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Chapter 1

Motivation to look beyond the SM

The standard model of particle physics (SM) is very successful and experimentally well con�rmed. How-
ever, some questions can't be addressed within the SM.

1.1 Observations

1.1.1 Dark Matter

The energy budget of the universe is well known today:

Visible Matter 0.03% Heavy Elements

0.3% Neutrinos

0.5% Stars

4 % Free hydrogen and helium

Dark Matter 25 % Weakly interacting new particle (WIMP)?

Dark Energy 70% ???

⇒ The SM can only explain 4.9% of the entire energy in the universe

1.1.2 Baryon Asymmetry

We don't see any anti-matter in the observable universe. However, the Big Bang should have produced
equal amounts of matter and anti-matter, i.e. the asymmetry must have been introduced later.
In general: one needs interactions which violate CP (charge-parity) to break the symmetry between mat-
ter and anti-matter.

⇒ The amount of CP violation in the SM is too small to explain the observed matter�anti-matter
asymmetry
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Motivation to look beyond the SM

1.2 Experimental deviations

Not all experiments are in perfect agreement with the SM. In some observables, a sizeable deviation was
found

Anomalous magnetic dipole moment

The magnetic momentum of an elementary particle is given by

mS = −gµBS
~

(1.1)

µB : Bohr magneton; S: Spin
The g factor is predicted to be 2 by Dirac's theory, but higher order e�ects change this.:

Anomalous magnetic moment a =
g − 2

2
(1.2)

The anomalous magnetic moments are among the best measured and most precisely calculated observ-
ables:

aSM
µ = 0.001 165 918 04 (51) (1.3)

aexp
µ = 0.001 165 920 9(6) (1.4)

⇒ There is a 3.5 σ deviation between the measured anomalous magnetic moment of the myon
and the SM prediction

1.3 Theoretical Issues

1.3.1 Gauge coupling uni�cation

The coupling strength between particles is an energy dependent quantity. The energy dependence is
described by the renormalisation group equations (RGEs). For the three gauge couplings of the SM one
�nds the following behaviour:

4 6 8 10 12 14 16
log(Q/GeV)

20

30

40

50

60

α-1

α1

α2

α3

⇒ The gauge couplings in the SM don't unify. However, a grand uni�ed theory (GUT) like SO(10)
or SU(5) predict such an uni�cation.

It's not possible to embed the SM in a GUT theory without introducing new matter. It's not clear at
which scale the new particles come into play. However, the lighter they are, the bigger their impact is:
less particles are needed in low-scale BSM models.
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1.4. WHY SUPERSYMMETRY?

1.3.2 Hierarchy problem

The Higgs particle is the only fundamental scalar in the SM. While fermion and vector boson masses are
protected by symmetries (chiral and gauge symmetries) against large radiative corrections, the masses of
scalars don't have such a protection mechanism. Therefore, the observable mass is given by

m2,obs = m2,Tree + δm2 (1.5)

' m2,Tree + Λ2 (1.6)

where m2,Tree is the mass parameter in the Lagrangian and Λ is the scale of new physics. We know that
(at least) one scale exists at which new interactions come into play: the Planck scale (MP ∼ 1018 GeV)
at which gravity becomes important.

︸ ︷︷ ︸
m2,exp
H

=

︸ ︷︷ ︸
m2,Tree
H

+

︸ ︷︷ ︸
∼Λ2

(1.7)

⇒ The SM has no natural explanation why the observed Higgs mass is ∼ 125 GeV, but it demands
a cancellation of 32 digits between unrelated parameters.

1.4 Why supersymmetry?

Supersymmetry (SUSY) provides possible explanations for all these questions:

• New Particles can form the DM

• New sources of CP violation to generate the Baryon asymmetry

• New loop contributions to aµ

• Changes the running of gauge couplings → Uni�cation!

• The Higgs mass is protected by the new symmetry and naturally light

Because of these reasons, minimal supersymmetry was for a long time the top candidate for an extensions
of the SM. However, with the negative searches at LHC the picture is changing: heavier SUSY masses
introduce a new (small) hierarchy problem in the theory. Nevertheless:

• Other bene�ts of SUSY (dark matter, gauge coupling uni�cation, CP violation) are hardly a�ected

• The corrections to the Higgs mass are only logarithmic dependent on the SUSY scale, not quadratic
as in the SM alone
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Motivation to look beyond the SM

• There are still unexplored corners in which light SUSY particles are possible within minimal super-
symmetry

• There is an increasing interest in non-minimal SUSY models which avoid the small hierarchy prob-
lem
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Chapter 2

Basics

2.1 Notations and conventions

• Natural units (formally ~ = c = 1) are used everywhere.

• Lorentz indices are always denoted by Greek characters, µ, ν, .. = 0, 1, 2, 3.

• Four-vectors for space�time coordinates and particle momenta are written as

x = (xµ) = (x0, ~x), x0 = t ,

p = (pµ) = (p0, ~p ), p0 = E =
√
~p 2 +m2 .

• Co- and Contravariant vectors are related by

aµ = gµν a
ν ,

with the metric tensor

(gµν) =


1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1


• The 4-dimensional scalar product is

a2 = gµν a
µaν = aµa

µ, a · b = aµb
µ = a0b0 − ~a ·~b .

• Covariant and contravariant components of the derivatives are written as

∂µ =
∂

∂xµ
= gµν ∂

ν , ∂ν =
∂

∂xν
[ ∂0 = ∂0, ∂k = −∂k ] ,

� = ∂µ∂
µ =

∂2

∂t2
−∆ .
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Basics

2.2 Group Theory

2.2.1 Axioms

A collection of elements gi form a group if the following conditions are ful�lled:

a) Closure under a multiplication operator; i.e., if gi and gj are members of the group, then gi · gj is
also a member of the group

b) Associativity under multiplication; i.e.

gi · (gj · gk) = (gi · gj) · gk (2.1)

c) An identity element; i.e., there exist an element 1 such that

1 · gi = gi · 1 = gi (2.2)

d) An inverse; i.e. every element gi has an element g−1
i such that

gi · g−1
i = 1 (2.3)

2.2.2 Lie Groups

2.2.2.1 De�nition

Lie Groups are both groups and di�erentiable manifolds.

Any group element continuously connected to the identity can be written

U = eiΘaT
a

(2.4)

where the Θa is a real parameter and the T a are the group generators, which live in the Lie
Algebra.

The generators T a , which generate in�nitesimal group transformations, form the Lie Algebra.

The Lie algebra is de�ned by its commutation relations

[T a, T b] = ifabcTc (2.5)

where fabc are known as the structure constants.

By de�nition they are antitsymmetric

fabc = −facb (2.6)

We are interested in so called semi-simple Lie groups as SU(N) and SO(N). We focus in the following
on SU(N). These groups preserve a complex inner product. Finite dimensional representations of semi-
simple Lie algebras are always Hermitian, so one can build quantum theories which are unitarity based
on such algebras. The complex inner product is

U†U = 1 (2.7)
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2.2. GROUP THEORY

de�ned on N dimensional complex vector spaces, for U(N). Note that in all cases we can write U(N) =
SU(N)× U(1) where the U(1) represents an overall phase. There are N2 − 1 generators for SU(N). To
see this, let us write the identity in�nitesimally as

0 =1− e0 (2.8)

=1− e[iΘaTa+(iΘaTa)†] (2.9)

=1− (1 + iΘaTa)(1− iΘaT
†
a ) (2.10)

=− iΘa(T †)a + iΘaTa (2.11)

⇒ T =T † (2.12)

so we can count the generators by counting N ×N Hermitian matrices. Such matrices have 1
2N(N − 1)

imaginary components and 1
2N(N + 1) real components, but then we subtract the identity matrix, which

just generates U(1). Thus, we �nd for the number of generators

#(Ta) =
1

2
N(N − 1) +

1

2
N(N + 1)− 1 = N2 − 1 (2.13)

2.2.2.2 Representations

The groups and algebras discussed above are abstract mathematical objects. We want to have these
groups act on quantum states and �elds, which are vectors, so we need to represent the groups as
matrices. There are an in�nite number of di�erent representations for a given simple group. However,
there are two obvious and most important representations, which occur most often in physics settings.
They are

a) the fundamental representations

b) the adjoint representations

The fundamental representation is the representation de�ning SU(N) and SO(N) as N × N
matrices acting on N dimensional vectors. To write the fundamental formally, we say that N
�elds transform under it as

φi → φi + iαa(T af )jiφj (2.14)

where i = 1, . . . , N , a = 1, . . . N2 − 1 and the αa are real numbers. The complex conjugate �elds
transform in the anti-fundamental f , which is just the conjugate of this

φ∗i → φ∗i − iαa(T a∗f )jiφ
∗
j (2.15)

Since T af are Hermitian, we have Tf = (Tf )∗.
The normalisation of generators is arbitrary and is usually chosen so that

TrT af T
b
f =

1

2
δab (2.16)

The other important representation is the adjoint. The point is to think of the generators them-
selves as the vectors. Thus, the generators are

(T aadj)
b
c = −ifabc (2.17)
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Basics

How can we see that the Tadj actually satisfy the Lie algebra, and thus are really a representation? This
is given immediately by the Jacobi identity

[A, [B,C]] + [B, [C,A]] + [C, [A,B]] = 0 (2.18)

written as

0 = [T a, f bcdTd] + [T b, f cadTd] + [T a, fabdTd] (2.19)

= f bcd[T a, Td] + f cad[T b, Td] + fabd[T a, Td] (2.20)

= f bcdfadeTe + f cadf bdeTe + fabdfadeTd (2.21)

⇒f cbdfade − fabdf cde = f cadfdbe (2.22)

⇒[T cadj, T
a
adj] = if cadT dadj (2.23)

The dimension of the adjoint representation is N2 − 1 for SU(N).

