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Chapter 1

Motivation to look beyond the SM

The standard model of particle physics (SM) is very successful and experimentally well con�rmed. How-
ever, some questions can't be addressed within the SM.

1.1 Observations

1.1.1 Dark Matter

The energy budget of the universe is well known today:

Visible Matter 0.03% Heavy Elements

0.3% Neutrinos

0.5% Starts

4 % Free hydrogen and helium

Dark Matter 25 % Weakly interacting new particle (WIMP)?

Dark Energy 70% ???

⇒ The SM can only explain 4.9% of the entire energy in the universe

1.1.2 Baryon Asymmetry

We don't see any anti-matter in the observable universe. However, the Big Bang should have produced
equal amounts of matter and anti-matter, i.e. the asymmetry must have been introduced later.
In general: one needs interactions which violate CP (charge-parity) to break the symmetry between mat-
ter and anti-matter.

⇒ The amount of CP violation in the SM is too small to explain the observed matter�anti-matter
asymmetry
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Motivation to look beyond the SM

1.2 Experimental deviations

Not all experiments are in perfect agreement with the SM. In some observables, a sizeable deviation was
found

Anomalous magnetic dipole moment

The magnetic momentum of an elementary particle is given by

mS = −gµBS
~

(1.1)

µB : Bohr magneton; S: Spin
The g factor is predicted to be 2 by Dirac's theory, but higher order e�ects change this.:

Anomalous magnetic moment a =
g − 2

2
(1.2)

The anomalous magnetic moments are among the best measured and most precisely calculated observ-
ables:

aSM
µ = 0.001 165 918 04 (51) (1.3)

aexp
µ = 0.001 165 920 9(6) (1.4)

⇒ There is a 3.5 σ deviation between the measured anomalous magnetic moment of the myon
and the SM prediction

1.3 Theoretical Issues

1.3.1 Gauge coupling uni�cation

The coupling strength between particles is an energy dependent quantity. The energy dependence is
described by the renormalisation group equations (RGEs). For the three gauge couplings of the SM one
�nds the following behaviour:

4 6 8 10 12 14 16
log(Q/GeV)

20

30

40

50

60

α-1

α1

α2

α3

⇒ The gauge couplings in the SM don't unify. However, a grand uni�ed theory (GUT) like SO(10)
or SU(5) predict such an uni�cation.

It's not possible to embed the SM in a GUT theory without introducing new matter. It's not clear at
which scale the new particles come into play. However, the lighter they are, the bigger their impact is:
less particles are needed in low-scale BSM models.
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1.4. WHY SUPERSYMMETRY?

1.3.2 Hierarchy problem

The Higgs particle is the only fundamental scalar in the SM. While fermion and vector boson masses are
protected by symmetries (chiral and gauge symmetries) against large radiative corrections, the masses of
scalars don't have such a protection mechanism. Therefore, the observable mass is given by

m2,obs = m2,Tree + δm2 (1.5)

' m2,Tree + Λ2 (1.6)

where m2,Tree is the mass parameter in the Lagrangian and Λ is the scale of new physics. We know that
(at least) one scale exists at which new interactions come into play: the Planck scale (MP ∼ 1018 GeV)
at which gravity becomes important.

︸ ︷︷ ︸
m2,exp

H

=

︸ ︷︷ ︸
m2,Tree

H

+

︸ ︷︷ ︸
∼Λ2

(1.7)

⇒ The SM has no natural explanation why the observed Higgs mass is ∼ 125 GeV, but it demands
a cancellation of 32 digits between unrelated parameters.

1.4 Why supersymmetry?

Supersymmetry (SUSY) provides possible explanations for all these questions:

• New Particles can form the DM

• New sources of CP violation to generate the Baryon asymmetry

• New loop contributions to aµ

• Changes the running of gauge couplings → Uni�cation!

• The Higgs mass is protected by the new symmetry and naturally light

Because of these reasons, minimal supersymmetry was for a long time the top candidate for an extensions
of the SM. However, with the negative searches at LHC the picture is changing: heavier SUSY masses
introduce a new (small) hierarchy problem in the theory. Nevertheless:

• Other bene�ts of SUSY (dark matter, gauge coupling uni�cation, CP violation) are hardly a�ected

• The corrections to the Higgs mass are only logarithmic dependent on the SUSY scale, not quadratic
as in the SM alone
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Motivation to look beyond the SM

• There are still unexplored corners in which light SUSY particles are possible within minimal super-
symmetry

• There is an increasing interest in non-minimal SUSY models which avoid the small hierarchy prob-
lem
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Chapter 2

Basics

2.1 Notations and conventions

• Natural units (formally ~ = c = 1) are used everywhere.

• Lorentz indices are always denoted by Greek characters, µ, ν, .. = 0, 1, 2, 3.

• Four-vectors for space�time coordinates and particle momenta are written as

x = (xµ) = (x0, ~x), x0 = t ,

p = (pµ) = (p0, ~p ), p0 = E =
√
~p 2 +m2 .

• Co- and Contravariant vectors are related by

aµ = gµν a
ν ,

with the metric tensor

(gµν) =


1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1


• The 4-dimensional scalar product is

a2 = gµν a
µaν = aµa

µ, a · b = aµb
µ = a0b0 − ~a ·~b .

• Covariant and contravariant components of the derivatives are written as

∂µ =
∂

∂xµ
= gµν ∂

ν , ∂ν =
∂

∂xν
[ ∂0 = ∂0, ∂k = −∂k ] ,

� = ∂µ∂
µ =

∂2

∂t2
−∆ .
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Basics

2.2 Group Theory

2.2.1 Axioms

A collection of elements gi form a group if the following conditions are ful�lled:

a) Closure under a multiplication operator; i.e., if gi and gj are members of the group, then gi · gj is
also a member of the group

b) Associativity under multiplication; i.e.

gi · (gj · gk) = (gi · gj) · gk (2.1)

c) An identity element; i.e., there exist an element 1 such that

1 · gi = gi · 1 = gi (2.2)

d) An inverse; i.e. every element gi has an element g−1
i such that

gi · g−1
i = 1 (2.3)

2.2.2 Lie Groups

2.2.2.1 De�nition

Lie Groups are both groups and di�erentiable manifolds.

