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Chapter 1

Motivation to look beyond the SM

The standard model of particle physics (SM) is very successful and experimentally well confirmed. How-
ever, some questions can’t be addressed within the SM.

1.1 Observations

1.1.1 Dark Matter

The energy budget of the universe is well known today:

Visible Matter 0.03% Heavy Elements

0.3%  Neutrinos

0.5%  Stars

4% Free hydrogen and helium
Dark Matter 25 %  Weakly interacting new particle (WIMP)?
Dark Energy 70% 777

[ = The SM can only explain 4.9% of the entire energy in the universe

1.1.2 Baryon Asymmetry

We don’t see any anti-matter in the observable universe. However, the Big Bang should have produced
equal amounts of matter and anti-matter, i.e. the asymmetry must have been introduced later.

In general: one needs interactions which violate CP (charge-parity) to break the symmetry between mat-
ter and anti-matter.

= The amount of CP violation in the SM is too small to explain the observed matter—anti-matter
asymmetry




1.2. EXPERIMENTAL DEVIATIONS

1.2 Experimental deviations

Not all experiments are in perfect agreement with the SM. In some observables, a sizeable deviation was
found

Anomalous magnetic dipole moment

The magnetic momentum of an elementary particle is given by

S
mg = — I8 (1.1)
h
pp: Bohr magneton; S: Spin
The g factor is predicted to be 2 by Dirac’s theory, but higher order effects change this.:
-2

Anomalous magnetic moment a= gT (1.2)

The anomalous magnetic moments are among the best measured and most precisely calculated observ-

ables:
as™ = 0.001 165 918 04 (51)
aS™ = 0.001 165 920 9(6) (1.4)

= There is a 3.5 ¢ deviation between the measured anomalous magnetic moment of the myon
and the SM prediction

1.3 Theoretical Issues

1.3.1 Gauge coupling unification

The coupling strength between particles is an energy dependent quantity. The energy dependence is
described by the renormalisation group equations (RGEs). For the three gauge couplings of the SM one
finds the following behaviour:

d—i
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= The gauge couplings in the SM don’t unify. However, a grand unified theory (GUT) like SO(10)
or SU(5) predict such an unification.

It’s not possible to embed the SM in a GUT theory without introducing new matter. It’s not clear at
which scale the new particles come into play. However, the lighter they are, the bigger their impact is:
less particles are needed in low-scale BSM models.




Motivation to look beyond the SM

1.3.2 Hierarchy problem

The Higgs particle is the only fundamental scalar in the SM. While fermion and vector boson masses are
protected by symmetries (chiral and gauge symmetries) against large radiative corrections, the masses of
scalars don’t have such a protection mechanism. Therefore, the observable mass is given by

m2,obs — m2,Tree =+ 5m2 (15)
~ mQ,Tree +A2 (16)
where m? T is the mass parameter in the Lagrangian and A is the scale of new physics. We know that,

(at least) one scale exists at which new interactions come into play: the Planck scale (Mp ~ 108 GeV)
at which gravity becomes important.

2,exp 2, Tree ~A2
My My

= The SM has no natural explanation why the observed Higgs mass is ~ 125 GeV, but it demands
a cancellation of 32 digits between unrelated parameters.

1.4 Why supersymmetry?

Supersymmetry (SUSY) provides possible explanations for all these questions:
e New Particles can form the DM

e New sources of CP violation to generate the Baryon asymmetry

New loop contributions to a,

Changes the running of gauge couplings — Unification!

The Higgs mass is protected by the new symmetry and naturally light

\.

Because of these reasons, minimal supersymmetry was for a long time the top candidate for an extensions
of the SM. However, with the negative searches at LHC the picture is changing: heavier SUSY masses
introduce a new (small) hierarchy problem in the theory. Nevertheless:

e Other benefits of SUSY (dark matter, gauge coupling unification, CP violation) are hardly affected

e The corrections to the Higgs mass are only logarithmic dependent on the SUSY scale, not quadratic
as in the SM alone




1.4. WHY SUPERSYMMETRY?

e There are still unexplored corners in which light SUSY particles are possible within minimal super-
symmetry

e There is an increasing interest in non-minimal SUSY models which avoid the small hierarchy prob-
lem




Chapter 2

Basics

2.1 Notations and conventions

Natural units (formally 7 = ¢ = 1) are used everywhere.

Lorentz indices are always denoted by Greek characters, u,v,.. =0,1,2,3.

Four-vectors for space—time coordinates and particle momenta are written as

x=(2t) = (xo,f), 2 =t,

p=")=%p), p’=E=p2+m2.

Co- and Contravariant vectors are related by
ay = guv a”,

with the metric tensor

1 0 0 0
0 -1 0 0
) =10 0 1 o
00 0 -1

e The 4-dimensional scalar product is

a? = guv a"a” = a,a”, a-b:aub“:aobo—d’-b.

e Covariant and contravariant components of the derivatives are written as

0 0
M:al‘/‘ :guuay7 8”:8zu [802807 8k:_ak}7
82
D:@,ﬁ“:—aﬂ —A.

10



2.2. GROUP THEORY

2.2 Group Theory

2.2.1 Axioms

A collection of elements g; form a group if the following conditions are fulfilled:

a) Closure under a multiplication operator; i.e., if g; and g; are members of the group, then g; - g; is
also a member of the group

b) Associativity under multiplication; i.e.

gi - (95 - 9r) = (9i - 9;) - 9 (2.1)
c) An identity element; i.e., there exist an element 1 such that

1-9gi=9i-1=gy (2.2)
d) An inverse; i.e. every element g; has an element g;l such that

Gi -gi_1 =1 (2.3)

2.2.2 Lie Groups
2.2.2.1 Definition

Lie Groups are both groups and differentiable manifolds.

r

Any group element continuously connected to the identity can be written
U = ¢®T" (2.4)

where the O, is a real parameter and the 7% are the group generators, which live in the Lie
Algebra.

The generators T'* , which generate infinitesimal group transformations, form the Lie Algebra.

The Lie algebra is defined by its commutation relations
[T*, T = i f**°T, (2.5)

where f°¢ are known as the structure constants.

\.

By definition they are antitsymmetric
fabc — _facb (2 6)

2.2.2.2 Groups considered in the following

We are interested in so called semi-simple Lie groups as SU(N) and SO(N). We focus in the following
on SU(N). These groups preserve a complex inner product. Finite dimensional representations of semi-
simple Lie algebras are always Hermitian, so one can build quantum theories which are unitarity based
on such algebras. The complex inner product is

Utu =1 (2.7)

11



Basics

defined on N dimensional complex vector spaces, for U(N). Note that in all cases we can write U(N) =
SU(N) x U(1) where the U(1) represents an overall phase. There are N? — 1 generators for SU(N). To
see this, let us write the identity infinitesimally as

0=1—¢° (2.8)
—1 _ oli®aTa+(i0aTa)"] (2.9)

=1 - (1+i0,T,)(1 —i0,T)) (2.10)
=—i0,(T")a +i0,T, (2.11)
=T =T" (2.12)

so we can count the generators by counting N x N Hermitian matrices. Such matrices have %N (N -1)
imaginary components and %N (N 4 1) real components, but then we subtract the identity matrix, which
just generates U(1). Thus, we find for the number of generators

#(T,) = %N(N -1+ %N(N +1)—1=N?-1 (2.13)

2.2.2.3 Representations

The groups and algebras discussed above are abstract mathematical objects. We want to have these
groups act on quantum states and fields, which are vectors, so we need to represent the groups as
matrices. There are an infinite number of different representations for a given simple group. However,
there are two obvious and most important representations, which occur most often in physics settings.
They are

a) the fundamental representations

b) the adjoint representations

The fundamental representation is the representation defining SU(N) and SO(N) as N x N
matrices acting on N dimensional vectors. To write the fundamental formally, we say that N
fields transform under it as

¢i — di +ica(TF))¢; (2.14)

wherei=1,...,N,a=1,...N? — 1 and the o, are real numbers. The complex conjugate fields
transform in the anti-fundamental f, which is just the conjugate of this

¢ = ¢; —iaa(Tf")d; (2.15)

Since T are Hermitian, we have T = (T)".
The normalisation of generators is arbitrary and is usually chosen so that

1
TT7 T} = 50ab (2.16)

The other important representation is the adjoint. The point is to think of the generators them-
selves as the vectors. Thus, the generators are

(Tagy)e = —if**° (2.17)

12



2.2. GROUP THEORY

How can we see that the T,q4; actually satisfy the Lie algebra, and thus are really a representation? This
is given immediately by the Jacobi identity

[A,[B,C]| + [B, [C, Al + [C,[A, B]] = 0 (2.18)
written as

0 = [T, foUTy] + [T°, f<°IT,) + [T°, FT,) (2.19)

— fhed[re Ty) 4+ fdT Ty 4 FNTC, T (2.20)

_ fhed padery y pead gbder  yabd pederp (2.21)

_, febd pade _ fabd pede _ pead pdbe (2.22)

= [Toajs Taqj] = ifcadngj (2.23)

The dimension of the adjoint representation is N2 — 1 for SU(N).

2.2.2.4 Group constants
The quadratic Casimir is defined as
TETr = Ca(R)1 (2.24)

This must be proportional to the identity (when acting on a single given irreducible representation)
because it commutes with all generators of the group, which follows from

[TRTh, Tr) =TRTHTR — TRTRTH (2.25)
=Ti([Tf, Tg) + TRTR) — ([Th. ) + TaTR) T (2.26)
=TH(if*"TR) — (if**“THTH) (2.27)
=if " TETh +if*"TRTh (2.28)
-0 (2.29)
because of anti-symmetry of f2b°,
Another important quantity is the Dynkin index I(R)
Te[TETE] = I(R)da (2.30)
The quantity I(R) is the index of the representation. We have that
1) = (2.31)
and
I(G)=N (2.32)
for SU(N) and our normalisation. The Dynkin index and the quadratic Casimir are related
d(R)Cy(R) = I(R)d(G) (2.33)

where d(R) is the dimension of the representation, and d(G) of the algebra, namely N? — 1 for SU(N).
Thus

2
Ca(f) :N2N !

(@) =N (2.35)
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2.2.2.5 Why do we need that?

a) The interactions between gauge bosons (and gauginos) are proportional to the generators of Lie

group

¥j

e A

)

Vi

b) Loop corrections with gauge bosons/gauginos (or decays into them) are proportional to the quadratic

Casimir Cy

Do D U

202

a
T

¢) Loop corrections to gauge bosons/gauginos (or decays of them) are proportional to the Dynkin

index I

D i Zj A

2.2.2.6 Examples
2.2.2.6.1 SU(2)

)\(l

14

¥;
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2.2. GROUP THEORY

matrices 0% (i = 1,2,3) by

For SU(2) the common generators for the fundamental representation 7' are related to the Pauli