2.2.2.3 Group constants

The quadratic Casimir is de�ned as

T aRT
a
R = C2(R)1 (2.24)

This must be proportional to the identity (when acting on a single given irreducible representation)
because it commutes with all generators of the group, which follows from

[T aRT
a
R, T

b
R] =T aRT

a
RT

b
R − T bRT aRT aR (2.25)

=T aR([T aR, T
b
R] + T bRT

a
R])− ([T bR, T

a
R] + T aRT

b
R)T aR (2.26)

=T aR(ifabcT cR)− (if bacT cRT
a
R) (2.27)

=ifabcT aRT
c
R + ifabcT cRT

a
R (2.28)

=0 (2.29)

because of anti-symmetry of fabc.
Another important quantity is the Dynkin index I(R)

Tr[T aRT
b
R] = I(R)δab (2.30)

The quantity I(R) is the index of the representation. We have that

I(f) =
1

2
(2.31)

and

I(G) = N (2.32)

for SU(N) and our normalisation. The Dynkin index and the quadratic Casimir are related

d(R)C2(R) = I(R)d(G) (2.33)

where d(R) is the dimension of the representation, and d(G) of the algebra, namely N2 − 1 for SU(N).
Thus

C2(f) =
N2 − 1

N
(2.34)

C2(G) =N (2.35)
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2.2. GROUP THEORY

2.2.2.4 Examples

2.2.2.4.1 SU(2)

For SU(2) the common generators for the fundamental representation T af are related to the Pauli
matrices σa (i = 1, 2, 3) by

T af =
1

2
σa (2.36)

with

σ1 =

(
0 1

1 0

)
σ2 =

(
0 −i
i 0

)
σ3 =

(
1 0

0 −1

)
(2.37)

For later, it is also helpful to introduce

σ0 = σ0 =

(
1 0

0 1

)
(2.38)

and σi = −σi. The Lie algebra

[σa, σb] = ifabcσc (2.39)

is ful�lled for

fabc = εabc (2.40)

where εabc is the Levi-Civita tensor. And we have

d(f) =2 d(a) = 3 (2.41)

C2(f) =
3

2
C2(a) = 3 (2.42)

I(f) =
1

2
I(a) = 2 (2.43)

2.2.2.4.2 SU(3)

The common representation for SU(3) are given by the Gell-Mann Matrices λa

T af =
1

2
λa (2.44)
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With

λ1 =


0 1 0

1 0 0

0 0 0

 λ2 =


0 −i 0

i 0 0

0 0 0

 (2.45)

λ3 =


1 0 0

0 −1 0

0 0 0

 λ4 =


0 0 1

0 0 0

1 0 0

 (2.46)

λ5 =


0 0 −i
0 0 0

i 0 0

 λ6 =


0 0 0

0 0 1

0 1 0

 (2.47)

λ7 =


0 0 0

0 0 −i
0 i 0

 λ8 =
1√
3


1 0 0

0 1 0

0 0 −2

 (2.48)

And we have

d(f) =3 d(a) = 8 (2.49)

C2(f) =
4

3
C2(a) = 3 (2.50)

I(f) =
1

2
I(a) = 3 (2.51)

2.2.3 Other groups relevant in particle physics

a) Lorentz Group: the Lorentz group is the set of all 4× 4 real matrices that leave the line element
in Minkowski space invariant:

s2 = (x0)2 − (xi)2 = xµgµνx
ν (2.52)

It is parametrised by

x′µ = Λµνx
ν (2.53)

The Lorentz group has six generators:

• three generators J i creating rotations

• three generators Ki creating boosts

b) Poincare Group: the Poincare group is the generalisation of the Lorentz group including trans-
lation:

x′µ = Λµνx
ν + aµ (2.54)

The generator of the translation is the four momentum operator pµ
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2.3. QUANTUM FIELD THEORY

2.3 Quantum Field Theory

2.3.1 Lagrangian formalism

We are working with the Lagrangian formalism of quantum �eld theory. The basic features are

• space�time symmetry in terms of Lorentz invariance, as well as internal symmetries like gauge
symmetries

• causality

• local interactions

Particles are described by �elds that are operators on the quantum mechanical Hilbert space of the
particle states, acting as creation and annihilation operators for particles and antiparticles. We need in
the following particles characterised by their spin:

• spin-0: complex or real scalar �elds φ(x), ϕ(x)

• spin- 1
2 : fermions, described by two- or four component spinor �elds ψL,R, ψ(x).

• spin-1: vector bosons Aµ(x)

The dynamics of the physical system involving a set of �elds Φ is determined by the Lorentz-invariant
Lagrangian L. The action is given by

S[Φ] =

∫
d4xL

(
Φ(x)

)
, (2.55)

The equations of motions follow as Euler�Lagrange equations from Hamilton's principle,

δS = S[Φ + δΦ]− S[Φ] = 0 . (2.56)

Let's go back to mechanics: for n generalised coordinates qi and velocities q̇i the Lagrangian reads:
L(q1, . . . q̇1, . . . ) The equations of motion are calculated from (i = 1, . . . n)

d

dt

∂L

∂q̇i
− ∂L

∂qi
= 0 . (2.57)

Going to �eld theory, one has to perform the replacement

qi → Φ(x) , q̇i → ∂µΦ(x) , L(q1, . . . qn, q̇1, . . . q̇n)→ L(Φ(x), ∂µΦ(x)) (2.58)

The equations of motion become �eld equations which are calculated from

∂µ
∂L

∂(∂µΦ)
− ∂L
∂Φ

= 0 , (2.59)

2.3.2 Free quantum �elds

2.3.2.1 Scalar �elds

The equation of motion for a scalar �eld is known as �Klein�Gordon equation:

(∂µ∂
µ +m2)φ = 0 . (2.60)
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The solution can be expanded in terms of the complete set of plane waves e±ikx,

φ(x) =
1

(2π)3/2

∫
d3k

2k0
[a(k) e−ikx + a†(k) eikx ] (2.61)

with k0 =

√
~k

2
+m2. Here, we used annihilate and creation operators a†, a:

a†(k) |0〉 = |k〉

a(k) |k′〉 = 2k0 δ3(~k − ~k ′) |0〉 . (2.62)

The Lagrangian for a free real or complex scalar �eld with mass m is

Lreal =
1

2
(∂µφ)2 − m2

2
φ2 (2.63)

Lcomplex = (∂µφ)†(∂µφ)−m2 φ†φ (2.64)

One can easily check that they give us the Klein�Gordon Equation as equation of motion. A complex
scalar �eld φ† 6= φ has two degrees of freedom. It describes spin-less particles which carry a charge and
can be interpreted as particles and antiparticles.

So far, we have considered particles without any space�time restrictions. Now, we want to consider the
case that a particle propagates from a point-like source at a given space-time point. This is described by
the inhomogeneous �eld equation

(∂µ∂
µ +m2)D(x− y) = −δ4(x− y) . (2.65)

D(x− y) is called Green function. The solution can easily be determined by a Fourier transformation

D(x− y) =

∫
d4k

(2π)4
D(k) e−ik(x−y) (2.66)

giving in momentum space

(k2 −m2)D(k) = 1 . (2.67)

The solution

iD(k) =
i

k2 −m2 + iε
(2.68)

is the causal Green function or the Feynman propagator of the scalar �eld. The overall factor i is by
convention. The term +iε in the denominator with an in�nitesimal ε > 0 is a prescription of how to treat
the pole in the integral (2.66); it corresponds to the special boundary condition of causality for D(x− y)
in Minkowski space, which means

• propagation of a particle from y to x if x0 > y0,

• propagation of an antiparticle from x to y if y0 > x0.
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In a Feynman diagram, the scalar propagator is drawn as dashed line.

Complex Scalar φ(k,m) 1
k2−m2+iε (2.69)

Real Scalar ϕ(k,m) 1
k2−m2+iε (2.70)

For complex scalars the arrow shows the �ow of the charge.