Any group element continuously connected to the identity can be written

U = eiΘaT
a

(2.4)

where the Θa is a real parameter and the T a are the group generators, which live in the Lie
Algebra.

The generators T a , which generate in�nitesimal group transformations, form the Lie Algebra.

The Lie algebra is de�ned by its commutation relations

[T a, T b] = ifabcTc (2.5)

where fabc are known as the structure constants.

By de�nition they are antitsymmetric

fabc = −facb (2.6)

We are interested in so called semi-simple Lie groups as SU(N) and SO(N). We focus in the following
on SU(N). These groups preserve a complex inner product. Finite dimensional representations of semi-
simple Lie algebras are always Hermitian, so one can build quantum theories which are unitarity based
on such algebras. The complex inner product is

U†U = 1 (2.7)
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2.2. GROUP THEORY

de�ned on N dimensional complex vector spaces, for U(N). Note that in all cases we can write U(N) =
SU(N)× U(1) where the U(1) represents an overall phase. There are N2 − 1 generators for SU(N). To
see this, let us write the identity in�nitesimally as

0 =1− e0 (2.8)

=1− e[iΘaTa+(iΘaTa)†] (2.9)

=1− (1 + iΘaTa)(1− iΘaT
†
a ) (2.10)

=− iΘa(T †)a + iΘaTa (2.11)

⇒ T =T † (2.12)

so we can count the generators by counting N ×N Hermitian matrices. Such matrices have 1
2N(N − 1)

imaginary components and 1
2N(N + 1) real components, but then we subtract the identity matrix, which

just generates U(1). Thus, we �nd for the number of generators

#(Ta) =
1

2
N(N − 1) +

1

2
N(N + 1)− 1 = N2 − 1 (2.13)

2.2.2.2 Representations

The groups and algebras discussed above are abstract mathematical objects. We want to have these
groups act on quantum states and �elds, which are vectors, so we need to represent the groups as
matrices. There are an in�nite number of di�erent representations for a given simple group. However,
there are two obvious and most important representations, which occur most often in physics settings.
They are

a) the fundamental representations

b) the adjoint representations

The fundamental representation is the representation de�ning SU(N) and SO(N) as N × N
matrices acting on N dimensional vectors. To write the fundamental formally, we say that N
�elds transform under it as

φi → φi + iαa(T af )jiφj (2.14)

where i = 1, . . . , N , a = 1, . . . N2 − 1 and the αa are real numbers. The complex conjugate �elds
transform in the anti-fundamental f , which is just the conjugate of this

φ∗i → φ∗i − iαa(T a∗f )jiφ
∗
j (2.15)

Since T af are Hermitian, we have Tf = (Tf )∗.
The normalisation of generators is arbitrary and is usually chosen so that

TrT af T
b
f =

1

2
δab (2.16)

The other important representation is the adjoint. The point is to think of the generators them-
selves as the vectors. Thus, the generators are

(T aadj)
b
c = −ifabc (2.17)
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Basics

How can we see that the Tadj actually satisfy the Lie algebra, and thus are really a representation? This
is given immediately by the Jacobi identity

[A, [B,C]] + [B, [C,A]] + [C, [A,B]] = 0 (2.18)

written as

0 = [T a, f bcdTd] + [T b, f cadTd] + [T a, fabdTd] (2.19)

= f bcd[T a, Td] + f cad[T b, Td] + fabd[T a, Td] (2.20)

= f bcdfadeTe + f cadf bdeTe + fabdfadeTd (2.21)

⇒f cbdfade − fabdf cde = f cadfdbe (2.22)

⇒[T cadj, T
a
adj] = if cadT dadj (2.23)

The dimension of the adjoint representation is N2 − 1 for SU(N).

2.2.2.3 Group constants

The quadratic Casimir is de�ned as

T aRT
a
R = C2(R)1 (2.24)

This must be proportional to the identity (when acting on a single given irreducible representation)
because it commutes with all generators of the group, which follows from

[T aRT
a
R, T

b
R] =T aRT

a
RT

b
R − T bRT aRT aR (2.25)

=T aR([T aR, T
b
R] + T bRT

a
R])− ([T bR, T

a
R] + T aRT

b
R)T aR (2.26)

=T aR(ifabcT cR)− (if bacT cRT
a
R) (2.27)

=ifabcT aRT
c
R + ifabcT cRT

a
R (2.28)

=0 (2.29)

because of anti-symmetry of fabc.
Another important quantity is the Dynkin index I(R)

Tr[T aRT
b
R] = I(R)δab (2.30)

The quantity I(R) is the index of the representation. We have that

I(f) =
1

2
(2.31)

and

I(G) = N (2.32)

for SU(N) and our normalisation. The Dynkin index and the quadratic Casimir are related

d(R)C2(R) = I(R)d(G) (2.33)

where d(R) is the dimension of the representation, and d(G) of the algebra, namely N2 − 1 for SU(N).
Thus

C2(f) =
N2 − 1

N
(2.34)

C2(G) =N (2.35)
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2.2. GROUP THEORY

2.2.2.4 Examples

2.2.2.4.1 SU(2)

For SU(2) the common generators for the fundamental representation T af are related to the Pauli
matrices σa (i = 1, 2, 3) by

T af =
1

2
σa (2.36)

with

σ1 =

(
0 1

1 0

)
σ2 =

(
0 −i
i 0

)
σ3 =

(
1 0

0 −1

)
(2.37)