1
T = 50“ (2.36)
with
0 1 0 —i 1 0
ol = o? = ! ol = (2.37)
10 i 0 0 -1
For later, it is also helpful to introduce
10
o0 — 50 (2.38)
0 1
and 7' = —o’. The Lie algebra
[0, 0% = if"0. (2.39)
is fulfilled for
fabc — 6abc (240)
where €2%¢ is the Levi-Civita tensor. And we have
d(f) =2 d(a) =3 (2.41)
3
Ca(f) =1 Ca(a) =3 (2.42)
1
I(f) =3 I(a)=2 (2.43)
2.2.2.6.2 SU(3)
The common representation for SU(3) are given by the Gell-Mann Matrices \°
T¢ = l)\a (2.44)
f 92 :

15
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With
01 0 0 —i 0
M=[10 0 M=|i 0 0 (2.45)
00 0 0 0 0
1 0 0 0 1
M=o -1 0 M=o 0 (2.46)
0 0 1 0
—i 0 0
M=o 0 o0 MN=10 1 (2.47)
i 0 0
00 0 X 10 0
MN=10 0 —i AS:—?) 01 0 (2.48)
0 i 0 00 —2
And we have
d(f) =3 d(a) =8 (2.49)
4
Ca(/f) =3 Ca(a) =3 (2.50)
1
1(f) =5 I(a) =3 (2.51)

2.2.3 Other groups relevant in particle physics

a) Lorentz Group: the Lorentz group is the set of all 4 x 4 real matrices that leave the line element
in Minkowski space invariant:

s? = (29)2 — (2%)? = 2tg,,2" (2.52)
It is parametrised by

't = A (2.53)
The Lorentz group has six generators:

e three generators J? creating rotations

e three generators K° creating boosts

b) Poincare Group: the Poincare group is the generalisation of the Lorentz group including trans-
lation:

o't = Aa¥ +at (2.54)

The generator of the translation is the four momentum operator p,,

16



2.3. QUANTUM FIELD THEORY

2.3 Quantum Field Theory

2.3.1 Lagrangian formalism

We are working with the Lagrangian formalism of quantum field theory. The basic features are

e space-time symmetry in terms of Lorentz invariance, as well as internal symmetries like gauge
symmetries

e causality
e local interactions

Particles are described by fields that are operators on the quantum mechanical Hilbert space of the
particle states, acting as creation and annihilation operators for particles and antiparticles. We need in
the following particles characterised by their spin:

e spin-0: complex or real scalar fields ¢(z), p(z)
° spin—%: fermions, described by two- or four component spinor fields 1 g, ¥ (x).
e spin-1: vector bosons A, (x)

The dynamics of the physical system involving a set of fields ® is determined by the Lorentz-invariant
Lagrangian £. The action is given by

S[@] = /d4x£(<1>(a:)), (2.55)
The equations of motions follow as Euler—Lagrange equations from Hamilton’s principle,
05 =S[®+ D] — S[P]=0. (2.56)

Let’s go back to mechanics: for n generalised coordinates ¢; and velocities ¢; the Lagrangian reads:
L(q1,...q1,-..) The equations of motion are calculated from (i =1,...n)

— = _ZZ 9. (2.57)
Going to field theory, one has to perform the replacement
¢ = ®(x), ¢ —0,P), Lgi, - -qn d1,---Gn) = L(P(2),0,P(x)) (2.58)

The equations of motion become field equations which are calculated from

oL oL

_ = 2.
O 0(0,®) 090 0, (2.59)
2.3.2 Free quantum fields
2.3.2.1 Scalar fields
The equation of motion for a scalar field is known as Klein-Gordon equation:
(0,0" +m*) ¢ =0. (2.60)

17
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The solution can be expanded in terms of the complete set of plane waves e***
1 A3k - )
_ —1i T ik
8) = Gy /7,60 fa(k) e ™ + af (k) 7] (2.61)

/2
with kY = \/ £k~ + m2. Here, we used annihilate and creation operators a', a:

a' (k) 0) = |k)
a(k) k') = 2k0 63 (k — k') |0). (2.62)

The Lagrangian for a free real or complex scalar field with mass m is

2
Loon = 5 (Ou)2 ~ o &7 (263)
£complex = (8M¢)T(a#¢)) - m2 ¢T¢ (264)

One can easily check that they give us the Klein-Gordon Equation as equation of motion. A complex
scalar field ¢! # ¢ has two degrees of freedom. It describes spin-less particles which carry a charge and
can be interpreted as particles and antiparticles.

So far, we have considered particles without any space—time restrictions. Now, we want to consider the
case that a particle propagates from a point-like source at a given space-time point. This is described by
the inhomogeneous field equation

(0,0" +m*)D(z —y) = —0*(z —y). (2.65)

D(x — y) is called Green function. The solution can easily be determined by a Fourier transformation

4

Dz —y) = / A Dy eikte) (2.66)
(2m)*

giving in momentum space

(> —m*)D(k) =1. (2.67)

The solution

;

iD(k)= ——-F+—— 2.68

(0) = 7 (2.68)

is the causal Green function or the Feynman propagator of the scalar field. The overall factor ¢ is by

convention. The term +ie in the denominator with an infinitesimal € > 0 is a prescription of how to treat

the pole in the integral (2.66); it corresponds to the special boundary condition of causality for D(z — y)
in Minkowski space, which means

e propagation of a particle from y to z if 20 > 7°,

e propagation of an antiparticle from z to y if y° > 20.

18



2.3. QUANTUM FIELD THEORY

In a Feynman diagram, the scalar propagator is drawn as dashed line.

Complex Scalar ¢(k,m) ———--p---0 ——— (2.69)

k2 —m?Z2+ie

Real Scalar o(k,m) & ———-—=--- L4 Ty (2.70)

k2 —m?2+ie

For complex scalars the arrow shows the flow of the charge.

2.3.2.2 Dirac fields

Equation of motion Spin—% particles with mass m are often described by 4-component spinor fields,

P1(x)
Y(z) = v2(@) (2.71)
Vs(z)
Ya(x)
and obey the Dirac—FEquation
(tv' 0y —m) =0. (2.72)
This equation is obtained from the Lagrangian
Lrtermion = ¥ (178, —m) ¢, (2.73)
involving the adjoint spinor
¥ =910 = (0], 93, —v3, —v5) - (2.74)
The Dirac matrices v* (1 =0,1,2,3) are 4 x 4 matrices which fulfil the anti-commutator relations
A =AY+ =2¢" (2.75)

One possible representation is to express the matrices in terms of the the Pauli matrices 0y 23 as

1 0 0 Ok
0 _ 7 k _ ) 2.76
g (0 _1> g <—0'k 0 ) (2.76)

Another matrix, ~s, is often very useful:

V5 = (01 2) (2.77)

19
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There are two types of solutions for the Dirac equation, corresponding to particle and anti-particle wave
functions,

u(p)e” P and wv(p)e™” (2.78)

which are used to write the Dirac field as

3
Y(z) = W ZU: /% (o (k) ug (k) ™™ + dl(k) vy (k) e ], (2.79)

with
e annihilation operators c, for particles and d, for anti-particles
e creation operators ¢/ and df for particles and antiparticles

We still have to determine the propagator of the Dirac field, which is the solution of the inhomogeneous
Dirac equation with point-like source,

(iv"0,, —m) S(x —y) = 16*(z —y). (2.80)

Using a Fourier transformation as in the scalar case, we find

‘ B i ~i(k+m)
Zs(k)_k—m—l—ie_kQ—mQ—i—ie’ (2:81)

We introduce a graphical symbol for the propagator:

Dirac Fermion (k,m) o > o e (2.82)

The arrow at the line denotes the flow of the particle charge.
External fermions are depicted as

incoming particle ————®»———@ u(k) (2.83)
incoming anti-particle - o o (k) (2.84)
outgoing anti-particle &————<@—— v(k) (2.85)

outgoing particle @ > (k) (2.86)

20



2.3. QUANTUM FIELD THEORY

2.3.2.3 Vector fields

A vector field A, (x) describes particles with spin 1. We concentrate here on the massless case with two
degrees of freedom.
The Lagrangian of such a field is

1
L= FuF" with Fu = 0,4, = 0,4, + gf " Ay A7 (2.87)

The last term is only present for non-Abelian gauge fields. The field equations are Maxwell’s equations
for the vector potential,

(D gt — 6“8”) A,=0. (2.88)
The propagator of the vector fields depends on the chosen gauge. In general R, gauge it is given by

kuk,
k2

i Dy (k) o+ (1) (2.89)

o
k2 +ie

which becomes very simple in Feynman gauge with & = 1.

7

The graphical symbol for the vector-field propagator (for both massive and massless) is a wavy
line which carries the momentum k and two Lorentz indices

O NNNNNNe —1 i
massless Vector boson A, (k) zkg‘;ie (2.90)
gur—k"@“
1 [ gV VU VoWV WV ) 27 m=
massive Vector boson A, (k,m) e (2.91)

(Possible) arrows at the lines denote the flow of the particle charge.
External vectors are depicted as

incoming particle ANNANNANNNS € (2.92)
outgoing particle [ @V Ve Ve Ve Ve Ve W 6; (2_93)

2.3.3 Gauge invariance

So far, we have not considered any symmetry. We change that now and apply (local) gauge transforma-
tions to the fields.

$(x) = €M g(x) (2.94)

$(a)" = p(x) e A (2.95)

U(z) — 2@ P () (2.96)

() — D 9A@) (2.97)
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However, one can check that the Lagrangians for scalars and fermions are not invariant under these
transformations. For instance, the fermionic part of the Lagrangian transforms as

formion =1(¥)' P(P) —m ()" ¥’ (2.98)

=iWe M@ Gel9M @) g _ i (e~ 19A @) gigA (@) g (2.99)
—_—

=0 (igdA(2))(§T) — mPP (2.100)

7 Ltermion (2.101)

We need another ingredient to built kinetic terms for scalars and fermions which are gauge invariant: we
introduce a massless gauge fields A,, which transforms as

Ay — Ay, — 0, () (2.102)

In addition, we define the covariant derivative:

8, — Dy, = 8, +igA, (2.103)

g is a free parameter which we call ’gauge coupling’. One finds that the covariant derivative transforms
as

(D, ¥) :D’ v’ (2.104)
=(8, +ig(A, — 9,N))e (2.105)
=e" M0, +igA,) ¥ — eNigd, AV + (9,6 U (2.106)
=99, +igA,)V (2.107)
=e"\D, v (2.108)

Thus, the Lagrangian with derivatives replaced by covariant derivatives are invariant.
UD, ¥ — (0)(D,¥) = Ve 94e9AD W = ¥D, ¥ (2.109)

Similarly, one can show that for the scalar terms in the Lagrangian the identity

(Du¢D**) = D, D"¢* (2.110)

holds.
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2.3. QUANTUM FIELD THEORY

In order to obtain a gauge theory, i.e. a theory in which the Lagrangian is invariant under a local
transformation, the derivative must be replaced by the covariant derivative involving gauge
fields:

9" — D, = 0" +igT* A" (2.111)