2.3.2.2 Dirac �elds

Equation of motion Spin- 1
2 particles with mass m are often described by 4-component spinor �elds,

ψ(x) =


ψ1(x)

ψ2(x)

ψ3(x)

ψ4(x)

 . (2.71)

and obey the Dirac�Equation

(iγµ∂µ −m)ψ = 0 . (2.72)

This equation is obtained from the Lagrangian

Lfermion = ψ (iγµ∂µ −m)ψ , (2.73)

involving the adjoint spinor

ψ = ψ† γ0 = (ψ∗1 , ψ
∗
2 ,−ψ∗3 ,−ψ∗4) . (2.74)

The Dirac matrices γµ (µ = 0, 1, 2, 3) are 4× 4 matrices which ful�l the anti-commutator relations

{γµ, γν} ≡ γµγν + γνγµ = 2gµν . (2.75)

One possible representation is to express the matrices in terms of the the Pauli matrices σ1,2,3 as

γ0 =

(
1 0

0 −1

)
, γk =

(
0 σk

−σk 0

)
. (2.76)

Another matrix, γ5, is often very useful:

γ5 =

(
−1 0

0 1

)
(2.77)
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There are two types of solutions for the Dirac equation, corresponding to particle and anti-particle wave
functions,

u(p) e−ipx and v(p) eipx (2.78)

which are used to write the Dirac �eld as

ψ(x) =
1

(2π)3/2

∑
σ

∫
d3k

2k0

[
cσ(k)uσ(k) e−ikx + d †σ(k) vσ(k) eikx

]
, (2.79)

with

• annihilation operators cσ for particles and dσ for anti-particles

• creation operators c†σ and d†σ for particles and antiparticles

We still have to determine the propagator of the Dirac �eld, which is the solution of the inhomogeneous
Dirac equation with point-like source,

(iγµ∂µ −m)S(x− y) = 1 δ4(x− y) . (2.80)

Using a Fourier transformation as in the scalar case, we �nd

i S(k) =
i

6 k −m+ iε
=

i (6 k +m)

k2 −m2 + iε
, (2.81)

We introduce a graphical symbol for the propagator:

Dirac Fermion ψ(k,m) i /k−m
k2−m2+iε (2.82)

The arrow at the line denotes the �ow of the particle charge.
External fermions are depicted as

incoming particle u(k) (2.83)

incoming anti-particle v(k) (2.84)

outgoing anti-particle v(k) (2.85)

outgoing particle u(k) (2.86)
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2.3.2.3 Vector �elds

A vector �eld Aµ(x) describes particles with spin 1. We concentrate here on the massless case with two
degrees of freedom.
The Lagrangian of such a �eld is

L = −1

4
FµνF

µν with Fµν = ∂µAν − ∂νAµ + gfabcAbµA
c
ν . (2.87)

The last term is only present for non-Abelian gauge �elds. The �eld equations are Maxwell's equations
for the vector potential,(

� gµν − ∂µ∂ν
)
Aν = 0 . (2.88)

The propagator of the vector �elds depends on the chosen gauge. In general Rξ gauge it is given by

iDρν(k) =
i

k2 + iε

[
−gνρ + (1− ξ) kνkρ

k2

]
. (2.89)

which becomes very simple in Feynman gauge with ξ = 1.

The graphical symbol for the vector-�eld propagator (for both massive and massless) is a wavy
line which carries the momentum k and two Lorentz indices

massless Vector boson Aµ(k) − i gµν
k2+iε (2.90)

massive Vector boson Aµ(k,m) − i gµν−
kνkµ

m2

k2−m2+iε (2.91)

(Possible) arrows at the lines denote the �ow of the particle charge.
External vectors are depicted as

incoming particle εµ (2.92)

outgoing particle ε∗µ (2.93)

2.3.3 Gauge invariance

So far, we have not considered any symmetry. We change that now and apply (local) gauge transforma-
tions to the �elds.

φ(x)→ eigΛ(x)φ(x) (2.94)

φ(x)∗ → φ(x)∗e−igΛ(x) (2.95)

Ψ(x)→ eigΛ(x)Ψ(x) (2.96)

Ψ̄(x)→ Ψ̄e−igΛ(x) (2.97)
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However, one can check that the Lagrangians for scalars and fermions are not invariant under these
transformations. For instance, the fermionic part of the Lagrangian transforms as

L′fermion =i(Ψ̄)′ /∂(Ψ)′ −m(Ψ̄)′Ψ′ (2.98)

=iΨ̄e−igΛ(x) /∂eigΛ(x)Ψ−mΨ̄ (e−igΛ(x)eigΛ(x))︸ ︷︷ ︸
=1

Ψ (2.99)

=iΨ̄(igΛ(x)/∂Λ(x))(/∂Ψ)−mΨ̄Ψ (2.100)

6=Lfermion (2.101)

We need another ingredient to built kinetic terms for scalars and fermions which are gauge invariant: we
introduce a massless gauge �elds Aµ which transforms as

Aµ → Aµ − ∂µΛ(x) (2.102)

In addition, we de�ne the covariant derivative:

∂µ → Dµ = ∂µ + igAµ (2.103)

g is a free parameter which we call 'gauge coupling'. One �nds that the covariant derivative transforms
as

(DµΨ)′ =D′µΨ′ (2.104)

=(∂µ + ig(Aµ − ∂µΛ))eigΛΨ (2.105)

=eigΛ(∂µ + igAµ)Ψ− ig∂µΛΨ + (∂µe
igΛ)Ψ (2.106)

=eigΛ(∂µ + igAµ)Ψ (2.107)

=eigΛDµΨ (2.108)

Thus, the Lagrangian with derivatives replaced by covariant derivatives are invariant.

Ψ̄DµΨ→ (Ψ̄)′(DµΨ)′ = Ψ̄e−igΛeigΛDµΨ = Ψ̄DµΨ (2.109)

Similarly, one can show that for the scalar terms in the Lagrangian the identity

(DµφD
µφ∗)′ = DµφD

µφ∗ (2.110)

holds.
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In order to obtain a gauge theory, i.e. a theory in which the Lagrangian is invariant under a local
transformation, the derivative must be replaced by the covariant derivative involving gauge
�elds:

∂µ → Dµ = ∂µ + igTAµ (2.111)

This introduces interaction terms between the fermions and scalars and the gauge �elds which are
represented by the following Feynman diagrams:

ψ̄

ψ

Aµ

φ∗

φ

Aµ

φ∗

φ

Aµ

Aν

igγµ ig(pνin − p
µ
out) ig2gµν

2.3.4 Spontaneous symmetry breaking

A mass term for gauge bosons would read

m2
VAµA

µ (2.112)

However, this is not gauge invariant:

(m2
VAµA

µ)′ = m2
VAµA

µ +m2
V (∂µΛ)(∂µΛ) (2.113)

Thus, explicit mass terms are not possible and we must generated them via the so called Higgs�mechanism.
Let's assume a real scalar ϕ and the following potential:

V (ϕ) =
1

2
λϕ4 + µ2ϕ (2.114)

Depending on the sign of µ2 the shape of the potential is di�erent

-1000 -500 500 1000
ϕ

5.0×1010

1.0×1011

1.5×1011

2.0×1011

V(ϕ)

λ=0.1, μ2=300^2

-1000 -500 500 1000
ϕ

-2.0×1010

-1.5×1010

-1.0×1010
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5.0×109

1.0×1010

V(ϕ)

λ=0.1, μ2=-300^2
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For

• µ2 > 0: ϕ = 0 is the correct vacuum

• µ<0: the vacuum is at ϕ 6= 0

We shift ϕ in a way that we are for ϕ = 0 at the minimum of the potential:

φ→ φ+ v (2.115)

We �nd

V (ϕ = 0) =
1

2
λv4 + µ2v2 (2.116)

→ ∂V

∂v
=2λv3 + 2vµ2 ≡ 0 (2.117)

Thus

v =
√
−µ2/λ (2.118)

is the value of the VEV (vacuum expectation value).

Higgs mechanism We consider now a gauge theory with a complex �eld φ. We want to insert

φ→ 1√
2

(ϕ+ v + iσ) (2.119)

in the general Lagrangian

L = DµφD
µφ∗ −m2|φ|2 − λ|φ|4 − 1

4
FµνF

µν (2.120)

We get

L =− 1

4
FµνF

µµ +
1

2
∂µϕ∂

µϕ+
1

2
∂µσ∂

µσ

+ gvAµ∂
µσ +

1

2
g2v2AµA

µ

+
1

2
g2(Aµ)2ϕ(2v + ϕ)− 1

2
ϕ2(3λv2 +m2)− λvϕ3 − 1

4
λϕ4 (2.121)

The �rst line are just the ordinary kinetic terms. However, we see that an e�ective mass term 1
2g

2v2

for the vector bosons has been generated. There is also a term which mixes the �eld σ, which becomes
massless, and Aµ.
A massive vector boson has three degrees of freedom, while a massless one has only two. Therefore, one
says that σ is 'eaten' by the vector boson to form its longitudinal component. σ is called 'Goldstone' (or
'Nambu-Goldstone') boson.
It is common to introduce gauge �xing terms in a way that they cancel the mixing terms between �eld
σ and Aµ.

LGF = − 1

2ξ

(
∂µA

µ − gvξσ)2 (2.122)
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Thus, the Lagrangian becomes

L+ LGF = +
1

2
∂µσ∂

µσ − g2v2ξσ2 +
1

2
g2v2AµA

µ + . . . (2.123)

what gives a relation between the Goldstone mass and the mass of the vector boson

M2
G = ξM2

A (2.124)

In the unitarity gauge ξ →∞, the Goldstone disappears from the spectrum. The same could have been
obtained by starting with the gauge transformation However, before we do this, we apply the following
gauge transformation:

φ→ φ′ =e−iσ/vφ =
1√
2

(v + ϕ) (2.125)

Aµ → A′µ =Aµ −
1

gv
∂µσ (2.126)

The Higgs mechanism generates mass terms for vector-boson due to vacuum expectation values
of a complex scalar �eld

φ→ 1√
2

(ϕ+ iσ + v) (2.127)

While the real (CP-even) component ϕ of the scalar is a physical degree of freedom, the imaginary
(CP-odd) component σ becomes the longitudinal mode of the massive vector boson. In general
Rξ gauge the Goldstone mass MG is related to the mass MA of the vector boson Aµ by

M2
G = ξM2

A (2.128)

2.3.5 Weyl Fermions

We have so far used 4-component (Dirac) fermions. However, it will turn out that it is often more
convenient to use actually 2-component notation:

• in any model which violates parity (as the SM or all extension of it), each Dirac fermion has left-
handed and right-handed parts with completely di�erent electroweak gauge interactions:
→ The two-component Weyl fermion notation has the advantage of treating fermionic degrees of
freedom with di�erent gauge quantum numbers separately from the start.

