vertex, “vertex-tagged particles”:
 \[B^{0,\pm}, \ D^{0,\pm}, \ \tau^{\pm}, ... \]
- **short-lived** not “directly seen”, but “reconstructable”:
 \[\pi^0, \ \rho^{0,\pm}, \ Z, W^\pm, t, H, ... \]
- **missing particles** are weakly-interacting and neutral:
 \[\nu, \ \tilde{\chi}^0, G_{KK}, ... \]
Basic concept of a general purpose detector
† For stable and quasi-stable particles of a life-time $\tau \geq 10^{-10} - 10^{-12}$ s, they show up as

![Diagram showing different particle detection regions in a particle detector](image-url)
Charge identification and momentum resolution

A closer look:

Theorists should know:

For charged tracks: \(\Delta p/p \propto p \),

\[\text{typical resolution: } \sim \frac{p}{(10^4 \text{ GeV})}. \]

For calorimetry: \(\Delta E/E \propto \frac{1}{\sqrt{E}} \),

\[\text{typical resolution: } \sim \frac{(5-80\%)}{\sqrt{E}}. \]
† For vertex-tagged particles $\tau \approx 10^{-12}$ s, heavy flavor tagging: the secondary vertex:

Typical resolution: $d_0 \sim 30 - 50 \mu m$ or so

\Rightarrow need at least two charged tracks, that are not colinear.

For theorists: just multiply a “tagging efficiency” $\epsilon_b \sim 40 - 60\%$ or so.
Short lived and "invisible" particles:

† For short-lived particles: $\tau < 10^{-12}$ s or so, make use of kinematics to reconstruct the resonance.

† For missing particles: make use of energy-momentum conservation to deduce their existence. (or transverse direction only for hadron colliders.)

\[p_1^i + p_2^i = \sum_f p_f + p_{\text{miss}}. \]

But in hadron collisions, the longitudinal momenta unkown:

\[0 = \sum_f \vec{p}_f T + \vec{p}_{\text{miss}} T. \]
Cartoon of a general purpose detector
Layout of the CMS detector

Total Weight: 14,500 t.
Overall diameter: 14.60 m
Overall length: 21.60 m
Magnetic field: 4 Tesla
Components of the ATLAS detector
Differential cross sections for hadronic collisions
.... and QCD as a quantum field theory