Here, T are the generators of the gauge croup (SU(N)) and a =1,...,N? — 1.
This introduces interaction terms between the fermions and scalars and the gauge fields which are
represented by the following Feynman diagrams:

(A ¢ ¢ AL
\ \
\
AN »
\ \\
A? oA~ AU AZ
/ //
4
’
/ /
3 / /
w qs* ¢>¢< A@
igT 7y, igT* (Pl — Phut) ig* (T T° Y gy

2.3.4 Spontaneous symmetry breaking
A mass term for gauge bosons would read

mi A, A* (2.112)
However, this is not gauge invariant:

(m3 A A =mi A AP — AL OMA — 0, AA" +mi, (9,A) (0" A) (2.113)

Thus, explicit mass terms are not possible and we must generated them Spontaneously. This idea is the
famous Higgs—mechanism. For that, let’s assume a real scalar ¢ and the following potential:

1
V(p) = 5" + e (2.114)

Depending on the sign of 2 the shape of the potential is different
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V(@) V()
A=0.1, 1P=300"2

2.0x10"

1.0x10"° | A=0.1, #=-300"2
1.5x10" | \ 5.0x10°F /
. . . _—

-10! -500 500 000
-50x10° |

1.0x10" |

/ 10 [
5.0x10" | 1.0x10

-1.5x10" [

—2.0x10%]
w2 >0 pu? <0
For
e 1% > 0: ¢ =0 is the correct vacuum
e 112 < 0: ¢ = 0 corresponds not to the bottoum of the potential, i.e. the correct vacuum is at ¢ # 0

We shift ¢ in a way that we are for ¢ = 0 at the minimum of the potential:

=9+ (2.115)
We find
V(e =0) :%)\04 + puv? (2.116)
— %—Z =2 0% + 20 =0 (2.117)
Thus

v =/—pZ/X (2.118)

is the value of the VEV (vacuum expectation value).

Higgs mechanismm We consider now a gauge theory with a complex field ¢. This field is decomposed
in it’s real components as well as a VEV as

¢ — %(cp+v+io) (2.119)

When we insert this in the general Lagrangian
1
L = D,¢D"¢* —m?|¢> — N|o|* — ZFWFW (2.120)
we get
L= 1F rer 18 o 18 o
Tyt +§M‘P ‘P+§ no00- o

1
+ gvA, 0o — 5921)214“14”

1 1 1

+ 592(14“)290(211 +¢) — 5(,02(3)\112 +m?) — \vp® — 1/\g04 (2.121)
The first line show the ordinary kinetic terms. However, we see that an effective mass term % g?v? for the
vector bosons has been generated (last term in second line). On the other side, ¢ is massless, but there

is also a term which mixes the field ¢ and A,,.
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2.3. QUANTUM FIELD THEORY

Interpretation A massive vector boson has three degrees of freedom, while a massless one has only
two. Therefore, one says that o is ’eaten’ by the vector boson to form its longitudinal component. o is
called ’Goldstone’ (or ’Nambu-Goldstone’) boson.

It is common to introduce gauge fixing terms in a way that they cancel the mixing terms between field
o and A*.

1
Lop = —3% (9, A — gueo)? (2.122)
Thus, the Lagrangian becomes
1 1 1
L+ Lgr = +§8M03“0 — §g2v2§02 — 59211214,“4“ + ... (2.123)

what gives a relation between the Goldstone mass and the mass of the vector boson
MZ = ¢M3 (2.124)

In the unitarity gauge £ — oo, the Goldstone disappears from the spectrum.
The same could have been obtained by starting with a gauge transformation. Using

(o +io+v) = /(v + @) (2.125)

together with

¢ — ¢ =e7/0p = %(U +¢) (2.126)

Ay = Al =A, — giva#a (2.127)

which leads to the Lagrangian

1o o 1 Loooaru
L=— ZF“”F s 58#903”@ + 597 AL A
1 1 1
+ 592(141)2@(2’0 + ) — §¢2(3)\v2 +m?) — lp® — 1)\@4 (2.128)

The Higgs mechanism generates mass terms for vector-boson due to vacuum expectation values
of a complex scalar field

¢ — L (p+ioc+0) (2.129)

V2

While the real (CP-even) component ¢ of the scalar is a physical degree of freedom, the imaginary
(CP-odd) component o becomes the longitudinal mode of the massive vector boson. In general
R, gauge the Goldstone mass Mg is related to the mass M4 of the vector boson A* by

MZ = ¢M3 (2.130)
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2.3.5 Weyl Fermions

We have so far used 4-component (Dirac) fermions. However, it will turn out that it is often more
convenient to use 2-component notation:

e in any model which violates parity (as the SM or all extension of it), each Dirac fermion has left-
handed and right-handed parts with completely different electroweak gauge interactions:
— The two-component Weyl fermion notation has the advantage of treating fermionic degrees of
freedom with different gauge quantum numbers separately from the start.

e if one uses four-component spinor notation in the SM (or beyond), then there would be a sea of
projection operators

Pp=(1-1)/2, Pr=(1+7)/2 (2.131)
e in supersymmetric models the minimal building blocks of matter are chiral supermultiplets, each
of which contains a single two-component Weyl fermion

Since the two-component notation might less familiar, we want to discuss it a bit.

2.3.5.1 Two-component spinors

In this representation, a four-component Dirac spinor is written in terms of 2 two-component, complex
anti-commuting objects &, and (x7)% = x'%, with two distinct types of spinor indices a = 1,2 and
a=1,2

U, = (%‘d) : (2.132)
X

It follows that

T, =ul (2 ;) = (Xa gg) . (2.133)

Undotted (dotted) indices from the beginning of the Greek alphabet are used for the first (last) two
components of a Dirac spinor. The field ¢ is called a “left-handed Weyl spinor" and xT is a “right-handed
Weyl spinor". The names fit, because

PV, = (5‘1) , PRrU, = < 04> : (2.134)
0 yte

The Hermitian conjugate of any left-handed Weyl spinor is a right-handed Weyl spinor:

¥l = (o) = (W4, (2.135)
and vice versa:
()T =y (2.136)

Any particular fermionic degrees of freedom can be described equally well using a left-handed Weyl
spinor (with an undotted index) or by a right-handed one (with a dotted index). By convention,
all names of fermion fields are chosen so that left-handed Weyl spinors do not carry daggers and
right-handed Weyl spinors do carry daggers.
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2.3. QUANTUM FIELD THEORY

2.3.5.2 Index operations

The heights of the dotted and undotted spinor indices are important. The spinor indices are raised and
lowered using the anti-symmetric symbol

612 = —621 = 621 = —612 = 1, 611 = 622 = 611 = 622 = O’ (2137)

according to

€o = €apt’, £ = ey, X = egx ™’ X1 = (2.138)
This is consistent since €,5€6”Y = €7Peg, = §7 and edﬁ-eﬁ*f = e”'/BeBd =7
As a convention, repeated spinor indices contracted like
oy or & (2.139)
can be suppressed. In particular,
=% — g B — B o _ B T 2.140
EX=E"Xa = %X X €ap€™ = X €pa” = X"€p = X (2.140)

with, conveniently, no minus sign in the end. [A minus sign appeared first from exchanging the order of
anti-commuting spinors, but it disappeared due to the anti-symmetry of the e symbol.] Likewise, ¢yt
and xT¢t are equivalent abbreviations for lem = flxw, and in fact this is the complex conjugate of £x:

(©0* = xTeh = XM (2.141)
The explicit relation between ¢ and & is

ohy = €spant? (2.142)
Using that, one can check that

(XTaﬂf)* — é‘TEHﬂLX
= ¢laty
- eloriny,

_ ¢t ap
= leteion .,

_¢tB B
£ X
_ Bk B
= —xo'¢!
= —(Eo"x")" (2.143)
Note that when taking the complex conjugate of a spinor bilinear, one reverses the order. The spinors

here are assumed to be classical fields; for quantum fields the complex conjugation operation in these
equations would be replaced by Hermitian conjugation in the Hilbert space operator sense.
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Other hepful identities are:

(xX[a7oteN)* = cota’x = xo'ate = (Elaro” ), 2.144
ot 7 = 26760, 2.145
OhaOuss = 2€ap€ap 2.146
gHeagl = 2¢0ehP, 2.147

(0" +0¥5"] P = 29" 68, 2.148

_ _ B )
[0“0” +cr”a"] & = 2g‘“’5§,
oltoVo?P = gﬂyﬁp + gVPEH _ g#PEV _ Z'6#VPKEK7

otc’c? = g"ol + g"Pot — g'Po” + i P oy,

2.149
2.150
2.151

~ o~ o~ AN AN AN AN~
~— ~— ~— o ~— D D —

where V7% is the totally antisymmetric tensor with 123 = +1.
The so called Fierz identity, which we will need later, is

Xa (§n) = —&a (X) — N (XE), (2.152)

2.3.5.3 Lagrangian for Weyl fermions
With these conventions, the Dirac Lagrangian can now be rewritten:
Loirac = €779, +ix1T" 0 x — M(Ex + €M) (2.153)

where we have dropped a total derivative piece —i@M(XTE“X), which does not affect the action.
A four-component Majorana spinor can be obtained from the Dirac spinor of eq. (2.133)) by imposing the
constraint x = &, so that

Uy = (@) : T = (e ). (2.154)

The four-component spinor form of the Lagrangian for a Majorana fermion with mass M,

o 1
‘cMajorana = %\IIM'YMap,\IIM - §M\I,M\I]M (2155)

can therefore be rewritten as
ot 1
Lntajorana = 1€170u€ — 5 M(E€+€7¢T) (2.156)

in the more economical two-component Weyl spinor representation. Note that even though &, is anti-
commuting, £€ and its complex conjugate £7¢T do not vanish, because of the suppressed e symbol, see

eq. (2.140). Explicitly, £ = e*P¢s8, = &6 — &6 = 2561

~

Any theory involving spin-1/2 fermions can always be written in terms of a collection of left-handed
Weyl spinors v; with

L = iptiga,n; — MY (plyl — vip)) (2.157)

For ¢ = j one has a Majorana mass term, and i # j gives Dirac mass term.
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Given any expression involving bilinears of four-component spinors

&
\I’i = )
(XI )

(2.158)

labelled by a flavor or gauge-representation index i, one can translate into two-component Weyl spinor

language (or vice versa) using the dictionary:

@i’}/MPL\IJj = f;&“fj, @i’}/MPR\I}j = XZ'O'MX} (2160)
2.4 The Standard Model of Particle Physics
2.4.1 Gauge Symmetries
The so called standard model of particle physics (SM) is a gauge theory.
The gauge symmetry of the SM is
G=SU@B)c x SU2)r, xU(1)y (2.161)

with
e (: Colour
o [: Left

e Y: Hypercharge

2.4.2 Particle Content
Before symmetry breaking, the particle content of the SM is

Vector Bosons B (1,1)0
W (1,3)

g (8,1)

Fermions er (1,1);