• if one uses four-component spinor notation in the SM (or beyond), then there would be a sea of
projection operators

PL = (1− γ5)/2, PR = (1 + γ5)/2 (2.129)

• in supersymmetric models the minimal building blocks of matter are chiral supermultiplets, each
of which contains a single two-component Weyl fermion

Since the two-component notation might be unfamiliar, we want to practice it a bit!
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2.3.5.1 Two-component spinors

In this representation, a four-component Dirac spinor is written in terms of 2 two-component, complex
anti-commuting objects ξα and (χ†)α̇ ≡ χ†α̇, with two distinct types of spinor indices α = 1, 2 and
α̇ = 1, 2:

ΨD =

(
ξα

χ†α̇

)
. (2.130)

It follows that

ΨD = Ψ†D

(
0 1

1 0

)
=
(
χα ξ†α̇

)
. (2.131)

Undotted (dotted) indices from the beginning of the Greek alphabet are used for the �rst (last) two
components of a Dirac spinor. The �eld ξ is called a �left-handed Weyl spinor" and χ† is a �right-handed
Weyl spinor". The names �t, because

PLΨD =

(
ξα

0

)
, PRΨD =

(
0

χ†α̇

)
. (2.132)

The Hermitian conjugate of any left-handed Weyl spinor is a right-handed Weyl spinor:

ψ†α̇ ≡ (ψα)† = (ψ†)α̇ , (2.133)

and vice versa:

(ψ†α̇)† = ψα. (2.134)

Any particular fermionic degrees of freedom can be described equally well using a left-handed Weyl
spinor (with an undotted index) or by a right-handed one (with a dotted index). By convention,
all names of fermion �elds are chosen so that left-handed Weyl spinors do not carry daggers and
right-handed Weyl spinors do carry daggers.

2.3.5.2 Index operations

The heights of the dotted and undotted spinor indices are important. The spinor indices are raised and
lowered using the anti-symmetric symbol

ε12 = −ε21 = ε21 = −ε12 = 1, ε11 = ε22 = ε11 = ε22 = 0, (2.135)

according to

ξα = εαβξ
β , ξα = εαβξβ , χ†α̇ = εα̇β̇χ

†β̇ , χ†α̇ = εα̇β̇χ†
β̇
. (2.136)

This is consistent since εαβε
βγ = εγβεβα = δγα and εα̇β̇ε

β̇γ̇ = εγ̇β̇εβ̇α̇ = δγ̇α̇.

As a convention, repeated spinor indices contracted like

α
α or α̇

α̇ (2.137)
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can be suppressed. In particular,

ξχ ≡ ξαχα = ξαεαβχ
β = −χβεαβξα = χβεβαξ

α = χβξβ ≡ χξ (2.138)

with, conveniently, no minus sign in the end. [A minus sign appeared in eq. (2.138) from exchanging the
order of anti-commuting spinors, but it disappeared due to the anti-symmetry of the ε symbol.] Likewise,

ξ†χ† and χ†ξ† are equivalent abbreviations for χ†α̇ξ
†α̇ = ξ†α̇χ

†α̇, and in fact this is the complex conjugate
of ξχ:

(ξχ)∗ = χ†ξ† = ξ†χ†. (2.139)

In a similar way, one can check that

(χ†σµξ)∗ = ξ†σµχ = −χσµξ† = −(ξσµχ†)∗ (2.140)

stands for ξ†α̇(σµ)α̇αχα, etc. Note that when taking the complex conjugate of a spinor bilinear, one
reverses the order. The spinors here are assumed to be classical �elds; for quantum �elds the complex
conjugation operation in these equations would be replaced by Hermitian conjugation in the Hilbert space
operator sense.

2.3.5.3 Lagrangian for Weyl fermions

With these conventions, the Dirac Lagrangian can now be rewritten:

LDirac = iξ†σµ∂µξ + iχ†σµ∂µχ−M(ξχ+ ξ†χ†) (2.141)

where we have dropped a total derivative piece −i∂µ(χ†σµχ), which does not a�ect the action.
A four-component Majorana spinor can be obtained from the Dirac spinor of eq. (2.131) by imposing the
constraint χ = ξ, so that

ΨM =

(
ξα

ξ†α̇

)
, ΨM =

(
ξα ξ†α̇

)
. (2.142)

The four-component spinor form of the Lagrangian for a Majorana fermion with mass M ,

LMajorana =
i

2
ΨMγ

µ∂µΨM −
1

2
MΨMΨM (2.143)

can therefore be rewritten as

LMajorana = iξ†σµ∂µξ −
1

2
M(ξξ + ξ†ξ†) (2.144)

in the more economical two-component Weyl spinor representation. Note that even though ξα is anti-
commuting, ξξ and its complex conjugate ξ†ξ† do not vanish, because of the suppressed ε symbol, see
eq. (2.138). Explicitly, ξξ = εαβξβξα = ξ2ξ1 − ξ1ξ2 = 2ξ2ξ1.

Any theory involving spin-1/2 fermions can always be written in terms of a collection of left-handed
Weyl spinors ψi with

L = iψ†iσµ∂µψi −M ij(ψ†iψ
†
j − ψiψj) (2.145)

For i = j one has a Majorana mass term, and i 6= j gives Dirac mass term.
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There is a di�erent ψi for the left-handed piece and for the Hermitian conjugate of the right-handed piece
of a Dirac fermion. Given any expression involving bilinears of four-component spinors

Ψi =

(
ξi

χ†i

)
, (2.146)

labelled by a �avor or gauge-representation index i, one can translate into two-component Weyl spinor
language (or vice versa) using the dictionary:

ΨiPLΨj = χiξj , ΨiPRΨj = ξ†iχ
†
j , (2.147)

Ψiγ
µPLΨj = ξ†i σ

µξj , Ψiγ
µPRΨj = χiσ

µχ†j (2.148)

2.4 The Standard Model of Particle Physics

2.4.1 Gauge Symmetries

The so called standard model of particle physics (SM) is a gauge theory.

The gauge symmetry of the SM is

G = SU(3)C × SU(2)L × U(1)Y (2.149)

with

• C: Colour

• L: Left

• Y : Hypercharge

2.4.2 Particle Content

Before symmetry breaking, the particle content of the SM is

Vector Bosons B (1,1)0

W (1,2)0

g (8,0)0

Fermions eR (1,1)1

(3 Generations) l (1,2)−1/2

uR (3̄,1)−2/3

dR (3̄,1)1/3

q (3,2)1/6

Scalar H (1,2)1/2

The last column shows the quantum numbers with respect to G. These quantum numbers are not as
random as it might look. Special conditions must be ful�lled to avoid anomalies, e.g.
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• Gauge anomalies∑
f

Y (f)3 ≡ 0 (2.150)

• Gauge × gravity anomalies∑
f

Y (f) ≡ 0 (2.151)

• Witten anomaly: even number of SU(2) doublets

Check:

∑
f

Y (f) = 3︸︷︷︸
generations

×

Y (e) + 2︸︷︷︸
isospin

×Y (l) + 3︸︷︷︸
color

×Y (uR) + 3× Y (dR) + 2× 3× Y (q)


(2.152)

=3×
(

1 + 2

(
−1

2

)
+ 3

(
−2

3

)
+ 3

(
1

3

)
+ 6

(
1

6

))
(2.153)

=3× (1− 1− 2 + 1 + 1) (2.154)

=0 (2.155)∑
f

Y (f)3 =3×
(

1 + 2

(
−1

8

)
+ 3

(
− 8

27

)
+ 3

(
1

27

)
+ 6

(
1

216

))
(2.156)

=3×
(

1− 1

4
− 8

9
+

1

9
+

1

36

)
(2.157)

=0 (2.158)

⇒ One needs to be careful when adding new fermions in order not to introduce anomalies

2.4.3 Gauge part of the Lagrangian

The gauge part of the Lagrangian before symmetry breaking reads

L = DµHD
µH∗ + i

∑
f

f†σµDµf +
∑
V

VµνV
µν (2.159)

with f = {l, eR, q, dR, uR} and V = {B,W a, Ga}. Let's be more explicit at some examples. Note, we
consider only one generation of fermions because gauge couplings are always �avour diagonal.