For later, it is also helpful to introduce

σ0 = σ0 =

(
1 0

0 1

)
(2.38)

and σi = −σi. The Lie algebra

[σa, σb] = ifabcσc (2.39)

is ful�lled for

fabc = εabc (2.40)

where εabc is the Levi-Civita tensor. And we have

d(f) =2 d(a) = 3 (2.41)

C2(f) =
3

2
C2(a) = 3 (2.42)

I(f) =
1

2
I(a) = 2 (2.43)

2.2.2.4.2 SU(3)

The common representation for SU(3) are given by the Gell-Mann Matrices λa

T af =
1

2
λa (2.44)
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With

λ1 =


0 1 0

1 0 0

0 0 0

 λ2 =


0 −i 0

i 0 0

0 0 0

 (2.45)

λ3 =


1 0 0

0 −1 0

0 0 0

 λ4 =


0 0 1

0 0 0

1 0 0

 (2.46)

λ5 =


0 0 −i
0 0 0

i 0 0

 λ6 =


0 0 0

0 0 1

0 1 0

 (2.47)

λ7 =


0 0 0

0 0 −i
0 i 0

 λ8 =
1√
3


1 0 0

0 1 0

0 0 −2

 (2.48)

And we have

d(f) =3 d(a) = 8 (2.49)

C2(f) =
4

3
C2(a) = 3 (2.50)

I(f) =
1

2
I(a) = 3 (2.51)

2.2.3 Other groups relevant in particle physics

a) Lorentz Group: the Lorentz group is the set of all 4× 4 real matrices that leave the line element
in Minkowski space invariant:

s2 = (x0)2 − (xi)2 = xµgµνx
ν (2.52)

It is parametrised by

x′µ = Λµνx
ν (2.53)

The Lorentz group has six generators:

• three generators J i creating rotations

• three generators Ki creating boosts

b) Poincare Group: the Poincare group is the generalisation of the Lorentz group including trans-
lation:

x′µ = Λµνx
ν + aµ (2.54)

The generator of the translation is the four momentum operator pµ
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2.3. QUANTUM FIELD THEORY

2.3 Quantum Field Theory

2.3.1 Lagrangian formalism

We are working with the Lagrangian formalism of quantum �eld theory. The basic features are

• space�time symmetry in terms of Lorentz invariance, as well as internal symmetries like gauge
symmetries

• causality

• local interactions

Particles are described by �elds that are operators on the quantum mechanical Hilbert space of the
particle states, acting as creation and annihilation operators for particles and antiparticles. We need in
the following particles characterised by their spin:

• spin-0: complex or real scalar �elds φ(x), ϕ(x)

• spin- 1
2 : fermions, described by two- or four component spinor �elds ψL,R, ψ(x).

• spin-1: vector bosons Aµ(x)

The dynamics of the physical system involving a set of �elds Φ is determined by the Lorentz-invariant
Lagrangian L. The action is given by

S[Φ] =

∫
d4xL

(
Φ(x)

)
, (2.55)

The equations of motions follow as Euler�Lagrange equations from Hamilton's principle,

δS = S[Φ + δΦ]− S[Φ] = 0 . (2.56)

Let's go back to mechanics: for n generalised coordinates qi and velocities q̇i the Lagrangian reads:
L(q1, . . . q̇1, . . . ) The equations of motion are calculated from (i = 1, . . . n)

d

dt

∂L

∂q̇i
− ∂L

∂qi
= 0 . (2.57)

Going to �eld theory, one has to perform the replacement

qi → Φ(x) , q̇i → ∂µΦ(x) , L(q1, . . . qn, q̇1, . . . q̇n)→ L(Φ(x), ∂µΦ(x)) (2.58)

The equations of motion become �eld equations which are calculated from

∂µ
∂L

∂(∂µΦ)
− ∂L
∂Φ

= 0 , (2.59)

2.3.2 Free quantum �elds

2.3.2.1 Scalar �elds

The equation of motion for a scalar �eld is known as �Klein�Gordon equation:

(∂µ∂
µ +m2)φ = 0 . (2.60)
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The solution can be expanded in terms of the complete set of plane waves e±ikx,

φ(x) =
1

(2π)3/2

∫
d3k

2k0
[a(k) e−ikx + a†(k) eikx ] (2.61)

with k0 =

√
~k

2
+m2. Here, we used annihilate and creation operators a†, a:

a†(k) |0〉 = |k〉

a(k) |k′〉 = 2k0 δ3(~k − ~k ′) |0〉 . (2.62)

The Lagrangian for a free real or complex scalar �eld with mass m is

Lreal =
1

2
(∂µφ)2 − m2

2
φ2 (2.63)

Lcomplex = (∂µφ)†(∂µφ)−m2 φ†φ (2.64)

One can easily check that they give us the Klein�Gordon Equation as equation of motion. A complex
scalar �eld φ† 6= φ has two degrees of freedom. It describes spin-less particles which carry a charge and
can be interpreted as particles and antiparticles.

So far, we have considered particles without any space�time restrictions. Now, we want to consider the
case that a particle propagates from a point-like source at a given space-time point. This is described by
the inhomogeneous �eld equation

(∂µ∂
µ +m2)D(x− y) = −δ4(x− y) . (2.65)

D(x− y) is called Green function. The solution can easily be determined by a Fourier transformation

D(x− y) =

∫
d4k

(2π)4
D(k) e−ik(x−y) (2.66)

giving in momentum space

(k2 −m2)D(k) = 1 . (2.67)

The solution

iD(k) =
i

k2 −m2 + iε
(2.68)

is the causal Green function or the Feynman propagator of the scalar �eld. The overall factor i is by
convention. The term +iε in the denominator with an in�nitesimal ε > 0 is a prescription of how to treat
the pole in the integral (2.66); it corresponds to the special boundary condition of causality for D(x− y)
in Minkowski space, which means

• propagation of a particle from y to x if x0 > y0,

• propagation of an antiparticle from x to y if y0 > x0.
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2.3. QUANTUM FIELD THEORY

In a Feynman diagram, the scalar propagator is drawn as dashed line.