(3 Generations) [ (1,2)_12
ur  (3,1) 93
dr  (3,1)13
e  (3,2)16

Scalar H  (1,2)),

The last column shows the quantum numbers with respect to G. These quantum numbers are not as

random as it might look. Special conditions must be fulfilled to avoid anomalies, e.g.

e Gauge anomalies

Y Y=o
I

(2.162)
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o Gauge X gravity anomalies

Y Y=o (2.163)
f

e Witten anomaly: even number of SU(2) doublets
Check:

PRIGE B x| Y+ 2 xY()+ 3 xY(ur)+3xY(dr) +2x3xY(q)

f generations isospin color

(2.164)
=3x(1+2 ! +3 2 +3 ! +6 ! (2.165)
B 2 3 3 6 '
=3x(1—1-2+1+1) (2.166)
—0 (2.167)
1 8 1 1
Y(f)? = 1+2(—= - — — 2.1
Zf: (f) 3><( + < 8)+3( 27)+3(27>+6(216)> (2.168)
1 8 1 1
(gt 8, L. 1 2.1
3><< 1 9+9+36> (2.169)
—0 (2.170)
[ = One needs to be careful when adding new fermions in order not to introduce anomalies
2.4.3 Gauge part of the Lagrangian
The gauge part of the Lagrangian before symmetry breaking reads
L=D,HD'H* +iY  flo"Duf+> Vi, V* (2.171)

f 1%

with f = {l,er,q¢,dr,ur} and V = {B, W% g*}. Let’s be more explicit at some examples. Note, we
consider only one generation of fermions because gauge couplings are always flavour diagonal.

e Right leptons
eEU”DHeR = eTRo“(au +i91B,)er (2.172)

e Left leptons carry one isospin index, i.e. [; with ¢ =1,2
1

I'o"D,l =1lo" (auaij — i3

of.
91B,.0:5 + ngQ”W;j) l; (2.173)

e Right up-quarks carry one colour index, i.e. up o with a =1,2,3

2 AL
U}L%O'MDHUR = uk’aou <8H§a3 — ignguéag + Z'ggzﬁGa> UR,B (2.174)
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2.4. THE STANDARD MODEL OF PARTICLE PHYSICS

o Left quarks carry one colour and one isospin index, i.e. ¢; o with a =1,2,3,¢=1,2

1 oy A
qTUILD“q = qlaa'p' <6/L5aﬁ5ij — Zgng/L(Saﬁ(sij + zggéaﬂ?jwa + Zg35ij25Ga> qi.3 (2175)
From these expressions the vertices are derived:
€R 1y L
B, B, we
€R l; l;
oug —0,,0i; % 007 %
4ip 4
wy 9y
Qice Gia
Tulapois % 0u0ij Ay %5
2.4.4 Electroweak symmetry breaking
2.4.4.1 The Higgs potential
The Higgs potential in the SM is given by
1
V(H) = 5A|H\4 + p?|H|? (2.176)

Note, different conventions for the normalisation of the quartic coupling exist in literature. p? < 0 causes
a spontaneous breaking of the electroweak symmetry (EWSB). The Higgs field is written as

HT G+
( HO ) 7 ( 5 (h+iG° +v) ) (2.177)
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The Higgs potential becomes

V = GO+ (h+0)? 426G + Sp2 (G + (h+ ) +2G7G") (2.178)

We can calculate the Higgs coupling and masses form this potential

a) Tadpole conditions: The condition for being at the minimum of the potential is

Vh=G=GT=0) 0 (1 , 1,,
:%)\v?’ + u?v (2.180)
=’ =— L2 (2.181)

2

Thus, one can eliminate p? from all following expressions.
b) CP-even mass: the Higgs mass is given by
0*V

M, = o5 lh=co=c+=o (2.182)
_ %w bl (2.183)
1
- g/\vQ - HAv? (2.184)
= \o? (2.185)

¢) Goldstone masses: the mass of GP becomes

o2V
m2G0 = Whl:GO:G‘F:O (2186)
1
=+ iAqﬂ (2.187)
-0 (2.188)

Since we are working here in Landau gauge, the Goldstone mass vanishes as expected. Similarly,
one can show mZ,, =0

d) Cubic Higgs coupling: the cubic Higgs self-interaction is

L
Chhh = %lhzgo:mzo (2.189)
= —3v\ (2.190)
2
— 3Tk (2.191)
v

e) Quartic Higgs coupling: the quartic Higgs self-interaction is

'L
Chhhh = wh:gozcﬁ:o (2.192)

= -3\ (2.193)
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The entire Higgs sector of the SM can be parametrised after EWSB by just two parameters: A
(or my) and v.

2.4.4.2 Electroweak gauge bosons
The gauge interactions of the Higgs field become after EWSB:

(1 o (1 g% .
DHHD“H* = <8M5ik +1 (291Bﬂ5ik + gg?W“) Hz) <6M5jk —1 (291Bu5ﬂ€ + QQ;WG) Hj>

(2.194)
1 1
=50uh0"h + 5aﬂGOaMGO + 0,GTo*G
1
+ 5 ((h+0)* +(G°)?) (91 B” = 20102 BW? + g3 (WT + W3 + W)
+... (2.195)

On can see in the second line that not only mass terms for the vector bosons are generated, but also a
mixing between B and W? occurs. The neutral mass matrix My reads

1 1
M} = (B Ws) gl e b (2.196)
—t01920*  fg30? W3
One finds that
detM2 =0 (2.197)

i.e. one eigenvalue is zero. The mixed particles, which appear after diagonalisation, are called photon
(v) and Z-Boson (Z). Their masses are the eigenvalues which are given by

my =0 (2.198)
1
m =7 (9 + g3)v’ (2.199)

The rotation matrix which diagonalises M is

5O in©® B
Y _ COS Oy S Oy , (2.200)
Z —sinOy  cos O w3

with the Weinberg angle Oy,. This defines the electric charge, the coupling strength of the photon, as:
e = g1 cos Oy = gosin Oy (2.201)

One remaining massless gauge boson corresponds to one unbroken symmetry. Therefore, the remaining
symmetry of the SM is

G—SUB)e xU(D)em (2.202)
Since W, and W; are not electromagnet eigenstates, they are combined to new eigenstate of U(1)em,

1

W:t
V2

(W + iWs) (2.203)
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The mass of W¥ is given by
1

M3, = 19%2 (2.204)

The massless states G® and G* are the Goldstone bosons of Z and W* and form their longitudinal
components.

Let’s count the real components of the particles

Before EWSB After EWSB
massless vectors: B, W® 4 | massless vectors: y 1
massive vectors: - 0 | massive vectors: Z, W* 3
complex scalars: HY, H* 4 | complex scalars: G* 2

real scalars: - 0 real scalars: h, G 2
The count of physical degrees of freedom gives

Before EWSB After EWSB
massless vectors: B, W 8 | massless vectors: 0% 2
massive vectors: - 0 | massive vectors: Z, W% 9
complex scalars: H®, H* 4 | complex scalars: - 0

real scalars: - 0 real scalars: h 1

Higgs interactions with vector bosons The kinetic term for the mass eigenstates h, the SM Higgs
boson, becomes after applying all rotations:

1 1 a a 1 1 a a *
L= (auaij + 15915z‘j3u + 22920’zjwu> H; (8‘%5“ - 15915“3# - 1592‘7ji(w )H> Hj

1 .
:Z(h + v)? [ZgSWJ(W_)“ +7.2" ((g5 — 93) sin 20w + 2g1 g2 cos 20y ) +

Yuy" (91 cos Ow — g2 sin Ow)* + Z,Z" (g1 sin Ow + go cos @)2]
+ (0, +ivu(91c0s© — g2 sin©) +iZ,,(g1 sin Ow + g2 cosO)) h

(0" —iy* (g1 cos© — g2 sin©) — iZ* (g1 sin O + g2 cos O)) h (2.205)
+ L(G°,GT,h)
_]. e? 2 4 —\p 1 n 1 o 0 +

Thus, the couplings between the Higgs to the photon drops out after performing all replacements cor-
rectlyﬂ There is also no h — h — Z interaction (which is forbidden by CP), but only h — G° — Z. On the
other side, one finds interactions between one Higgs and two Z- or W bosons. The vertices for the Higgs
to the gauge bosons are given by

IThe general rule is: ’At tree-level, the photon couples only to charged particles and the Higgs only to massive ones’
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zn Wi
> ----- h > ----- h
2, (W)
2 2
: e 1. e
2iv sin? 20y W2 Ow
Zy h (w=)r h
/ /
/ /
/ /
/ /
/ /
/ /
/ /
>\ \
\ \
\ \
\ \
\ \
\ \
YA h W; h
: e? 1. e?
2i sin2 20y, 2tsm2 Ow

The interaction between one scalar and two-vector bosons is always propotional to a VEV and
can exist only after gauge symmetry breaking.

2.4.5 Fermion masses and Yukawa sector

It is not possible in the SM to write down mass terms for fermions because of the quantum numbers for
left and right fields.

[ = Fermion masses are spontaneously generated after EWSB via interactions with the Higgs field ]

The interactions between the Higgs and the SM fermions are called "Yukawa’ interactions.
,Cy = YuunH + qudRH* + YeleRH* + h.c. (2207)

In the general case, Yy are (complex) 3 x 3 matrices. Thus, in the most general form the Lagrangian
reads with all indices written explicitly

YuunH = 5aﬂYu,aaniauR,bB€inj (2208)

with colour indices «, 8, isospin indices i, j, and generation indices a,b. If we neglect flavour mixing for
the moment, one can write

,Cyu = YuqiauR’geinj (2209)
= Yu(uL7aH0 - dL7aH+)uR7ﬂ5aﬁ (2210)
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what becomes after EWSB

1
Ly, = E(U—Fh)YuuLauRa—F... (2.211)

i.e. the fermion mass is given by

my, = —=0vY, (2.212)

V2
And therefore,
Ly, = %huLauRa F... (2.213)

i.e. the Higgs coupling to SM fermions is proportional to their mass.

If we include flavour mixing, the mass terms for the quarks after EWSB read

vYg11 v¥g12 vYgas dr vYy, 11 vYyui2 vYias UR
L,=(dpspbr) | vYgo vYgoe vYys3 ur |+(urertr) | vYuo1 vYioo 0Yiyss CR
vYg31 vYg32 vYass br vYy31 vYy32 vYys33 tr

(2.214)

where we suppressed colour indices.
The six quark masses are the eigenvalues of the matrices vYy and vY,. These matrices are diagonalised
by four unitary matrices:

UR —)UR = U;uR
dR —Dpr = U;dR
ur, —Ur = V,ur,

dL —)DL = VduL

Ounly one combination of these matrices is physically relevant and defines the CKM (Cabibbo-Kobayashi-
Maskawa) matrix

Vekm = VI Vy (2.219)

The entire flavour structure of the SM quark sector is encoded in the CKM matrix which can be
parametrised by three angles O15, ©23, ©13 and one phase §

1 0 0 C13 0 8136_“S C12 s12 0
VCKM = 0 C23 S23 0 1 0 —S12 C12 0 (2220)
0 —S893 (23 751361'5 0 C13 0 0 1

4 is the only source of CP violation in the SM and highly restricted by experiments

\.