• Right leptons

e†Rσ
µDµeR = e†Rσ

µ(∂µ + ig1Bµ)eR (2.160)

• Left leptons carry one isospin index, i.e. li with i = 1, 2

l†σµDµl = l†iσ
µ(∂µδij − i

1

2
g1Bµδij + ig2

σa

2
W a
µ )lj (2.161)
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• Right up-quarks carry one colour index, i.e. uR,α with α = 1, 2, 3

u†Rσ
µDµuR = u†R,ασ

µ(∂µδαβ − i
2

3
g1Bµδαβ + ig3

λa

2
Ga)uRβ (2.162)

From these expressions the vertices are derived:

eR

eR

Bµ

li

lj

Bµ

li

lj

W a
µ

σµg1 −σµδij g12 σµσ
a
ij
g2
2

qiα

qjβ

W a
µ

qiα

qjβ

gaµ

σµδαβσ
a
ij
g2
2 σµδijλ

a
ij
g3
2

2.4.4 Electroweak symmetry breaking

2.4.4.1 The Higgs potential

The Higgs potential in the SM is given by

V (H) =
1

2
λ|H|4 + µ2|H|2 (2.163)

Note, di�erent conventions for the normalisation of the quartic coupling exist in literature. µ2 < 0 causes
a spontaneous breaking of the electroweak symmetry (EWSB). The Higgs �eld becomes(

H+

H0

)
→

(
G+

1√
2

(
h+ iG0 + v

) ) (2.164)
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The Higgs potential becomes

V =
1

8
λ((G0)2 + (h+ v)2 + 2G+G−)2 +

1

2
µ2((G0)2 + (h+ v)2 + 2G+G−) (2.165)

We can calculate the Higgs coupling and masses form this potential

a) Tadpole conditions: The condition for being at the minimum of the potential is

∂V (h = 0)

∂v
≡ 0 =

∂

∂v

(
1

8
λv4 +

1

2
µ2v2

)
(2.166)

=
1

2
λv3 + µ2v (2.167)

→ µ2 =− 1

2
v2λ (2.168)

Thus, one can eliminate µ2 from all following expressions.

b) CP-even mass: the Higgs mass is given by

m2
h =

∂2V

∂h2
|h=G0=G+=0 (2.169)

=
3

2
λv2 + µ2 (2.170)

=
3

2
λv2 − 1

2
λv2 (2.171)

= λv2 (2.172)

c) Goldstone masses: the mass of G0 becomes

m2
G0 =

∂2V

∂G02 |h=G0=G+=0 (2.173)

= µ2 +
1

2
λv2 = 0 (2.174)

Since we are working here in Landau gauge, the Goldstone mass vanishes as expected. Similarly,
one can show m2

G+ = 0

d) Cubic Higgs coupling: the cubic Higgs self-interaction is

chhh =
∂3L

∂h3
|h=G0=G+=0 (2.175)

= −3vλ (2.176)

= −3
m2
h

v
(2.177)

e) Quartic Higgs coupling: the quartic Higgs self-interaction is

chhhh =
∂4L

∂h4
|h=G0=G+=0 (2.178)

= −3λ (2.179)

The entire Higgs sector of the SM can be parametrised after EWSB by just two parameters: λ
and v.
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2.4.4.2 Electroweak gauge bosons

The gauge interactions of the Higgs �eld become after EWSB:

DµHD
µH∗ =

(
∂µδik + i(

1

2
g1Bµδik + g2

σaik
2
W a)Hi

)(
∂µδjk − i(

1

2
g1Bµδjk + g2

σajk
2
W a)H∗j

)
(2.180)

=
1

2
∂µh∂

µh+
1

2
∂µG

0∂µG0 + ∂µG
+∂µG−

+
1

4

(
(h+ v)2 + (G0)2

) (
g2

1B
2 − 2g1g2BW

3 + g2
2(W 2

1 +W 2
2 +W 2

3 )
)

+ . . . (2.181)

On can see in the second line that not only mass terms for the vector bosons are generated, but also a
mixing between B and W 3 occurs. The neutral mass matrix MV reads

M2
V = (BW3)

(
1
4v

2g2
1 − 1

4g1g2v
2

− 1
4g1g2v

2 1
4g

2
2v

2

)(
B

W3

)
(2.182)

The mixed particles, which appear after diagonalisation, are called photon (γ) and Z-Boson (Z). Their
masses are the eigenvalues which are given by

mγ =0 (2.183)

m2
Z =

1

4
(g2

1 + g2
2)v2 (2.184)

The rotation matrix which diagonalises M2
V 4 is(

γ

Z

)
=

(
cos ΘW sin ΘW

− sin ΘW cos ΘW

)(
B

W 3

)
(2.185)

with the Weinberg angle ΘW . This de�nes the electric charge as:

e = g1 cos ΘW = g2 sin ΘW (2.186)

One remaining massless gauge boson corresponds to one unbroken symmetry. Therefore, the remaining
symmetry of the SM is

G → SU(3)C × U(1)em (2.187)

Since W1 and W2 are not electromagnet eigenstates, they are combined to new eigenstate of U(1)em

W± =
1√
2

(W1 ± iW2) (2.188)

The mass of W± is given by

M2
W =

1

4
g2v2 (2.189)

The massless states G0 and G± are the Goldstone bosons of Z and W± and form their longitudinal
components.

Let's count the (real) degrees of freedom
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Before EWSB After EWSB

massless vectors: B, W a 4 massless vectors: γ 1

massive vectors: - 0 massive vectors: Z, W+ 3

complex scalars: H0, H± 4 complex scalars: G± 2

real scalars: - 0 real scalars: h, G0 2

The kinetic term for the mass eigenstates h, the SM Higgs boson, becomes after applying all rotations:

L =

(
∂µδij + i

1

2
g1δijBµ + i

1

2
g2σ

a
ijW

a
µ

)
Hi

(
∂µδij − i

1

2
g1δijB

µ − i1
2
g2σ

a
ji(W

a)µ
)
H∗j

= . . .

=
1

4
(h+ v)2

[
2g2

2W
+
µ (W−)µ + γµZ

µ
(
(g2

1 − g2
2) sin 2ΘW + 2g1g2 cos 2ΘW

)
+

γµγ
µ(g1 cos ΘW − g2 sin ΘW )2 + ZµZ

µ(g1 sin ΘW + g2 cos Θ)2
]

+ (∂µ + iγµ(g1 cos Θ− g2 sin Θ) + iZµ(g1 sin ΘW + g2 cos Θ))h

(∂µ − iγµ(g1 cos Θ− g2 sin Θ)− iZµ(g1 sin ΘW + g2 cos Θ))h (2.190)

+ L(G0, G+, h)

=
1

4

e2

sin2 ΘW

(h+ v)2

(
2W+

µ (W−)µ +
1

cos2 ΘW
ZµZ

µ

)
+

1

2
∂µh∂

µh+ L(G0, G+, h) (2.191)

Thus, the couplings between the Higgs to the photon drop out after performing all replacements cor-
rectly1. There is also no h − h − Z interaction (which is forbidden by CP), but only h − G0 − Z. The
vertices for the Higgs to the gauge bosons are given by

1'At tree-level, the photon couples only to charged particles and the Higgs only to massive ones'
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Zµ

Zµ

h

(W−)µ

W+
µ

h

2iv e2

sin2 2ΘW
1
2 iv

e2

sin2 ΘW

Zµ

Zµ

h

h

W+
µ

(W−)µ

h

h

2i e2

sin2 2ΘW
1
2 i

e2

sin2 ΘW

2.4.5 Fermion masses and Yukawa sector

It is not possible in the SM to write down mass terms for fermions because of the quantum numbers for
left and right �elds.

⇒ Fermion masses are spontaneously generated after EWSB via interactions with the Higgs �eld

The interactions between the Higgs and the SM fermions are called 'Yukawa' interactions.

LY = Yuq
†uRH + Ydq

†dRH
∗ + Yel

†eRH
∗ + h.c. (2.192)

In the general case, Yf are (complex) 3 × 3 matrices. Thus, in the most general form the Lagrangian
reads with all indices written explicitly

Yuq
†uRH ≡ δαβYu,abq†aiαuR,bβεijHj (2.193)

If we neglect �avour mixing for the moment, one can write

LYu = Yuq
†
iαuR,βεijHj (2.194)

= Yu(u†L,αH0 − d†L,αH
+)uR,βδαβ (2.195)

what becomes after EWSB

LYu =
1√
2

(v + h)Yuu †L uR + . . . (2.196)
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i.e. the fermion mass is given by

mu =
1√
2
vYu (2.197)

If we include �avour mixing, the mass terms for the quarks after EWSB read

Lq = (d†Ls
†
Lb
†
L)


vYd,11 vYd,12 vYd,13

vYd,21 vYd,22 vYd,33

vYd,31 vYd,32 vYd,33




dR

uR

bR

+(u†Lc
†
Lt
†
L)


vYu,11 vYu,12 vYu,13

vYu,21 vYu,22 vYu,33

vYu,31 vYu,32 vYu,33




uR

cR

tR


(2.198)

The six quark masses are the eigenvalues of the matrices vYd and vYu. These matrices are diagonalised
by four unitary matrices:

uR →UR = U∗uuR (2.199)

dR →DR = U∗ddR (2.200)

uL →UL = VuuL (2.201)

dL →DL = VduL (2.202)

Only one combination of these matrices is physically relevant and de�nes the CKM (Cabibbo-Kobayashi-
Maskawa) matrix

VCKM = V †uVd (2.203)

The entire �avour structure of the SM quark sector is encoded in the CKM matrix which can be
parametrised by three angles Θ12, Θ23, Θ13 and one phase δ

VCKM =


1 0 0

0 c23 s23

0 −s23 c23




c13 0 s13e
−iδ

0 1 0

−s13e
iδ 0 c13



c12 s12 0

−s12 c12 0

0 0 1

 (2.204)

δ is the only source of CP violation in the SM and highly restricted by experiments

The CKM matrix shows up explicitly in vertices involving the W -boson

u†iα

djβ

W+
µ

− i√
2
g2σµV

ij
CKMδαβ
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Chapter 3

Supersymmetric Formalities

3.1 Basics

3.1.1 SUSY transformations

A supersymmetry transformation turns a bosonic state into a fermionic state, and vice versa.