Complex Scalar φ (2.69)

Real Scalar ϕ (2.70)

For complex scalars the arrow shows the �ow of the charge.

2.3.2.2 Dirac �elds

Equation of motion Spin- 1
2 particles with mass m are often described by 4-component spinor �elds,

ψ(x) =


ψ1(x)

ψ2(x)

ψ3(x)

ψ4(x)

 . (2.71)

and obey the Dirac�Equation

(iγµ∂µ −m)ψ = 0 . (2.72)

This equation is obtained from the Lagrangian

Lfermion = ψ (iγµ∂µ −m)ψ , (2.73)

involving the adjoint spinor

ψ = ψ† γ0 = (ψ∗1 , ψ
∗
2 ,−ψ∗3 ,−ψ∗4) . (2.74)

The Dirac matrices γµ (µ = 0, 1, 2, 3) are 4× 4 matrices which ful�l the anti-commutator relations

{γµ, γν} ≡ γµγν + γνγµ = 2gµν . (2.75)

One possible representation is to express the matrices in terms of the the Pauli matrices σ1,2,3 as

γ0 =

(
1 0

0 −1

)
, γk =

(
0 σk

−σk 0

)
. (2.76)

Another matrix, γ5, is often very useful:

γ5 =

(
−1 0

0 1

)
(2.77)
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There are two types of solutions for the Dirac equation, corresponding to particle and anti-particle wave
functions,

u(p) e−ipx and v(p) eipx (2.78)

which are used to write the Dirac �eld as

ψ(x) =
1

(2π)3/2

∑
σ

∫
d3k

2k0

[
cσ(k)uσ(k) e−ikx + d †σ(k) vσ(k) eikx

]
, (2.79)

with

• annihilation operators cσ for particles and dσ for anti-particles

• creation operators c†σ and d†σ for particles and antiparticles

We still have to determine the propagator of the Dirac �eld, which is the solution of the inhomogeneous
Dirac equation with point-like source,

(iγµ∂µ −m)S(x− y) = 1 δ4(x− y) . (2.80)

Using a Fourier transformation as in the scalar case, we �nd

i S(k) =
i

6 k −m+ iε
=

i (6 k +m)

k2 −m2 + iε
, (2.81)

We introduce a graphical symbol for the propagator:

Dirac Fermion ψ (2.82)

The arrow at the line denotes the �ow of the particle charge.

2.3.2.3 Weyl Fermions

We have so far used 4-component (Dirac) fermions. However, it will turn out that it is often more
convenient to use actually 2-component notation: in any model which violates parity (as the SM or all
extension of it), each Dirac fermion has left-handed and right-handed parts with completely di�erent
electroweak gauge interactions. If one used four-component spinor notation instead, then there would be
clumsy left- and right-handed projection operators

PL = (1− γ5)/2, PR = (1 + γ5)/2 (2.83)

all over the place. The two-component Weyl fermion notation has the advantage of treating fermionic
degrees of freedom with di�erent gauge quantum numbers separately from the start. An even better
reason for using two-component notation here is that in supersymmetric models the minimal building
blocks of matter are chiral supermultiplets, each of which contains a single two-component Weyl fermion.
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In this representation, a four-component Dirac spinor is written in terms of 2 two-component, complex
anti-commuting objects ξα and (χ†)α̇ ≡ χ†α̇, with two distinct types of spinor indices α = 1, 2 and
α̇ = 1, 2:

ΨD =

(
ξα

χ†α̇

)
. (2.84)

It follows that

ΨD = Ψ†D

(
0 1

1 0

)
=
(
χα ξ†α̇

)
. (2.85)

Undotted (dotted) indices from the beginning of the Greek alphabet are used for the �rst (last) two
components of a Dirac spinor. The �eld ξ is called a �left-handed Weyl spinor" and χ† is a �right-handed
Weyl spinor". The names �t, because

PLΨD =

(
ξα

0

)
, PRΨD =

(
0

χ†α̇

)
. (2.86)

The Hermitian conjugate of any left-handed Weyl spinor is a right-handed Weyl spinor:

ψ†α̇ ≡ (ψα)† = (ψ†)α̇ , (2.87)

and vice versa:

(ψ†α̇)† = ψα. (2.88)

Therefore, any particular fermionic degrees of freedom can be described equally well using a left-handed
Weyl spinor (with an undotted index) or by a right-handed one (with a dotted index). By convention, all
names of fermion �elds are chosen so that left-handed Weyl spinors do not carry daggers and right-handed
Weyl spinors do carry daggers, as in eq. (2.84).

Playing with indices The heights of the dotted and undotted spinor indices are important. The
spinor indices are raised and lowered using the anti-symmetric symbol

ε12 = −ε21 = ε21 = −ε12 = 1, ε11 = ε22 = ε11 = ε22 = 0, (2.89)

according to

ξα = εαβξ
β , ξα = εαβξβ , χ†α̇ = εα̇β̇χ

†β̇ , χ†α̇ = εα̇β̇χ†
β̇
. (2.90)

This is consistent since εαβε
βγ = εγβεβα = δγα and εα̇β̇ε

β̇γ̇ = εγ̇β̇εβ̇α̇ = δγ̇α̇.