The CKM matrix shows up explicitly in vertices involving the W-boson or the Goldstone G. Using
two-component fields, one has
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i
Dy s Dy s Ur.js
WJ _____ Gt e G+
T ; T
UL,ia UR’MX DL,ia
_%QWMVS?(M%B WV2ZVErbas iv2= J ct}j(M ap

The Dirac Spinors can be built from D;, U; as follows

— UL
= <U£> (2.221)

Note, before EWSB is is not possible to write Dirac fermions consisting of left and right degrees of free-
dom because of different quantum numbers with respect to U(1)y x SU(2)y.

djg djp
Wit G*
Ujoy Ui
_ﬁ.QQPYMVg'%M(SaBPL + 0Pg iXEVE i ar00p (i, Pr, + ma, Pr)
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Chapter 3

Supersymmetric Formalities

3.1 Basics

3.1.1 SUSY transformations

A supersymmetry transformation turns a bosonic state into a fermionic state, and vice versa.

Q|Boson) = |Fermion), Q|Fermion) = |Boson). (3.1)

The properties of the operator ) are:
e () is an anti-commuting spinor
e Q' is also a symmetry generator
e ), QT carry spin 1/2 — SUSY is a space-time symmetry.

e  and QT satisfy the following algebra (schematically):

{Q,Q"} = P, (3.2)
{Q,Q} ={Q",Q"} =0, (3.3)
[P, Q] = [P*, Q"] =0, (3.4)

where P* is the four-momentum generator of spacetime translations. Note, we skipped here the
spinor indices on @, Q. (The accurate expressions could be given once we have developed the
necessary formalism.)

e Q and Q commute with P?
e Q and Qf commute with all generators of gauge transformations

A non-trivial connection between internal and external symmetries was forbidden by the no-go theorem
of Coleman-Mandula. However, this doesn’t apply to spinor operators.

We consider only the case of a single set of generators @, Qf, what is also called N = 1 supersymmetry.
N = 2 or N = 4 theories are mathematically interesting, but phenomenologically not relevant in four
space—time dimensions. One would need extra dimensions to get chiral fermions or parity violation.
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3.2. SUSY LAGRANGIAN

3.1.2 Representations

A supersymmetric theory must consist of states which are irreducible representations of the SUSY algebra.
These states are called “supermultiplets”. The properties of supermultiplets are:

e Each supermultiplet consists of both fermionic and bosonic states. Those are called "superpartners”

If |Q) and |Q') are members of the same supermultiplet, then |€2) is proportional to some combi-
nation of @ and Q' operators acting on |Q2) (up to space-time translation or rotation)

particles within the same supermultiplet must have equal eigenvalues of P2, i.e. equal masses

particles within the same supermultiplet must sit in the same representation of the gauge groups

Each supermultiplet contains an equal number of fermionic and bosonic degrees of freedom

ng =ng (3.5)

We are mainly interested in the following two kinds of supermultiplets:

a) Chiral supermultiplet: the simplest possibility for a supermultiplet consistent with eq. (3.5) has
a single Weyl fermion (with two spin helicity states, so np = 2) and two real scalars (each with
np = 1). It is convenient to arrange the real scalars as one complex field.

b) Vector supermultiplet: the simplest possibibility of a supermultiplet containing gauge fields
contains a spin-1 vector boson. We are only interested in renormalizable gauge theories, i.e. the
vector boson must be massless (before spontaneous symmetry breaking) and has therefore two
degrees of freedom: np = 2. Its superpartner is therefore a massless spin-1/2 Weyl fermion, again
with two helicity states, so np = 2.

If we include gravity, then the spin-2 graviton (with 2 helicity states, so np = 2) has a spin-3/2 super-
partner called the gravitino. The gravitino would be massless if supersymmetry were unbroken, and so
it has np = 2 helicity states.

One can check that other possible combinations of particles which satisfy ng = np are always reducible.
For example: If a gauge symmetry could be broken without SUSY breaking then a massless vector super-
multiplet would “eat” a chiral supermultiplet. The degrees of freedom of the massive vector supermultiplet
are:

massive vector : ng =3
massive Dirac fermion : ng =4
a real scalar : ng =1

3.2 SUSY Lagrangian

Based on Steve Martin’s primer, sec. 8
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3.2.1 A free chiral supermultiplet

We have already seen that the easiest supersymmetric object is a chiral supermultiplet with a single
left-handed two-component Weyl fermion ¢ and a complex scalar ¢. We forget for the moment about all
possible interaction or mass terms. Under this assumption, the action of a single supermultiplet can be
written in terms of its component fields as:

S = /d4$ (Escalar + Efermion)v (36)
with
Lscalar :6#¢*8u¢
Efermion =i¢T5"5’m/1~ (38)

where ¢ and v are superpartners. This is called the massless, non-interacting Wess-Zumino model.

3.2.1.1 SUSY invariance

A SUSY transformation should turn the scalar boson field ¢ into something involving the fermion field
1o. The simplest possibility is

5 = et 5¢* = ety (3.9)

where ¢ parameterizes the supersymmetry transformation. €* is an infinitesimal, anti-commuting, two-
component Weyl fermion which we assume for now to be constant, i.e.

0ue® =0 (3.10)
The mass dimension is
3 1
=l — ] =1-% =3 (3.11)

Applying the transformation, we find that the scalar part of the Lagrangian transforms as
5»Csca1ar = 63’% aﬂ¢* + ETaMwT 8;L¢ (312)

This must be canceled by §Lfermion (up to a total derivative). We can guess now how the transformation
of the fermion must look like. There is only one chance (up to overall constants) that a cancellation can
happen, namely

§b = —i(cte) o Ouo, Sl = i(eat)s 90" (3.13)
With this guess, one immediately obtains
Lsermion = i(801)T* 09 + i3 0, (6) (3.14)
= i(iea”0,0")F 0,1 + 150, (—ic"e' 0, 0) (3.15)
= —e0"G 0,1 00" + 1T ol 0,0,6 (3.16)
This can be simplified by employing the Pauli matrix identities
(05" + 0"5"] P =29 58 (3.17)
70" + 570 ] s =250 (3.18)
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3.2. SUSY LAGRANGIAN

as follows:
Vi7 otel 9,0,¢ :%wa”auef 0,0, + %wauaﬂef D0, (3.19)
:%QZ)TE”J”GT 0,0,¢ + %wwa%f 0,0, (3.20)

:%M[aw + 70"’ 9,0, ¢

)
=¢T6T8“8H¢ )
=0, (W1l 0" ¢) — (9, 41)(9"9) )

et 0, 00" =€(2g"" — 0"5*)0,100,,0" )
=2e0"10,¢" — ea"T"0,10,¢" (3.25)

=2e0"0,¢" — 0, (ea"T"10,,¢") + ec”"10,0,,¢") )

)

)

)

(
=2ed" 0, ¢" — 0, (ea”T Y0, 0") + €00, 0" (3.27
=2e0")0,¢" — 0, (ec”TH1p0, ™) + OV (e90,0™) — €(0"1) 0, 0") (3.28
=e0" )0, 9" — 0, (ed”T 10, 9" — epO¢*) (3.29
and we get
5£fermion = —68“111 au¢* - eTaM’L/)T aptd)

—0y (€T Y 00" — ep 9" ¢* — Tl 949) . (3.30)

The first two terms here just cancel against § Lgcalar, while the remaining contribution is a total derivative.
So we arrive at

08 = /d4.’IJ (6£scalar + 5£fermion) = 0; (331)

justifying our guess of the numerical multiplicative factor made in eq. (3.13)).

3.2.1.2 Closure of the SUSY algebra

We have shown so far that the Wess—Zumino Lagrangian is invariant under a SUSY transformation.
However, me must also show that the SUSY algebra closes: the commutator of two SUSY transformations
is another symmetry of the theory.

[0e150e,]d = (0ey0e; — 00y ) (3.32)
R G N ) (3.33)
= 0, (€19) — de, (€4 9) (3.34)
= i(—€e10Mel + exotel) 0. (3.35)

Here, we used §¢ = ey and 01, = —i(otel), 0,0

We have found that the commutator of two supersymmetry transformations gives us back the derivative
of the original field. In the Heisenberg picture of quantum mechanics 0, corresponds to the generator
of spacetime translations P,. Thus, this result agrees with our expectations from the SUSY algebra.
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We must repeat the exercise for the fermionic case.

[Oc1s 0eltba = (0e30¢; — ey 0ey)¢a (3.36)
= b (=il0"€] ) 0,6) = b0 (=il0" ) 0,0) (3.7)
= ~ilgco e Qb +ilo Do a0 using Xa (60) = ~Ea (1) e () (339
Xa &
=i [eaa((0.0)("e]) + (Ou)a(("))ea)) — (@1 €2)] (3.30)

Using the identity,

(o"e)" = glaty = —xote" = —(eo"x")" (3.40)
this becomes

[0c,0c,]tha = i(—e10™€} + exctel) Outha +i€1a B RO — i€aq ela“a,ﬂp (3.41)

Thus, if we apply the Dirac equation

ah0, =0 (3.42)
we find
[0c,s 0cy|tbe = i(—€10% el + eaotel) Dby (3.43)

which is very similar to the scalar case.

We found so far that the SUSY algebra closes only on-shell. In order to consider the off-shell case, we
play a trick and introduce another ingredient, so called auziliary fields F. F are complex scalar fields
which don’t propagate. Their Lagrangian is just

Lauxitiary = F7F . (3.44)
Note, the mass dimension of F' is 2. One can easily check that the equation of motion from Laxitiary is
F=F"=0 (3.45)
We impose the following property of F' under a SUSY transformation:
§F = —ielotd,1) (3.46)
SF* = idpTote. (3.47)
Now the auxiliary part of the Lagrangian density transforms as
6 Lousitiary = —i€ 09,3 F* + 40,0 15"¢ F, (3.48)

which vanishes on-shell, but not for arbitrary off-shell field configurations. We also modify the transfor-
mation properties of our fermions:

§the = —i(ot€N)y Ot + €a F, (3.49)
Sl = i(eot)s Dud* + €l F*, (3.50)
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3.2. SUSY LAGRANGIAN

One can check that the additional contribution to 6Lfermion cancels the ones from 0L, uxitiary, Up to a
total derivative term. Thus

0L = 6£scalar + §£fermion + 5£auxiliary =0 (351)
If we now repeat the calculation from before, one finds for all fields X = ¢, ¢*, ¥, ¥t F, F*
(0ey0e; — 06,06,) X = i(—ela"eg + GQU“GD o X (3.52)

also without applying the equations of motion. So, we found that the SUSY algebra closes all off-shell
once we include the auxiliary fields.