Q|Boson〉 = |Fermion〉, Q|Fermion〉 = |Boson〉. (3.1)

The properties of the operator Q are:

• Q is an anti-commuting spinor

• Q† is also a symmetry generator

• Q, Q† are carry spin 1/2 → SUSY is a space�time symmetry.

• Q and Q† satisfy the following algebra (schematically):

{Q,Q†} = Pµ, (3.2)

{Q,Q} = {Q†, Q†} = 0, (3.3)

[Pµ, Q] = [Pµ, Q†] = 0, (3.4)

where Pµ is the four-momentum generator of spacetime translations. Note, we skipped here the
spinor indices on Q, Q†. (The accurate expressions could be given once we have developed the
necessary formalism.)

• Q and Q† commute with P 2

• Q and Q† commute with all generators of gauge transformations

A non-trivial connection between internal and external symmetries was forbidden by the no-go theorem
of Coleman-Mandula. However, this doesn't apply to spinor operators.

We consider only the case of a single set of generators Q, Q†, what is also called N = 1 supersymmetry.
N = 2 or N = 4 theories are mathematically interesting, but phenomenologically not relevant in four
space�time dimensions. One would need extra dimensions to get chiral fermions or parity violation.
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3.1.2 Representations

A supersymmetric theory must consist of states which are irreducible representations of the SUSY algebra.
These states are called �supermultiplets�. The properties of supermultiplets are:

• Each supermultiplet consists of both fermionic and bosonic states. Those are called �superpartners�

• If |Ω〉 and |Ω′〉 are members of the same supermultiplet, then |Ω′〉 is proportional to some combi-
nation of Q and Q† operators acting on |Ω〉 (up to space�time translation or rotation)

• particles within the same supermultiplet must have equal eigenvalues of P 2, i.e. equal masses

• particles within the same supermultiplet must sit in the same representation of the gauge groups

• Each supermultiplet contains an equal number of fermionic and bosonic degrees of freedom

nB = nF (3.5)

We are mainly interested in the following two kinds of supermultiplets:

a) Chiral supermultiplet: the simplest possibility for a supermultiplet consistent with eq. (3.5) has
a single Weyl fermion (with two spin helicity states, so nF = 2) and two real scalars (each with
nB = 1). It is convenient to arrange the real scalars as one complex �eld.

b) Vector supermultiplet: the simplest possibibility of a supermultiplet containing gauge �elds
contains a spin-1 vector boson. We are only interested in renormalizable gauge theories, i.e. the
vector boson must be massless (before spontaneous symmetry breaking) and has therefore two
degrees of freedom: nB = 2. Its superpartner is therefore a massless spin-1/2 Weyl fermion, again
with two helicity states, so nF = 2.

If we include gravity, then the spin-2 graviton (with 2 helicity states, so nB = 2) has a spin-3/2 super-
partner called the gravitino. The gravitino would be massless if supersymmetry were unbroken, and so
it has nF = 2 helicity states.

One can check that other possible combinations of particles which satisfy nB = nF are always reducible.
For example: If a gauge symmetry could be broken without SUSY breaking then a massless vector super-
multiplet would �eat� a chiral supermultiplet. The degrees of freedom of the massive vector supermultiplet
are:

massive vector : nB = 3

massive Dirac fermion : nF = 4

a real scalar : nB = 1

3.2 SUSY Lagrangian

3.2.1 A free chiral supermultiplet

We have already seen that the easiest supersymmetric object is a chiral supermultiplet with a single
left-handed two-component Weyl fermion ψ and a complex scalar φ. We forget for the moment about all
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possible interaction or mass terms. Under this assumption, the action of a single supermultiplet can be
written in terms of its component �elds as:

S =

∫
d4x (Lscalar + Lfermion) , (3.6)

with

Lscalar =∂µφ∗∂µφ (3.7)

Lfermion =iψ†σµ∂µψ. (3.8)

This is called the massless, non-interacting Wess-Zumino model.

3.2.1.1 SUSY invariance

A SUSY transformation should turn the scalar boson �eld φ into something involving the fermion �eld
ψα. The simplest possibility is

δφ = εψ, δφ∗ = ε†ψ†, (3.9)

where εα parameterizes the supersymmetry transformation. εα is an in�nitesimal, anti-commuting, two-
component Weyl fermion which we assume for now to be constant, i.e.

∂µε
α = 0 (3.10)

The mass dimension os

[ε] = [φ]− [ψ] = 1− 3

2
= −1

2
(3.11)

Applying the transformation, we �nd that the scalar part of the Lagrangian transforms as

δLscalar = ε∂µψ ∂µφ
∗ + ε†∂µψ† ∂µφ. (3.12)

This must be canceled by δLfermion (up to a total derivative). We can guess now how the transformation
of the fermion must look like. There is only one chance (up to overall constants) that a cancellation can
happen, namely

δψα = −i(σµε†)α ∂µφ, δψ†α̇ = i(εσµ)α̇ ∂µφ
∗. (3.13)

With this guess, one immediately obtains

δLfermion = −εσµσν∂νψ ∂µφ∗ + ψ†σνσµε† ∂µ∂νφ . (3.14)

This can be simpli�ed by employing the Pauli matrix identities[
σµσν + σνσµ

]
α
β = 2ηµνδβα (3.15)[

σµσν + σνσµ
]β̇
α̇ = 2ηµνδβ̇α̇ (3.16)

Using the fact that partial derivatives commute (∂µ∂ν = ∂ν∂µ), we get

δLfermion = −ε∂µψ ∂µφ∗ − ε†∂µψ† ∂µφ
−∂µ

(
εσνσµψ ∂νφ

∗ − εψ ∂µφ∗ − ε†ψ† ∂µφ
)
. (3.17)

The �rst two terms here just cancel against δLscalar, while the remaining contribution is a total derivative.
So we arrive at

δS =

∫
d4x (δLscalar + δLfermion) = 0, (3.18)

justifying our guess of the numerical multiplicative factor made in eq. (3.13).
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3.2.1.2 Closure of the SUSY algebra

We have shown so far that the Wess�Zumino Lagrangian is invariant under a SUSY transformation.
However, me must also show that the SUSY algebra closes: the commutator of two SUSY transformations
is another symmetry of the theory.

[δε1 , δε2 ]φ = (δε2δε1 − δε1δε2)φ (3.19)

= δε2(δε1φ)− δε1(δε2φ) (3.20)

= δε2(ε1ψ)− δε1(εψφ) (3.21)

= i(−ε1σµε†2 + ε2σ
µε†1) ∂µφ. (3.22)

Here, we used δφ = εψ and δψα = −i(σµε†)α ∂µφ.
We have found that the commutator of two supersymmetry transformations gives us back the derivative
of the original �eld. In the Heisenberg picture of quantum mechanics i∂µ corresponds to the generator
of spacetime translations Pµ. Thus, this result agrees with our expectations from the SUSY algebra.

We must repeat the exercise for the fermionic case.

[δε1 , δε2 ]ψα = (δε2δε1 − δε1δε2)ψα (3.23)

= δε2(−i(σµε†1)α ∂µφ)− δε1(−i(σµε†2)α ∂µφ)) (3.24)

= −i(σµε†1)α︸ ︷︷ ︸
χα

ε2︸︷︷︸
ξ

∂µψ︸︷︷︸
η

+i(σµε†2)α ε1∂µψ using χα (ξη) = −ξα (ηχ)− ηα (χξ) (3.25)

= i(ε2α((∂µψ)(σµε†1)) + (∂µψ)α((σµε†1)ε2))− (ε1 ↔ ε2) (3.26)

= i(ε2α(σµε†1∂µψ) + (ε2)(σµε†1))(∂µψ)α)− (ε1 ↔ ε2) (3.27)

= i(−ε1σµε†2 + ε2σ
µε†1) ∂µψα + iε1α ε

†
2σ
µ∂µψ − iε2α ε†1σµ∂µψ (3.28)

In the last line we used

(χ†σµξ)∗ = ξ†σµχ = −χσµξ† = −(ξσµχ†)∗ (3.29)

Thus, if we apply the Dirac equation

σµ∂µψ = 0 (3.30)

we �nd

[δε1 , δε2 ]ψα = i(−ε1σµε†2 + ε2σ
µε†1) ∂µψα (3.31)

which is very similar to the scalar case.