As a convention, repeated spinor indices contracted like

α
α or α̇

α̇ (2.91)

can be suppressed. In particular,

ξχ ≡ ξαχα = ξαεαβχ
β = −χβεαβξα = χβεβαξ

α = χβξβ ≡ χξ (2.92)

with, conveniently, no minus sign in the end. [A minus sign appeared in eq. (2.92) from exchanging the
order of anti-commuting spinors, but it disappeared due to the anti-symmetry of the ε symbol.] Likewise,
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ξ†χ† and χ†ξ† are equivalent abbreviations for χ†α̇ξ
†α̇ = ξ†α̇χ

†α̇, and in fact this is the complex conjugate
of ξχ:

(ξχ)∗ = χ†ξ† = ξ†χ†. (2.93)

In a similar way, one can check that

(χ†σµξ)∗ = ξ†σµχ = −χσµξ† = −(ξσµχ†)∗ (2.94)

stands for ξ†α̇(σµ)α̇αχα, etc. Note that when taking the complex conjugate of a spinor bilinear, one
reverses the order. The spinors here are assumed to be classical �elds; for quantum �elds the complex
conjugation operation in these equations would be replaced by Hermitian conjugation in the Hilbert space
operator sense.

Lagrangian for Weyl fermions With these conventions, the Dirac Lagrangian can now be rewritten:

LDirac = iξ†σµ∂µξ + iχ†σµ∂µχ−M(ξχ+ ξ†χ†) (2.95)

where we have dropped a total derivative piece −i∂µ(χ†σµχ), which does not a�ect the action.
A four-component Majorana spinor can be obtained from the Dirac spinor of eq. (2.85) by imposing the
constraint χ = ξ, so that

ΨM =

(
ξα

ξ†α̇

)
, ΨM =

(
ξα ξ†α̇

)
. (2.96)

The four-component spinor form of the Lagrangian for a Majorana fermion with mass M ,

LMajorana =
i

2
ΨMγ

µ∂µΨM −
1

2
MΨMΨM (2.97)

can therefore be rewritten as

LMajorana = iξ†σµ∂µξ −
1

2
M(ξξ + ξ†ξ†) (2.98)

in the more economical two-component Weyl spinor representation. Note that even though ξα is anti-
commuting, ξξ and its complex conjugate ξ†ξ† do not vanish, because of the suppressed ε symbol, see
eq. (2.92). Explicitly, ξξ = εαβξβξα = ξ2ξ1 − ξ1ξ2 = 2ξ2ξ1.

Any theory involving spin-1/2 fermions can always be written in terms of a collection of left-handed
Weyl spinors ψi with

L = iψ†iσµ∂µψi −M ij(ψ†iψ
†
j − ψiψj) (2.99)

For i = j one has a Majorana mass term, and i 6= j gives Dirac mass term.

There is a di�erent ψi for the left-handed piece and for the Hermitian conjugate of the right-handed piece
of a Dirac fermion. Given any expression involving bilinears of four-component spinors

Ψi =

(
ξi

χ†i

)
, (2.100)

labelled by a �avor or gauge-representation index i, one can translate into two-component Weyl spinor
language (or vice versa) using the dictionary:

ΨiPLΨj = χiξj , ΨiPRΨj = ξ†iχ
†
j , (2.101)

Ψiγ
µPLΨj = ξ†i σ

µξj , Ψiγ
µPRΨj = χiσ

µχ†j (2.102)
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2.3.2.4 Vector �elds

A vector �eld Aµ(x) describes particles with spin 1. We concentrate here on the massless case with two
degrees of freedom.
The Lagrangian of such a �eld is

L = −1

4
FµνF

µν with Fµν = ∂µAν − ∂νAµ + gfabcAbµA
c
ν . (2.103)

The last term is only present for non-Abelian gauge �elds. The �eld equations are Maxwell's equations
for the vector potential,(

� gµν − ∂µ∂ν
)
Aν = 0 . (2.104)

The propagator of the vector �elds depends on the chosen gauge. In general Rξ gauge it is given by

iDρν(k) =
i

k2 + iε

[
−gνρ + (1− ξ) kνkρ

k2

]
. (2.105)

which becomes very simple in Feynman gauge with ξ = 1.

The graphical symbol for the vector-�eld propagator (for both massive and massless) is a wavy
line which carries the momentum k and two Lorentz indices

massless or massive Vector boson Aµ (2.106)

The arrow at the line denotes the �ow of the particle charge.

2.3.3 Gauge invariance

So far, we have not considered any symmetry. We change that now and apply (local) gauge transforma-
tions to the �elds.

φ(x)→ eigΛ(x)φ(x) (2.107)

φ(x)∗ → φ(x)∗e−igΛ(x) (2.108)

Ψ(x)→ eigΛ(x)Ψ(x) (2.109)

Ψ̄(x)→ Ψ̄e−igΛ(x) (2.110)

However, one can check that the Lagrangians for scalars and fermions are not invariant under these
transformations. For instance, the fermionic part of the Lagrangian transforms as

L′fermion =i(Ψ̄)′ /∂(Ψ)′ −m(Ψ̄)′Ψ′ (2.111)

=iΨ̄e−igΛ(x) /∂eigΛ(x)Ψ−mΨ̄ (e−igΛ(x)eigΛ(x))︸ ︷︷ ︸
=1

Ψ (2.112)

=iΨ̄(igΛ(x)/∂Λ(x))(/∂Ψ)−mΨ̄Ψ (2.113)

6=Lfermion (2.114)
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We need another ingredient to built kinetic terms for scalars and fermions which are gauge invariant: we
introduce a massless gauge �elds Aµ which transforms as

Aµ → Aµ − ∂µΛ(x) (2.115)

In addition, we de�ne the covariant derivative:

∂µ → Dµ = ∂µ + igAµ (2.116)

g is a free parameter which we call 'gauge coupling'. One �nds that the covariant derivative transforms
as

(DµΨ)′ =D′µΨ′ (2.117)

=(∂µ + ig(Aµ − ∂µΛ))eigΛΨ (2.118)

=eigΛ(∂µ + igAµ)Ψ− ig∂µΛΨ + (∂µe
igΛ)Ψ (2.119)

=eigΛ(∂µ + igAµ)Ψ (2.120)

=eigΛDµΨ (2.121)

Thus, the Lagrangian with derivatives replaced by covariant derivatives are invariant.