What is the interpreation of all that? On-shell, the complex scalar field ¢ has two real propagating
degrees of freedom, matching the two spin polarization states of 1. Off-shell, however, the Weyl fermion
1 is a complex two-component object, so it has four real degrees of freedom. (Going on-shell eliminates
half of the propagating degrees of freedom for 1, because the Lagrangian is linear in time derivatives,
so that the canonical momenta can be re-expressed in terms of the configuration variables without time
derivatives and are not independent phase space coordinates.) To make the numbers of bosonic and
fermionic degrees of freedom match off-shell as well as on-shell, we had to introduce two more real scalar
degrees of freedom in the complex field F', which are eliminated when one goes on-shell. This counting
is by

¢ v F
on-shell (nB =Ng = 2) 2 2 0
off-shell (ng=np=4) 2 4 2

We can summarize the main outcame as follows:

7

A chiral superfield consists of
e A complex scalar ¢
e A Weyl fermion 1)
e An auxiliary field F

and the free Lagrangian is given by

['free chiral = 8N¢*au¢ + “bTEMaudj E [T (353)

3.2.2 Interactions of chiral supermultiplets

We go now one step further and consider several chiral supermultiplets which can interact among each
other. We won’t introduce gauge interactions, yet.

We start with the Lagrangina density of several free chiral supermultiplets labelled by an index i. We
can easily generalise the result for one fields by writing

Liee = 0"¢™0u0; +ip "G 90 + FH'F, (3.54)
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where we sum over repeated indices ¢. This Lagrangian is invariant under the individual supersymmetry
transformation

5 = et 5"t = elyf?, (3.55)
S(i)a = —i(0"e) o 0uti + €a Fiy 51 s = i(eo™)s ue™ + €L F™, (3.56)
SF;, = —ic'o" 9,1, SF* =i, ptiate . (3.57)

We want to find the most general set of renormalizable interactions that respects SUSY invariance. We
start by writing down:

1 . . ..
»Cint = (—2W”’(/)7;1/Jj + WZFZ + $UFZ'FJ') +c.c. — U, (358)

where the different coefficients are polynomials in the scalar fields ¢;, ¢** of the schematic form:
o WU ~ ¢,
o W'~ dathy
e 2% ~ const
o U~ ¢aPpdctda

We must now require that L, is invariant under the supersymmetry transformations, since Liee wWas
already invariant by itself. The very schematic transformation properties of the different terms are

o (W) ~ (ep)y)® + d(e(Dup + F))¢)
o S(W'E;) ~ (e¥)oF + ¢*(eut))

o U ~ (ey))¢®

o 62 FFj ~ (eOY)F

There is no possibility that to cancel the terms arising from U and =% against something else. So, we
are left with

1. .
Lint = <—2W”¢iwj + WZF1> 4+ c.c. (359)
At this point, we are not assuming that W% and W' are related, but we will see that thye are. From

EX = €% = §%€apX” = X €apt® = XPepal® = X5 = x¢ (3.60)
we see that W% is symmetric under i < j.

We want to find the most general form which W% and W* can have which is in agreement with the SUSY
transformations. For this purpose we can check different pieces which must cancel separately.

a) We start with the part that contains four spinors.

16W4 16W4
5»Cint|4fspinor - _iw(ewk)(d}”ﬁ]) - 5 5¢*k

(€M™ (i) | + c.c. (3.61)
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3.2. SUSY LAGRANGIAN

b)

The term proportional to (ey)(1;%;) cannot cancel against any other term. However, the Fierz
identity

Xa (§1) = —&a (7X) — Na (XE) (3.62)
implies
(€) (V) + (e) (Yrrhi) + (evn) (irhy) = 0, (3.63)

Thus, in order to get 5Ly = 0, the term W% /§¢;, must be totally symmetric under interchange
of 4, j, k. Consequently, W can only involve ¢ but not ¢*, i.e. W% is a holomorphic function
of the complex fields ¢.

Combining what we have learned so far, we can write
Wi = MY 4 kg, (3.64)
Because of this form, we can write W% as

52
00i00;

Wi = 1474 (3.65)

where we have introduced a useful object
Lo i L ik
W=-M Tt + 6Y it s (3.66)

called the superpotential.

We turn to the parts of §L;,¢ that contain a spacetime derivative:
0Linglo = (iW90u0; 0" +iW' O ihiote’) + c.c. (3.67)
Here we have used the again the identity

(XT38 = ¢laty = —xotél = —(¢o*xT)* (3.68)

on the second term, which came from (§F;)W*. Now we can use eq. (3.65) to observe that

’ sW
Wid,p; =0, <6¢> : (3.69)

Therefore, eq. (3.67) will be a total derivative if

W =56 =

ij 1 4
MY6;+ 5y 6k, (3.70)

which explains why we chose its name as we did.
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¢) The remaining terms in JL;, are all linear in F; or F**. We can use the results for W? and W¥ to
check that these cancel as well:

Ll = — 5 (MY 4y 60) (eFo)yy + bileFy)+

(Britets) + g (i) + o5tem) ) (5.71)
0 (3.72)

We have found that the most general non-gauge interactions for chiral supermultiplets are deter-
mined by a single holomorphic function of the complex scalar fields, the superpotential W. The
general form of the superpotential in terms of scalar fields is

W(g) =L'¢; + §M“¢i¢j 4 éy”kd)i(bjd)k (3.73)
With
e M is a symmetric mass matrix for the fermion fields

e y7* is a (Yukawa) coupling of a scalar ¢, and two fermions P;p; that must be totally
symmetric under interchange of i, j, k

e L' a linear (tadpole) term which is only possible for pure gauge singlets

The auxiliary fields F; and F** can be eliminated using their classical equations of motion.

Lerco + Ling = B F* + W'F, + WF* + ... (3.74)
where the dots represent all terms independent of F', F*. The equations of motion are

F,=-W7, F* = W', (3.75)

Thus the auxiliary fields can be expressed in terms of the scalar fields. Therefore, the Lagrangian can be
written as

L= 0"¢"0,; +ip1 5" 01 — 3 (WHpsap; + Wiptiaptd) — Wiwy. (3.76)

The scalar potential of the theory without gauge interactions and unbroken supersymmetry is completely
fixed by the superpotential:

Vig,¢*) = WFW; = F*F, (3.77)
_ *Mk]¢*1¢+len * d)(b*jd)*k_i_}M* jkn¢*z¢¢ _|_1 ijn, * ¢¢¢*k¢*l
= ik iy YiknPi 9 inY j Pk 4y YeinPiPj
(3.78)

This part is also called the F-term potential which has the following properties:
e This F-term potential is automatically bounded from below and even non-negative

e The scalar masses are given by M7, M*J
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3.2. SUSY LAGRANGIAN

e Th cubic and quartic scalar interactions are not free parameters but prop. to the Yukawa-like
interactions

We have finally found the most general form of the full interacting Lagrangian stemming from chiral
superfields:

: o 1. .. R
Lonza = 06" 0us = V(9,0") + i7" utps — 5 MY ipia; — 5 My Ty

1 1, o
_iy”kﬁbﬂ/}jwk - §yijk¢ iapTgpth, (3.79)

3.2.3 Lagrangians for vector supermultiplets

We want to include now gauge interactions. As we already mentioned, the gauge fields A}, are part of
vector supermultiplets. The other (propagating!) degrees of freedom are those of a a two-component
Weyl fermion A\* which we will call ’gaugino’. The index a here runs over the adjoint representation of
the gauge group. The gauge transformations of the vector supermultiplet fields are

AT AT 9,A% 4 gf AL AT, (3.80)
A )@ _’_g.]calw)\bAc7 (381)

Before we start to check the SUSY properties, we count this time first the degrees of freedom in the on-
and off-shell case:

e The on-shell degrees of freedom for Aj, and A7 amount to two bosonic and two fermionic helicity
states (for each a), as required by supersymmetry.

e Off-shell A7 consists of two complex, or four real, fermionic degrees of freedom, while A} only has
three real bosonic degrees of freedom one degree of freedom is removed by the inhomogeneous gauge

transformation eq. ([3.80)).

We will see that we need one real bosonic auxiliary field D® to balance the degrees of freedom (and to
close the SUSY algebra off-shell). The counting of degrees of freedom is summarized as

A
on-shell (ng =np =2) 2
off-shell (ng =nrp=4) 3

NI N

D
0
1

The properties of the D field are:
e D transforms in the adjoint representation of the gauge group
o (D*)* = D“ holds
e D fields have mass dimension of 2 as F' fields

e D fields don’t propagate, i.e.their Lagrangian is

1
»Cauxiliary = 5 DeD* (382)
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Therefore, the Lagrangian density for the components of a vector supermultiplet are

]' a rva . a—;, a 1 a a
Lyange = = Fi, " + X" DAY + 5D D", (3.83)
where
DA™ = 9, A" — g e Ab X (3.84)

is the covariant derivative of the gaugino field.

Of course, Lgauge must form a supersymmetric theory. That means that is must be invariant under SUSY
transformations and that the SUSY algebra closes. One can guess how SUSY transformations might look
like which fulfill these properties. They must have the following properties:

1

e they should be linear in the infinitesimal parameters €, e which have mass dimension 5

° (5Aﬁ is real

e 0D should be real and proportional to the field equations for the gaugino (in analogy with the role
of the auxiliary field F')

Up to multiplicative constants, this results in

a 1 i ya yfas

SAY = 7 (', A" + A1) (3.85)
a Z 1 a 1 a

ONS = —T\/i(o“o' €)a FLW + ﬁea D?, (3.86)

5D = % (—€'a" DAY 4+ D AT T e) . (3.87)

The factors of v/2 are chosen so that the action obtained by integrating Lgauge is indeed invariant.
After some (tedious) work, which we skip here, one finds that

L4 §£gauge =0
o (0c,0e, — 0c,00,)X = i(—erotel + €QU“€I)DMX for X = {Fg,,\, Afe Da}

If we had not included the auxiliary field D®, then the supersymmetry algebra would hold only after
using the equations of motion for A and A\f*. The auxiliary fields satisfies a trivial equation of motion
D = 0, but this is modified if one couples the gauge supermultiplets to chiral supermultiplets, as we
now do.