We found so far that the SUSY algebra closes only on-shell. In order to consider the o�-shell case, we
play a trick and introduce another ingredient, so called auxiliary �elds F . F are complex scalar �elds
which don't propagate. Their Lagrangian is just

Lauxiliary = F ∗F . (3.32)

Note, the mass dimension of F is 2. One can easily check that the equation of motion from Lauxiliary is

F = F ∗ = 0 (3.33)
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We impose the following property of F under a SUSY transformation:

δF = −iε†σµ∂µψ (3.34)

δF ∗ = i∂µψ
†σµε. (3.35)

Now the auxiliary part of the Lagrangian density transforms as

δLauxiliary = −iε†σµ∂µψ F ∗ + i∂µψ
†σµε F, (3.36)

which vanishes on-shell, but not for arbitrary o�-shell �eld con�gurations. We also modify the transfor-
mation properties of our fermions:

δψα = −i(σµε†)α ∂µφ+ εαF, (3.37)

δψ†α̇ = i(εσµ)α̇ ∂µφ
∗ + ε†α̇F

∗, (3.38)

One can check that the additional contribution to δLfermion cancels the ones from δLauxiliary, up to a
total derivative term. Thus

δL = δLscalar + δLfermion + δLauxiliary = 0 (3.39)

If we now repeat the calculation from before, one �nds for all �elds X = φ, φ∗, ψ, ψ†, F, F ∗

(δε2δε1 − δε1δε2)X = i(−ε1σµε†2 + ε2σ
µε†1) ∂µX (3.40)

also without applying the equations of motion. So, we found that the SUSY algebra closes all o�-shell
once we include the auxiliary �elds.

What is the interpreation of all that? On-shell, the complex scalar �eld φ has two real propagating
degrees of freedom, matching the two spin polarization states of ψ. O�-shell, however, the Weyl fermion
ψ is a complex two-component object, so it has four real degrees of freedom. (Going on-shell eliminates
half of the propagating degrees of freedom for ψ, because the Lagrangian is linear in time derivatives,
so that the canonical momenta can be re-expressed in terms of the con�guration variables without time
derivatives and are not independent phase space coordinates.) To make the numbers of bosonic and
fermionic degrees of freedom match o�-shell as well as on-shell, we had to introduce two more real scalar
degrees of freedom in the complex �eld F , which are eliminated when one goes on-shell. This counting
is by

φ ψ F

on-shell (nB = nF = 2) 2 2 0

o�-shell (nB = nF = 4) 2 4 2

We can summarize the main outcame as follows:

A chiral super�eld consists of

• A complex scalar φ

• A Weyl fermion ψ

• An auxiliary �eld F

and the free Lagrangian is given by

Lfree chiral = ∂µφ∗∂µφ+ iψ†σµ∂µψ + F ∗F (3.41)
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3.2.2 Interactions of chiral supermultiplets

We go now one step further and consider several chiral supermultiplets which can interact among each
other. We won't introduce gauge interactions, yet.

We start with the Lagrangina density of several free chiral supermultiplets labelled by an index i. We
can easily generalise the result for one �elds by writing

Lfree = ∂µφ∗i∂µφi + iψ†iσµ∂µψi + F ∗iFi, (3.42)

where we sum over repeated indices i. This Lagrangian is invariant under the individual supersymmetry
transformation

δφi = εψi, δφ∗i = ε†ψ†i, (3.43)

δ(ψi)α = −i(σµε†)α ∂µφi + εαFi, δ(ψ†i)α̇ = i(εσµ)α̇ ∂µφ
∗i + ε†α̇F

∗i, (3.44)

δFi = −iε†σµ∂µψi, δF ∗i = i∂µψ
†iσµε . (3.45)

We want to �nd the most general set of renormalizable interactions that respects SUSY invariance. We
start by writing down:

Lint =

(
−1

2
W ijψiψj +W iFi + xijFiFj

)
+ c.c.− U, (3.46)

where the di�erent coe�cients are polynomials in the scalar �elds φi, φ
∗i of the schematic form:

• W ij ∼ φa

• W i ∼ φaφb

• xij ∼ const

• U ∼ φaφbφcφd
We must now require that Lint is invariant under the supersymmetry transformations, since Lfree was
already invariant by itself. The very schematic transformation properties of the di�erent terms are

• δW ijψiψj ∼ ψ3 + φ(∂µφ+ F )ψ

• δW iFi ∼ ψφF + φ(∂µψ)

• δU ∼ φ3ψ

• δxijFiFj ∼ ∂ψiFj
There is obviously no possibility that to cancel the terms arising from U and xij against something else.
So, we are left with

Lint =

(
−1

2
W ijψiψj +W iFi

)
+ c.c. (3.47)

At this point, we are not assuming that W ij and W i are related, but we will see that thye are. From

ξχ ≡ ξαχα = ξαεαβχ
β = −χβεαβξα = χβεβαξ

α = χβξβ ≡ χξ (3.48)

we see that W ij is symmetric under i↔ j.

We want to �nd the most general which W ij and W i can have which is in agreement with the SUSY
transformations. For this purpose we can check di�erent pieces which must cancel separately.
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a) We start with the part that contains four spinors.

δLint|4−spinor =

[
−1

2

δW ij

δφk
(εψk)(ψiψj)−

1

2

δW ij

δφ∗k
(ε†ψ†k)(ψiψj)

]
+ c.c. (3.49)

The term proportional to (εψk)(ψiψj) cannot cancel against any other term. However, the Fierz
identity

χα (ξη) = −ξα (ηχ)− ηα (χξ) (3.50)

implies

(εψi)(ψjψk) + (εψj)(ψkψi) + (εψk)(ψiψj) = 0, (3.51)

Thus, in order to get δLint = 0, the term δW ij/δφk must be totally symmetric under interchange
of i, j, k. Consequently, W can only involve φ but not φ∗, i.e. W ij is a holomorphic function
of the complex �elds φ.

Combining what we have learned so far, we can write

W ij = M ij + yijkφk (3.52)

Because of this form, we can write W ij as

W ij =
δ2

δφiδφj
W (3.53)

where we have introduced a useful object

W =
1

2
M ijφiφj +

1

6
yijkφiφjφk, (3.54)

called the superpotential.

b) We turn to the parts of δLint that contain a spacetime derivative:

δLint|∂ =
(
iW ij∂µφj ψiσ

µε† + iW i ∂µψiσ
µε†
)

+ c.c. (3.55)

Here we have used the again the identity

(χ†σµξ)∗ = ξ†σµχ = −χσµξ† = −(ξσµχ†)∗ (3.56)

on the second term, which came from (δFi)W
i. Now we can use eq. (3.53) to observe that

W ij∂µφj = ∂µ

(
δW

δφi

)
. (3.57)

Therefore, eq. (3.55) will be a total derivative if

W i =
δW

δφi
= M ijφj +

1

2
yijkφjφk , (3.58)

which explains why we chose its name as we did.
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c) The remaining terms in δLint are all linear in Fi or F
∗i, and it is easy to show that they cancel,

given the results for W i and W ij that we have already found.

We have found that the most general non-gauge interactions for chiral supermultiplets are deter-
mined by a single holomorphic function of the complex scalar �elds, the superpotential W . The
general form of the superpotential in terms of scalar �elds is

W (φ) = Liφi +
1

2
M ijφiφj +

1

6
yijkφiφjφk (3.59)

With

• M ij is a symmetric mass matrix for the fermion �elds

• yijk is a (Yukawa) coupling of a scalar φk and two fermions ψiψj that must be totally
symmetric under interchange of i, j, k

• Li a linear (tadpole) term which is only possible for pure gauge singlets

The auxiliary �elds Fi and F
∗i can be eliminated using their classical equations of motion.

Lfree + Lint = FiF
∗i +W iFi +W ∗i F

∗i + . . . (3.60)

where the dots represent all terms independent of F , F ∗. The equations of motion are

Fi = −W ∗i , F ∗i = −W i . (3.61)

Thus the auxiliary �elds can be expressed in terms of the scalar �elds. Therefore, the Lagrangian can be
written as

L = ∂µφ∗i∂µφi + iψ†iσµ∂µψi −
1

2

(
W ijψiψj +W ∗ijψ

†iψ†j
)
−W iW ∗i . (3.62)

The scalar potential of the theory without gauge interactions and unbroken supersymmetry is completely
�xed by the superpotential:

V (φ, φ∗) = W kW ∗k = F ∗kFk (3.63)

= M∗ikM
kjφ∗iφj + 1

2M
iny∗jknφiφ

∗jφ∗k + 1
2M

∗
iny

jknφ∗iφjφk + 1
4y
ijny∗klnφiφjφ

∗kφ∗l (3.64)

This part is also called the F -term potential which has the following properties:

• This F -term potential is automatically bounded from below

• it is even always on-negative

We have �nally found the most general form of the full interacting Lagrangian stemming from chiral
super�elds:

Lchiral = ∂µφ∗i∂µφi − V (φ, φ∗) + iψ†iσµ∂µψi −
1

2
M ijψiψj −

1

2
M∗ijψ

†iψ†j

−1

2
yijkφiψjψk −

1

2
y∗ijkφ

∗iψ†jψ†k. (3.65)
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3.2.3 Lagrangians for vector supermultiplets

We want to include now gauge interactions. As we already mentioned, the gauge �elds Aaµ are part of
vector supermultiplets. The other (propagating!) degrees of freedom are those of a a two-component
Weyl fermion λa which we will call 'gaugino'. The index a here runs over the adjoint representation of
the gauge group. The gauge transformations of the vector supermultiplet �elds are

Aaµ → Aaµ − ∂µΛa + gfabcAbµΛc, (3.66)

λa → λa + gfabcλbΛc, (3.67)

Before we start to check the SUSY properties, we count this time �rst the degrees of freedom in the on-
and o�-shell case:

• The on-shell degrees of freedom for Aaµ and λaα amount to two bosonic and two fermionic helicity
states (for each a), as required by supersymmetry.