Ψ̄DµΨ→ (Ψ̄)′(DµΨ)′ = Ψ̄e−igΛeigΛDµΨ = Ψ̄DµΨ (2.122)

Similarly, one can show that for the scalar terms in the Lagrangian the identity

(DµφD
µφ∗)′ = DµφD

µφ∗ (2.123)

holds.

In order to obtain a gauge theory, i.e. a theory in which the Lagrangian is invariant under a local
transformation, the derivative must be replaced by the covariant derivative involving gauge
�elds:

∂µ → Dµ = ∂µ + igTAµ (2.124)

This introduces interaction terms between the fermions and scalars and the gauge �elds which are
represented by the following Feynman diagrams:

ψ̄

ψ

Aµ

φ∗

φ

Aµ

φ∗

φ

Aµ

Aν

igγµ ig(pνin − p
µ
out) ig2gµν
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2.3.4 Spontaneous symmetry breaking

A mass term for gauge bosons would read

m2
VAµA

µ (2.125)

However, this is not gauge invariant:

(m2
VAµA

µ)′ = m2
VAµA

µ +m2
V (∂µΛ)(∂µΛ) (2.126)

Thus, explicit mass terms are not possible and we must generated them via the so called Higgs�mechanism.
Let's assume a real scalar ϕ and the following potential:

V (ϕ) =
1

2
λϕ4 + µ2ϕ (2.127)

Depending on the sign of µ2 the shape of the potential is di�erent

-1000 -500 500 1000
ϕ

5.0×1010

1.0×1011

1.5×1011

2.0×1011

V(ϕ)

λ=0.1, μ2=300^2

-1000 -500 500 1000
ϕ

-2.0×1010

-1.5×1010

-1.0×1010

-5.0×109

5.0×109

1.0×1010

V(ϕ)

λ=0.1, μ2=-300^2

For

• µ2 > 0: ϕ = 0 is the correct vacuum

• µ<0: the vacuum is at ϕ 6= 0

We shift ϕ in a way that we are for ϕ = 0 at the minimum of the potential:

φ→ φ+ v (2.128)

We �nd

V (ϕ = 0) =
1

2
λv4 + µ2v2 (2.129)

→ ∂V

∂v
=2λv3 + 2vµ2 ≡ 0 (2.130)

Thus

v =
√
−µ2/λ (2.131)

is the value of the VEV (vacuum expectation value).
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Higgs mechanism We consider now a gauge theory with a complex �eld φ. We want to insert

φ→ 1√
2

(ϕ+ v + iσ) (2.132)

in the general Lagrangian

L = DµφD
µφ∗ −m2|φ|2 − λ|φ|4 − 1

4
FµνF

µν (2.133)

We get

L =− 1

4
FµνF

µµ +
1

2
∂µϕ∂

µϕ+
1

2
∂µσ∂

µσ

+ gvAµ∂
µσ +

1

2
g2v2AµA

µ

+
1

2
g2(Aµ)2ϕ(2v + ϕ)− 1

2
ϕ2(3λv2 +m2)− λvϕ3 − 1

4
λϕ4 (2.134)

The �rst line are just the ordinary kinetic terms. However, we see that an e�ective mass term 1
2g

2v2

for the vector bosons has been generated. There is also a term which mixes the �eld σ, which becomes
massless, and Aµ.
A massive vector boson has three degrees of freedom, while a massless one has only two. Therefore, one
says that σ is 'eaten' by the vector boson to form its longitudinal component. σ is called 'Goldstone' (or
'Nambu-Goldstone') boson.
It is common to introduce gauge �xing terms in a way that they cancel the mixing terms between �eld
σ and Aµ.

LGF = − 1

2ξ

(
∂µA

µ − gvξσ)2 (2.135)

Thus, the Lagrangian becomes

L+ LGF = +
1

2
∂µσ∂

µσ − g2v2ξσ2 +
1

2
g2v2AµA

µ + . . . (2.136)

what gives a relation between the Goldstone mass and the mass of the vector boson

M2
G = ξM2

A (2.137)

In the unitarity gauge ξ →∞, the Goldstone disappears from the spectrum. The same could have been
obtained by starting with the gauge transformation However, before we do this, we apply the following
gauge transformation:

φ→ φ′ =e−iσ/vφ =
1√
2

(v + ϕ) (2.138)

Aµ → A′µ =Aµ −
1

gv
∂µσ (2.139)
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The Higgs mechanism generates mass terms for vector-boson due to vacuum expectation values
of a complex scalar �eld

φ→ 1√
2

(ϕ+ iσ + v) (2.140)

While the real (CP-even) component ϕ of the scalar is a physical degree of freedom, the imaginary
(CP-odd) component σ becomes the longitudinal mode of the massive vector boson. In general
Rξ gauge the Goldstone mass MG is related to the mass MA of the vector boson Aµ by

M2
G = ξM2

A (2.141)

2.4 The Standard Model of Particle Physics

2.4.1 Gauge Symmetries

The so called standard model of particle physics (SM) is a gauge theory.