3.2.4 Supersymmetric gauge interactions

The final step to obtain the full Lagrangian for a supersymmetric theory is to add gauge interactions
between vector and chiral supermultiplets. As we already mentioned, supersymmetric and gauge trans-
formations commute, i.e. the scalar, fermion, and auxiliary component of a chiral superfield is in the
same representation of the gauge group, so

Xi — Xi + igAa(TaX)i (388)
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3.2. SUSY LAGRANGIAN

for X; = ¢4, %5, F;. Exactly as for non-supersymmetric models, we obtain a supersymmetric gauge theory
by replacing ordinary derivatives 9,,, by covariant derivatives:

Dudi = 0.9 +igAy(T"); (3.89)
D™ = 0,6™ —igAs(¢*T*) (3.90)
Dy = Oui +igAy(TY);. (3.91)

In that way, we couple the vector bosons to the matter fields. Note, we have not yet checked that
this replacement is in agreement with SUSY invariance! Moreover, the difference compared to non-
supersymmetric models is that the vector superfields includes also gauginos and auxiliary fields. Thus,
for full generality, we need to check if those can also couple to the components of the chiral superfield.
If we restrict ourselves to renormalizable couplings, there are only three possibilities which one can write
donwn

a) (¢"Ty)A"
b) At (yTT¢)
c) (¢*T%¢)De

We must now check if these terms can — or even must — be included to obtain a supersymmetric theory.
And if, what their overall coefficients are. To that end, we need to change our SUSY transformations as
follows:

e Normal derivatives must be replaced by covariant derivatives

e 0F; must include a new term involving gauginos

The full SUSY transformations for matter fields become:

0¢; = €t (3.92)
Sthia = —i(0"e) o Dyuti + €aF; (3.93)
0F; = —ic'a" D, + V29(T%); et Ate. (3.94)

which result in a supersymmetric theory if the additional terms in the Lagrangian are

L = ['chiral + ['gauge
—V2g(* T PIA — V29N (WTT¢) + g(¢" T $) D°. (3.95)

There is actually a ’naive’ explanation for the first two terms in the second line: one takes the usual
interaction between a vector boson and two fermions and replaces two particles by their superpartners.
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In a supersymmetric gauge theory, the supersymmetrized version of a coupling of a gauge boson
to a pair of scalars or fermions becomes the interaction of a gaugino to a fermion/scalar which
are superpartners:
Pt o* Pt
\
\
AI“ /\r\m AH = P A
/
A v
/
/ ’
’ ’
(s ¢ ¢
Ly = —V2(@T )N = V29T (1 T%0) (3.96)
With the last term in eq. (3.96]), the Lagrangian for the D fields becomes
1
Lp= §D“D“ + g(¢*T¢)D* (3.97)
which results in the equation of motion
D" = —g(¢*T"9). (3.98)

Thus, like the auxiliary fields F; and F*, the D® can be expressed by a pair of the scalar fields. Conse-
quently, DD corresponds to a ¢* term which is part of the scalar potential.

7

The full scalar potential of the theory is a sum of D- and F-term contributions
*\ gkt 1 ana __ * 7 1 2( pxa \2
V(p,¢*) = F Fi+§§a:DD =Wy W +§§a:ga(¢>T¢>). (3.99)

Here, we have explicitly written ) which is the sum over all gauge groups of the theory. In
contrast to non-supersymmetric models, the scalar potential has no free parameters (quartic cou-
plings) but is completely fixed by gauge and Yukawa interactions.

3.2.5 Superfields and superspace

All the results which we have derived so far could also be obtained using so called ’superfield methods’.
This approach is mathematically more elegant but also more involved. Therefore, we give here only the
basic idea.

The so called superspace extends the four space-time coordinates by four additional coordinates Points
in superspace are labeled by coordinates:

", 0%, 01 (3.100)
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Here 6% and 9:; are constant complex anti-commuting two-component spinors (Grassmann coordinates).

Considering a single Grassmann variable n with
=0

one can express any function f(7) as
fm) = fo+nfi

Integration and derivation with respect to Grassmann variables are defined as:

df
dn =h

Jdn=0 _
fdnn:l}/dnf—h

One can write a superfields as function of Grassmann coordinates:

b = d(y) + V204 (y) + 00F (y),
The superpotential can be written in terms of superfields
o 2i L 2igg L 2i& i &k
from which the Lagrangian can be calculted as
L= / PO0(W (B) + c.c.)
We find that a product of three superfields becomes

00,0, = ¢idjon + V20(0id; 0k + bbb + Vkdid;)
+00(p:id; Fr, + ¢i0kFy + 006 F; — b b — Vihd; — ¥ 0rdi)

Thus,
c :/d299<i>iq>jq>k
=(0i0j Fi + 0i0nFj + 001 Fy — itk jdr — ithrdy — hjabiedi)

Where we recovered the Yukawa-like interactions (¢1p¢) and F-terms (F¢g).

(3.101)

(3.102)

(3.103)

(3.104)

(3.105)

(3.106)

(3.107)

(3.108)

(3.109)

(3.110)
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In order to define a supersymmetric theory, often the superpotential in terms of superfields is
given:

a & n 1
W(®) = L;d* + 5Mijqﬂq> + 6y DD (3.111)

The obtained Lagrangian from

L= /d290 ) +c.c.) (3.112)
is identical to the one which one gets from
4 1. 1 ..
W(¢) = L'¢; + §M”¢i¢j + gy”k@%‘(bk (3.113)
and
1 82w W
L= Vi ) [ Gifek 3.114
(-3 5606, V1 T Sg (3.114)

3.3 SUSY breaking

Based on Steve Martin’s primer, sec. 7

We have so far assumed that SUSY is an unbroken symmmetry. In this case all components of the
supermultiplets have the same masses. However,this would rule out the theory immediately because it
predicts for instance a fundamental scalar with the same mass and charge as the electron:

Mg = M, (3.115)

Such a particle, called selectron, would have been discovered long ago. The current limits for the selec-
tron mass are actually about 100 GeV. Therefore, one needs to introduce a mass splitting between the
superpartners. In other words, SUSY must be broken. We want to discuss two different approaches for
SUSY breaking:

a) spontaneous SUSY breaking
b) Hidden sector SUSY breaking

We will see that the first attempt to break SUSY similar to gauge theory spontaneously is phenomeno-
logical not possible. Nevertheless, we are going to discuss this case because it gives important insights.

3.3.1 Spontaneous SUSY breaking
3.3.1.1 General considerations

We start with a discussion of spontaneous SUSY breaking. By definition, this means that the vacuum
state |0) is not invariant under supersymmetry transformations, so ,|0) # 0 and QL|O> # 0. Now, in
global supersymmetry, the Hamiltonian operator H is related to the supersymmetry generators through
the algebra

{Qa. QLY = —20%, P, (3.116)
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3.3. SUSY BREAKING

Note, here we have added the explicit form of the spinor indices. For H = P° we get

1
H =P’ = 1(QiQ] + Q]Q1 + Q2Q} + Q1Q2). (3.117)
We can distinguish two cases:
a) H|0) =0: SUSY is unbroken and the vacuum has zero energy

b) H|0) # 0: SUSY is broken and the vacuum energy is

1
(0110} = 7 (IQ10) 12 + Q|0 + 1R} I + 1Q2I0}12) > 0 (3.118)

This is positive for a positive norm in the Hilbert space. From (0|H|0) = (0|]V]0) we get the
condition

(0[VF|0) + (0[VDp|0) > 0 (3.119)

Where Vi and Vp are the F- and D-term potentials.

SUSY is spontaneously broken if and only if it is not possible to satisfy
F,=0 v D*=0 (3.120)

for any field configuration.

If any state exists in which all F; and D® vanish, then it will have zero energy, implying that supersym-
metry is not spontaneously broken in the true ground state. Aanother possibility is that the vacuum
state in which we live is not the true ground state (which may preserve supersymmetry), but is instead
a higher energy metastable supersymmetry-breaking state with lifetime at least of order the present age
of the universe. Finite temperature effects can indeed cause the early universe to prefer the metastable
supersymmetry-breaking local minimum of the potential over the supersymmetry-breaking global mini-
mum. The potential for the three possibilities looks schematically like

V(¢) V(e) V(e)

¢ ¢ ¢

If SUSY is broken spontaneously, a massless Nambu-Goldstone particle must be present. Since SUSY
generators are spinors, this particle is a massless, neutral Weul fermion called the Goldstino. If we would
consider local supersymmetry in which SUSY is combined with gravity, the Goldstino would get eaten
up by the Gravitino. The Gravitino is a spin 3/2 particle and the superpartner of the Graviton. This is
called Super-Higgs mechanism.
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3.3.1.2 Sum rule

We want to show an important relation between the masses of fermions, scalars and vector-bosons after
spontaneous SUSY breaking. For this purpose, we consider the general mass matrices for these fields.

a)

b)

Scalars We are interested in the masses of the scalar after symmetry breaking. Those masses are
the eigenvalues of the matrix mZ which can be used to express the Lagrangian as

V= % (¢*j ¢j) m? <§z> . (3.121)
The general scalar potential reads

V= W 4 SR ) (65, T 60) (3122)
From that, we get for m3

= [V G T gl TED W WG
s = g . , . . ajma |
W £ T (6T WEW 4 g2 (T0)(6° T — 0T D

Here, we used Wk = §3W/5¢;64;0¢), and we kept the scalar fields which are replaced by their
VEVs. The sum of the two eigenvalues is just the trace of this matrix. This trace is calculated to

Tr(m3) = 2W;, W +2¢2C, (i) " d; — 29, Tr(T*) D, (3.124)

with the Casimir invariants Cq(i)d;; = (T*T*)}.

Fermions: bilinear fermion terms can appear after symmetry breaking in the terms coming from
the superpotential as well as in gaugino-fermion-scalar interactions.

L= V20,0 TN\ — Wkiahi + c.c. (3.125)

Therefore, the mass matrix mg defined as

V= - (,\; ¢j) mp @3) . (3.126)
is

N 0 V2ga(T*0);
mp = <\/§ga(Ta¢)j Wi ) (3.127)

Thus, the mass matrix squared becomes

i 29ag0(0*TT?¢) V20, (T ¢) W+
MphE = * kYA * * ik 2 * i |’ (3128)
V20a (67T W Wi W™ +2g2(T°0) (¢ T°)!
so the sum of the two-component fermion squared masses is

Tr(mfmg) = Wi W™ 4 42Co (i)™ 6. (3.129)
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3.3. SUSY BREAKING

c) Vectors: mass terms from vector always come from the kinetic terms of scalars. The general form
of the mass matrix is

m3, = g2(¢™{T",T"}¢), (3.130)
SO

Tr(m3,) = 292Ca (i)™ . (3.131)

It follows that the supertrace of the tree-level squared-mass eigenvalues, defined in general by a
weighted sum over all particles with spin j:

STr(m?) = Y (-1)¥(2) + 1)Tr(m}), (3.132)

J

satisfies the sum rule
STr(m?) = Tr(m2) — 2Tr(mimg) + 3Tr(m%) = —2¢,Tr(T*)D* = 0. (3.133)

The last equality assumes that the traces of the U(1) charges over the chiral superfields are 0.
This holds for any non-anomalous gauge symmetry.