• O�-shell λaα consists of two complex, or four real, fermionic degrees of freedom, while Aaµ only has
three real bosonic degrees of freedom one degree of freedom is removed by the inhomogeneous gauge
transformation eq. (3.66).

We will see that we need one real bosonic auxiliary �eld Da to balance the degrees of freedom (and to
close the SUSY algebra o�-shell). The counting of degrees of freedom is summarized as

Aµ λ D

on-shell (nB = nF = 2) 2 2 0

o�-shell (nB = nF = 4) 3 4 1

The properties of the D �eld are:

• D transforms in the adjoint representation of the gauge group

• (Da)∗ = Da holds

• D �elds have mass dimension of 2 as F �elds

• D �elds don't propagate, i.e.their Lagrangian is

Lauxiliary =
1

2
DaDa (3.68)

Therefore, the Lagrangian density for the components of a vector supermultiplet are

Lgauge = −1

4
F aµνF

µνa + iλ†aσµDµλ
a +

1

2
DaDa, (3.69)

where

Dµλ
a = ∂µλ

a − gfabcAbµλc (3.70)

is the covariant derivative of the gaugino �eld.

Of course, Lgauge must form a supersymmetric theory. That means that is must be invariant under SUSY
transformations and that the SUSY algebra closes. One can guess how SUSY transformations might look
like which ful�ll these properties. They must have the following properties:
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• they should be linear in the in�nitesimal parameters ε, ε† which have mass dimension 1
2

• δAaµ is real

• δDa should be real and proportional to the �eld equations for the gaugino (in analogy with the role
of the auxiliary �eld F )

Up to multiplicative constants, this results in

δAaµ = − 1√
2

(
ε†σµλ

a + λ†aσµε
)
, (3.71)

δλaα = − i

2
√

2
(σµσνε)α F

a
µν +

1√
2
εα D

a, (3.72)

δDa =
i√
2

(
−ε†σµDµλ

a +Dµλ
†aσµε

)
. (3.73)

The factors of
√

2 are chosen so that the action obtained by integrating Lgauge is indeed invariant.
After some (tedious) work, which we skip here, one �nds that

• δLgauge = 0

• (δε2δε1 − δε1δε2)X = i(−ε1σµε†2 + ε2σ
µε†1)DµX for X = {F aµν , λa, λ†a, Da}

If we had not included the auxiliary �eld Da, then the supersymmetry algebra would hold only after
using the equations of motion for λa and λ†a. The auxiliary �elds satis�es a trivial equation of motion
Da = 0, but this is modi�ed if one couples the gauge supermultiplets to chiral supermultiplets, as we
now do.

3.2.4 Supersymmetric gauge interactions

The �nal step to obtain the full Lagrangian for a supersymmetric theory is to add gauge interactions
between vector and chiral supermultiplets. As we already mentioned, supersymmetric and gauge trans-
formations commute, i.e. the scalar, fermion, and auxiliary component of a chiral super�eld is in the
same representation of the gauge group, so

Xi → Xi + igΛa(T aX)i (3.74)

for Xi = φi, ψi, Fi. Exactly as for non-supersymmetric models, we obtain a supersymmetric gauge theory
by replacing ordinary derivatives ∂µ, by covariant derivatives:

Dµφi = ∂µφi + igAaµ(T aφ)i (3.75)

Dµφ
∗i = ∂µφ

∗i − igAaµ(φ∗T a)i (3.76)

Dµψi = ∂µψi + igAaµ(T aψ)i. (3.77)

In that way, we couple the vector bosons to the matter �elds. Note, we have not yet checked that
this replacement is in agreement with SUSY invariance! Moreover, the di�erence compared to non-
supersymmetric models is that the vector super�elds includes also gauginos and auxiliary �elds. Thus,
for full generality, we need to check if those can also couple to the components of the chiral super�eld.
If we restrict ourselves to renormalizable couplings, there are only three possibilities which one can write
donwn

a) (φ∗T aψ)λa
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b) λ†a(ψ†T aφ)

c) (φ∗T aφ)Da

We must now check if these terms can � or even must � be included to obtain a supersymmetric theory.
And if, what their overall coe�cients are. To that end, we need to change our SUSY transformations as
follows:

• Normal derivatives must be replaced by covariant derivatives

• δFi must include a new term involving gauginos

The full SUSY transformations for matter �elds become:

δφi = εψi (3.78)

δψiα = −i(σµε†)α Dµφi + εαFi (3.79)

δFi = −iε†σµDµψi +
√

2g(T aφ)i ε
†λ†a. (3.80)

which result in a supersymmetric theory if the additional terms in the Lagrangian are

L = Lchiral + Lgauge

−
√

2g(φ∗T aψ)λa −
√

2gλ†a(ψ†T aφ) + g(φ∗T aφ)Da. (3.81)

There is actually a 'naive' explanatio for the �rst two terms in the second line: one takes the usual
interaction between a vector boson and two fermions and replaces two particles by their superpartners.

In a supersymmetric gauge theory, the supersymmetrized version of a coupling of a gauge boson
to a pair of scalars or fermions becomes the interaction of a gaugino to a fermion/scalar which
are superpartners:

ψ

ψ†

Aµ,

φ

φ∗

Aµ ⇒

φ

ψ†

λ

Lλ = −
√

2g(φ∗T aψ)λa −
√

2gλ†a(ψ†T aφ) (3.82)

With the last term in eq. (3.82), the Lagrangian for the D �elds becomes

LD =
1

2
DaDa + g(φ∗T aφ)Da (3.83)

which results in the equation of motion

Da = −g(φ∗T aφ). (3.84)
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Thus, like the auxiliary �elds Fi and F
∗i, the Da can be expressed by a pair of the scalar �elds. Conse-

quently, DaDa corresponds to a φ4 term which is part of the scalar potential.

The full scalar potential of the theory is a sum of D- and F -term contributions

V (φ, φ∗) = F ∗iFi +
1

2

∑
a

DaDa = W ∗i W
i +

1

2

∑
a

g2
a(φ∗T aφ)2. (3.85)

Here, we have explicitly written
∑
a which is the sum over all gauge groups of the theory. In

contrast to non-supersymmetric models, the scalar potential has no free parameters (quartic cou-
plings) but is completely �xed by gauge and Yukawa interactions.

3.2.5 Super�elds and superspace

All the results which we have derived so far could also be obtained using so called 'super�eld methods'.
This approach is mathematically more elegant but also more involved. Therefore, we give here only the
basic idea.
The so called superspace extends the four space�time coordinates by four additional coordinates Points
in superspace are labeled by coordinates:

xµ, θα, θ†α̇. (3.86)

Here θα and θ†α̇ are constant complex anti-commuting two-component spinors (Grassmann coordinates).
Considering a single Grassmann variable η with

η2 = 0 (3.87)

one can express any function f(η) as

f(η) = f0 + ηf1 (3.88)

Integration and derivation with respect to Grassmann variables are de�ned as:

df

dη
=f0 (3.89)∫

dη = 0∫
dηη = 1

}∫
dηf =f1 (3.90)

One can write a super�elds as function of Grassmann coordinates:

Φ̂ = φ(y) +
√

2θψ(y) + θθF (y), (3.91)

The superpotential can be written in terms of super�elds

W (Φ̂) = LiΦ̂
i +

1

2
MijΦ̂

iΦ̂j +
1

6
yijkΦ̂iΦ̂jΦ̂k (3.92)

from which the Lagrangian can be calculted as

L =

∫
d2θθ(W (Φ̂) + c.c.) (3.93)
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We �nd that a product of three super�elds becomes

Φ̂iΦjΦk = φiφjφk +
√

2θ(ψiφjφk + ψjφiφk + ψkφiφj)

+ θθ(φiφjFk + φiφkFj + φjφkFi − ψiψjφk − ψiψkφj − ψjψkφi) (3.94)

Thus,

L =

∫
d2θθΦ̂iΦjΦk (3.95)

=(φiφjFk + φiφkFj + φjφkFi − ψiψjφk − ψiψkφj − ψjψkφi) (3.96)

Where we recovered the Yukawa-like interactions (ψψφ) and F -terms (Fφφ).

In order to de�ne a supersymmetric theory, often the superpotential in terms of super�elds is
given:

W (Φ̂) = LiΦ̂
i +

1

2
MijΦ̂

iΦ̂j +
1

6
yijkΦ̂iΦ̂jΦ̂k (3.97)

The obtained Lagrangian from

L =

∫
d2θθ(W (Φ̂) + c.c.) (3.98)

is identical to the one which one gets from

W (φ) = Liφi +
1

2
M ijφiφj +

1

6
yijkφiφjφk (3.99)

and

L =

(
−1

2

δ2W

δφiδφj
ψiψj +

δW

δφi
Fi

)
+ c.c. (3.100)

3.3 SUSY breaking
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