The gauge symmetry of the SM is

G = SU(3)C × SU(2)L × U(1)Y (2.142)

with

• C: Colour

• L: Left

• Y : Hypercharge

2.4.2 Particle Content

Before symmetry breaking, the particle content of the SM is

Vector Bosons B (1,1)0

W (1,2)0

g (8,0)0

Fermions eR (1,1)1

(3 Generations) l (1,2)−1/2

uR (3̄,1)−2/3

dR (3̄,1)1/3

q (3,2)1/6

Scalar H (1,2)1/2

The last column shows the quantum numbers with respect to G. These quantum numbers are not as
random as it might look. Special conditions must be ful�lled to avoid anomalies, e.g.
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• Gauge anomalies∑
f

Y (f)3 ≡ 0 (2.143)

• Gauge × gravity anomalies∑
f

Y (f) ≡ 0 (2.144)

• Witten anomaly: even number of SU(2) doublets

Check:

∑
f

Y (f) = 3︸︷︷︸
generations

×

Y (e) + 2︸︷︷︸
isospin

×Y (l) + 3︸︷︷︸
color

×Y (uR) + 3× Y (dR) + 2× 3× Y (q)


(2.145)

=3×
(

1 + 2

(
−1

2

)
+ 3

(
−2

3

)
+ 3

(
1

3

)
+ 6

(
1

6

))
(2.146)

=3× (1− 1− 2 + 1 + 1) (2.147)

=0 (2.148)∑
f

Y (f)3 =3×
(

1 + 2

(
−1

8

)
+ 3

(
− 8

27

)
+ 3

(
1

27

)
+ 6

(
1

216

))
(2.149)

=3×
(

1− 1

4
− 8

9
+

1

9
+

1

36

)
(2.150)

=0 (2.151)

⇒ One needs to be careful when adding new fermions in order not to introduce anomalies

2.4.3 Gauge part of the Lagrangian

The gauge part of the Lagrangian before symmetry breaking reads

L = DµHD
µH∗ + i

∑
f

f†σµDµf +
∑
V

VµνV
µν (2.152)

with f = {l, eR, q, dR, uR} and V = {B,W a, Ga}. Let's be more explicit at some examples. Note, we
consider only one generation of fermions because gauge couplings are always �avour diagonal.

• Right leptons

e†Rσ
µDµeR = e†Rσ

µ(∂µ + ig1Bµ)eR (2.153)

• Left leptons carry one isospin index, i.e. li with i = 1, 2

l†σµDµl = l†iσ
µ(∂µδij − i

1

2
g1Bµδij + ig2

σa

2
W a
µ )lj (2.154)
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• Right up-quarks carry one colour index, i.e. uR,α with α = 1, 2, 3

u†Rσ
µDµuR = u†R,ασ

µ(∂µδαβ − i
2

3
g1Bµδαβ + ig3

λa

2
Ga)uRβ (2.155)

From these expressions the vertices are derived:

eR

eR

Bµ

li

lj

Bµ

li

lj

W a
µ

σµg1 −σµδij g12 σµσ
a
ij
g2
2

qiα

qjβ

W a
µ

qiα

qjβ

gaµ

σµδαβσ
a
ij
g2
2 σµδijλ

a
ij
g3
2

2.4.4 Electroweak symmetry breaking

2.4.4.1 The Higgs potential

The Higgs potential in the SM is given by

V (H) =
1

2
λ|H|4 + µ2|H|2 (2.156)

Note, di�erent conventions for the normalisation of the quartic coupling exist in literature. µ2 < 0 causes
a spontaneous breaking of the electroweak symmetry (EWSB). The Higgs �eld becomes(

H+

H0

)
→

(
G+

1√
2

(
h+ iG0 + v

) ) (2.157)
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The Higgs potential becomes

V =
1

8
λ((G0)2 + (h+ v)2 + 2G+G−)2 +

1

2
µ2((G0)2 + (h+ v)2 + 2G+G−) (2.158)

We can calculate the Higgs coupling and masses form this potential

a) Tadpole conditions: The condition for being at the minimum of the potential is

∂V (h = 0)

∂v
≡ 0 =

∂

∂v

(
1

8
λv4 +

1

2
µ2v2

)
(2.159)

=
1

2
λv3 + µ2v (2.160)

→ µ2 =− 1

2
v2λ (2.161)

Thus, one can eliminate µ2 from all following expressions.

b) CP-even mass: the Higgs mass is given by

m2
h =

∂2V

∂h2
|h=G0=G+=0 (2.162)

=
3

2
λv2 + µ2 (2.163)

=
3

2
λv2 − 1

2
λv2 (2.164)

= λv2 (2.165)

c) Goldstone masses: the mass of G0 becomes

m2
G0 =

∂2V

∂G02 |h=G0=G+=0 (2.166)

= µ2 +
1

2
λv2 = 0 (2.167)

Since we are working here in Landau gauge, the Goldstone mass vanishes as expected. Similarly,
one can show m2

G+ = 0

d) Cubic Higgs coupling: the cubic Higgs self-interaction is

chhh =
∂3L

∂h3
|h=G0=G+=0 (2.168)

= −3vλ (2.169)

= −3
m2
h

v
(2.170)

e) Quartic Higgs coupling: the quartic Higgs self-interaction is

chhhh =
∂4L

∂h4
|h=G0=G+=0 (2.171)

= −3λ (2.172)

The entire Higgs sector of the SM can be parametrised after EWSB by just two parameters: λ
and v.
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2.4.4.2 Electroweak gauge bosons

The gauge interactions of the Higgs �eld become after EWSB:

DµHD
µH∗ =

(
∂µδik + i(

1

2
g1Bµδik + g2

σaik
2
W a)Hi

)(
∂µδjk − i(

1

2
g1Bµδjk + g2

σajk
2
W a)H∗j

)
(2.173)

=
1

2
∂µh∂

µh+
1

2
∂µG

0∂µG0 + ∂µG
+∂µG−

+
1

4

(
(h+ v)2 + (G0)2

) (
g2

1B
2 − 2g1g2BW

3 + g2
2(W 2

1 +W 2
2 +W 2

3 )
)

+ . . . (2.174)

On can see in the second line that not only mass terms for the vector bosons are generated, but also a
mixing between B and W 3 occurs. The neutral mass matrix MV reads

M2
V = (BW3)

(
1
4v

2g2
1 − 1

4g1g2v
2

− 1
4g1g2v

2 1
4g

2
2v

2

)(
B

W3

)
(2.175)

The mixed particles, which appear after diagonalisation, are called photon (γ) and Z-Boson (Z). Their
masses are the eigenvalues which are given by

mγ =0 (2.176)

m2
Z =

1

4
(g2

1 + g2
2)v2 (2.177)

The rotation matrix which diagonalises M2
V 4 is(

γ

Z

)
=

(
cos ΘW sin ΘW

− sin ΘW cos ΘW

)(
B

W 3

)
(2.178)

with the Weinberg angle ΘW . This de�nes the electric charge as:

e = g1 cos ΘW = g2 sin ΘW (2.179)

One remaining massless gauge boson corresponds to one unbroken symmetry. Therefore, the remaining
symmetry of the SM is

G → SU(3)C × U(1)em (2.180)

Since W1 and W2 are not electromagnet eigenstates, they are combined to new eigenstate of U(1)em

W± =
1√
2

(W1 ± iW2) (2.181)

The mass of W± is given by

M2
W =

1

4
g2v2 (2.182)

The massless states G0 and G± are the Goldstone bosons of Z and W± and form their longitudinal
components.

Let's count the (real) degrees of freedom

29



Basics

Before EWSB After EWSB

massless vectors: B, W a 4 massless vectors: γ 1

massive vectors: - 0 massive vectors: Z, W+ 3

complex scalars: H0, H± 4 complex scalars: G± 2

real scalars: - 0 real scalars: h, G0 2

The kinetic term for the mass eigenstates h, the SM Higgs boson, becomes after applying all rotations:

L =

(
∂µδij + i

1

2
g1δijBµ + i

1

2
g2σ

a
ijW

a
µ

)
Hi

(
∂µδij − i

1

2
g1δijB

µ − i1
2
g2σ

a
ji(W

a)µ
)
H∗j

= . . .

=
1

4
(h+ v)2

[
2g2

2W
+
µ (W−)µ + γµZ

µ
(
(g2

1 − g2
2) sin 2ΘW + 2g1g2 cos 2ΘW

)
+

γµγ
µ(g1 cos ΘW − g2 sin ΘW )2 + ZµZ

µ(g1 sin ΘW + g2 cos Θ)2
]

+ (∂µ + iγµ(g1 cos Θ− g2 sin Θ) + iZµ(g1 sin ΘW + g2 cos Θ))h

(∂µ − iγµ(g1 cos Θ− g2 sin Θ)− iZµ(g1 sin ΘW + g2 cos Θ))h (2.183)

+ L(G0, G+, h)

=
1

4

e2

sin2 ΘW

(h+ v)2

(
2W+

µ (W−)µ +
1

cos2 ΘW
ZµZ

µ

)
+

1

2
∂µh∂

µh+ L(G0, G+, h) (2.184)

Thus, the couplings between the Higgs to the photon drop out after performing all replacements cor-
rectly1. There is also no h − h − Z interaction (which is forbidden by CP), but only h − G0 − Z. The
vertices for the Higgs to the gauge bosons are given by

1'At tree-level, the photon couples only to charged particles and the Higgs only to massive ones'
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Zµ

Zµ

h

(W−)µ

W+
µ

h

2iv e2

sin2 2ΘW

1
2 iv

e2

sin2 ΘW

Zµ

Zµ

h

h

W+
µ

(W−)µ

h

h

2i e2

sin2 2ΘW

1
2 i

e2

sin2 ΘW

2.4.5 Fermion masses and Yukawa sector

It is not possible in the SM to write down mass terms for fermions because of the quantum numbers for
left and right �elds.

⇒ Fermion masses are spontaneously generated after EWSB via interactions with the Higgs �eld

The interactions between the Higgs and the SM fermions are called 'Yukawa' interactions.

LY = Yuq
†uRH + Ydq

†dRH
∗ + Yel

†eRH
∗ + h.c. (2.185)

In the general case, Yf are (complex) 3 × 3 matrices. Thus, in the most general form the Lagrangian
reads with all indices written explicitly

Yuq
†uRH ≡ δαβYu,abq†aiαuR,bβεijHj (2.186)

If we neglect �avour mixing for the moment, one can write

LYu = Yuq
†
iαuR,βεijHj (2.187)

= Yu(u†L,αH0 − d†L,αH
+)uR,βδαβ (2.188)

what becomes after EWSB

LYu =
1√
2

(v + h)Yuu †L uR + . . . (2.189)
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i.e. the fermion mass is given by

mu =
1√
2
vYu (2.190)

If we include �avour mixing, the mass terms for the quarks after EWSB read

Lq = (d†Ls
†
Lb
†
L)


vYd,11 vYd,12 vYd,13

vYd,21 vYd,22 vYd,33

vYd,31 vYd,32 vYd,33




dR

uR

bR

+(u†Lc
†
Lt
†
L)


vYu,11 vYu,12 vYu,13

vYu,21 vYu,22 vYu,33

vYu,31 vYu,32 vYu,33




uR

cR

tR


(2.191)

The six quark masses are the eigenvalues of the matrices vYd and vYu. These matrices are diagonalised
by four unitary matrices:

uR →UR = U∗uuR (2.192)

dR →DR = U∗ddR (2.193)

uL →UL = VuuL (2.194)

dL →DL = VduL (2.195)

Only one combination of these matrices is physically relevant and de�nes the CKM (Cabibbo-Kobayashi-
Maskawa) matrix

VCKM = V †uVd (2.196)

The entire �avour structure of the SM quark sector is encoded in the CKM matrix which can be
parametrised by three angles Θ12, Θ23, Θ13 and one phase δ

VCKM =


1 0 0

0 c23 s23

0 −s23 c23




c13 0 s13e
−iδ

0 1 0

−s13e
iδ 0 c13



c12 s12 0

−s12 c12 0

0 0 1

 (2.197)

δ is the only source of CP violation in the SM and highly restricted by experiments

The CKM matrix shows up explicitly in vertices involving the W -boson

u†iα

djβ

W+
µ

− i√
2
g2σµV

ij
CKMδαβ
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Chapter 3

Supersymmetric Formalities
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