The sum rules are a handy tool to check ...
e ...if SUSY is broken spontaneously

e ...the calculated masses for a supersymmetric model which should fulfill this rule when taking the
limit of unbroken supersymmetry

3.3.1.3 Example: F-term supersymmetry breaking

We want to discuss an explicit example of F-term SUSY breaking. These models are also called O’Raifear-
taigh models. The basic idea is to find a set of chiral supermultiplets ®; D (¢;,¥;, F;) and a superpotential
W in such a way that the equations F; = —dW*/6¢** = 0 have no simultaneous solution. The simplest
example for this has three chiral supermultiplets ®; > 3 and the superpotential

Worr = —k®; + m®yds + %qncpg. (3.134)

Note, that the linear term k is crucial. Otherwise, ¢; = 0 will also correspond to a supersymetric
conserving vacuum. Without loss of generality, we can choose k, m, and y to be real and positive: The
scalar potential following from Wq/g is

Viree—level = |F1|? + |Fo|? + |F3]? (3.135)
with
Fi=k— % 52 (3.136)
Fy = —ma3 (3.137)
Fy = —md} — ydi 3. (3.138)
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Obviously, it is ont possible to get F} = 0 and F5 = 0 at the same time, ie SUSY must be broken.
We assume from now on m? > yk, then the absolute minimum of the classical potential is

V(g1,¢2 =0,¢3 =0) = k* (3.139)

¢1, which doesn’t lift the vacuum, is called a ’flat direction’.
We can now check the masses for the different fields. For this purpose, we parametrize the complex
scalars as real fields

1= % (v1 4+ @1 +io1) (3.140)
P2 = % (p2 +io2) (3.141)
¢3 = % (p3 + io3) (3.142)

Note the VEV for p; which is responsible for SUSY breaking. The mass matrix for the scalars in the
basis (1,01, p2, 02, 3,03) is

0 0 0 0 0 0
0 0 0 0 0 0
0 0 m? 0 moly 0
m2 = , V2 _— (3.143)
0 0 0 m i) ) E
0 0 m\%y 0 m?+ 2L +ky 0
00 0 m\vf;y 0 m? + Ly (viy — 2k)
and the eigenvalues of this matrix are
mi,l =0 (3.144)
mg, 5 =0 (3.145)
2 _1 \/ 2 2 2,2 2 2
mos =7 \y |~ (viy — 2k)” + 8m2vi — 2k + vy | +4m (3.146)
2 _1 \/ 2 2 2,2 2 2
Moa =7 \Y (viy — 2k)” + 8m2vi — 2k + viy | +4m (3.147)
2 _ 1 \/ 2,12 2,2 2 2
mos =7 (¥~ (2k 4+ viy)” 4+ 8m2v? + 2k + vy | +4m (3.148)
2 _1 \/ 2,\2 2,,2 2 2
Mos =7 \Y (2k + v3y)” + 8m2v? + 2k + viy | +4m (3.149)
(3.150)
and we find
Tr(mg) = 4m® + viy® (3.151)
We turn now to the fermion sector. The Yukawa-like potential of this model is
1 * *
Lrrs = mipaths + §¢1¢§y + yd3v1¢3 + hec. (3.152)
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3.3. SUSY BREAKING

The fermionic mass matrix in the basis (¢, 2, 13) is

0 0 0
mp=|0 0 m (3.153)
0 m \%vly

from what the eigenvalues of mpm} are calculated to

m2, ; =0 (3.154)
1 1
my ., =— 1\/2m20%y2 + viyt +m? + vagf (3.155)
1 1
my, 5 ==1/2m2viy? + viyt + m* + 11}%3/2 (3.156)

and we have

=~

1

Tr(m%) = 2m? + 3

viy? (3.157)
Thus, we can now verify that

STr(m?) = Tr(m%) — 2Tr(m%) =0 (3.158)

holds.

3.3.1.4 Example: D-term supersymmetry breaking

It is in principle also possible to break SUSY via D-terms. This option is known as Fayet-Iliopoulos
mechanism. If the gauge symmetry includes a U(1) factor, then one can write down a term linear in the
auxiliary field of the corresponding gauge supermultiplet,

Ly = —kD, (3.159)

where £ is a constant with dimensions of [mass]?. This term is gauge-invariant and supersymmetric by
itself. The relevant part of the scalar potential become

1
V =kD — 5D2 — gD aqileil. (3.160)

Here the ¢; are the charges of the scalar fields ¢; under the U(1) gauge group in question. The presence
of the Fayet-Iliopoulos term modifies the equation of motion the D-field to

D=k—gY qildil* (3.161)
%

Now suppose that the scalar fields ¢; that are charged under the U(1) all have non-zero superpotential
masses m;. Then the potential will have the form

V=S Pl + -0 3 adoi?)? (3.162)
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Since this cannot vanish, supersymmetry must be broken. This is also obvious from the masses:

m3,; =Imi|* — gqir (3.163)

m,

)

; :%\mi|2 (3.164)
The supertrace becomes

STr(m?) = —gkTr(q;) (3.165)
which vanishes if the U(1) is anomaly free.

However, one needs to state that there are some problems building a realistic model with D-term breaking

e In SUSY versions of the SM, it is not possible to use U(1)y because many fields don’t get super-
potential mass terms. (We will see this explicitly in the next chapter)

e If another (additional) U(1) is used, this group must not couple to SM particles. However, this
makes it difficult to generate appropriate masses for all superpartners of SM fields.

3.3.1.5 The problem of spontaneous SUSY breaking

The sum rules obtainted so far are relations between all masses in the theory. However, we could assume
that some particles don’t mix with the rest. In that case, individual sum rules are found for the sub-sets
of fields that mix. A well motivated choice is to assume that the mixing of the (s)electron with other
fields is negligble small or zero. This would predict the following relation between the two selectrons and
the electron:

mZ, +m?2, = 2m2, (3.166)

mass. Even small deviations from lepton flavour violation won’t change the conclusion that the sum rules
rule out phenomenologically acceptable SUSY masses. Therefore, we need to search for possibilities how
to circumvent the sum rules.

3.3.2 Soft supersymmetry breaking interactions

We have discussed so far the spontaneus SUSY breaking as origin of a mass splitting between scalars and
fermions of the same multiplet. For pratical purposes, one can also choose another approach and ask the
questions: which terms can I add to my Lagrangian in order to keep the most important SUSY properties?
The guiding principle is that all terms which we add only introduce a soft breaking of SUSY. ’Soft’
means, that no quadratic divergences appear. This means that only dimensionful parameters can be
added E The most important soft supersymmetry-breaking terms in the Lagrangian of a general theory

are
E - - *1M )\ A Jr *tijk(b (b (ZS Jr *bij(b (ZS + li(b Jr - 2 i(lbj*(ﬁ 3 161
soft ) a 6 PPk 9 1¥Pg 7 c.C. (m )j (2] ( . )

These terms are

e gaugino masses M, for each vector superfield. Gaugino masses M, are always allowed by gauge
symmetry.

I'We will discuss in more detail at the example of the MSSM
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3.3. SUSY BREAKING

e scalar squared-mass terms (m?2)? for each chiral superfield. The (m?) terms are allowed for i, j
such that ¢;, ¢’* transform in complex conjugate representations of each other under all gauge
symmetries; in particular this is true of course when i = j, so every scalar is eligible to get a mass
in this way if supersymmetry is broken.

e holomorphic soft-terms ;, b/, t*7% of one to three scalars. The t¥*, b/, and I terms have the same
form as the y*/*, M% and L’ terms in the superpotential, so they will each be allowed by gauge
invariance if and only if a corresponding superpotential term is allowed.

The t terms are special in that sense that they modify scalar interactions, while all other terms enter the
masses,/mass matrices:

®;

bi

In addition, two other possibilities exists which, however, are not studied as intensively as these standard
terms:

a) Non-holomorphic soft term:

Acnon—holomorphic = C‘Zkﬁb*id)jask + ﬁlj¢l¢j +c.c. (3168)
These terms can only be added if no singlet is involved because they are not soft otherwise.

b) Dirac Gaugino mass terms:
L = —MBiac A" ¥e + c.c. (3.169)

These terms need a chiral superfield in the adjoint representation

3.3.3 Hidden Sector SUSY breaking

One the one side, spontaneus SUSY breaking is not in ageement with observation, one the other side,
putting soft-masses by hand is often unsatisfying.

If we consider the MSSM, there are 107 parameters appeaing in the most general soft-breaking
Lagrangian. Therefore, is very attractive to relate them to a SUSY breaking mechanism which
reduces the number of free parameters and which explains why CP phases and/or dangerous
flavour changing parameters are small.

A possible solution to both problems is that soft terms arise indirectly or radiatively, rather than from
tree-level renormalizable couplings to the supersymmetry-breaking order parameters:
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\.

Supersymmetry breaking evidently occurs in a “hidden sector" of particles that have no (or only
very small) direct couplings to the “visible sector" chiral supermultiplets of the MSSM. However,
the two sectors do share some interactions that are responsible for mediating supersymmetry
breaking from the hidden sector to the visible sector, resulting in the MSSM soft terms.

hidden sector: interactions visible sector:
SUSY-Breaking +—> MSSM

In this scenario, the tree-level squared mass sum rules need not hold, even approximately, for the physical
masses of the visible sector fields, so that a phenomenologically viable superpartner mass spectrum is, in
principle, achievable.

There are two main mechanims how SUSY breaking is mediated:

a) Gravitational interactions:

These scenarios are associated with the new physics, including gravity, that enters near the Planck
scale. If supersymmetry is broken in the hidden sector by a VEV (F'), then the soft terms in the
visible sector should be roughly

Msots ~ (F)/Mp, (3.170)

by dimensional analysis. The reason is

e we know that mseg must vanish in the limit (F) — 0 where supersymmetry is unbroken
e in the limit Mp — oo (corresponding to GNewton — 0) in which gravity becomes irrelevant,
Moty MUSt also become zero

For my.g of order a few hundred GeV, one would therefore expect that the scale associated with the
origin of supersymmetry breaking in the hidden sector should be roughly /(F) ~ 10! or 10! GeV.

A bit more explicitly, the soft Lagrangian can be expected to have the form

(F)?
Mg

Lsoft = (- < > fa)\a)\a — <7>TL‘Z¢JW§/[SSM + e + C.C.) — (k; + n;ﬁf)qﬁ“qﬁz, (3171)

2Mp Mp
with dimensionless parameters f,, n, 7, k which are given by the setup in the hidden sector. Under
the radical assumption that the hidden sector is very simple and couple the same to all scalars and
gauginos, all soft-terms are fixed by just four parameters

(F) 2 2y ()2 (F) (F)
My, =f— = (k Ay = 3n)—= By = 2n)—-. 3.172
=S mE= () A= (kB Bo= (e (317)
Here, M/, and m3 are universal soft-masses for all scalars and gauginos:
(m?);¢'¢” =dimg|¢il? (3.173)
Mo N* =My o \*\* (3.174)

Ap and By define the proportionality between soft-parameters and superpotential parameters:
tijk = AoYijk bij = BoM;; (3.175)

This ansatz is called minimal supergravity (mSugra).

60



3.3. SUSY BREAKING

b) Gauge interactions:
In that case, the flavor-blind mediating interactions for supersymmetry breaking are the ordinary
electroweak and QCD gauge interactions. In this gauge-mediated supersymmetry breaking (GMSB)
scenario, the MSSM soft terms come from loop diagrams involving some messenger particles. The
messengers are new chiral supermultiplets that couple to a supersymmetry-breaking VEV (F'), and
also have SU(3)¢c x SU(2)r x U(1)y interactions, which provide the necessary connection to the
MSSM. Examples for the diagrams which generate SUSY breaking masses are

dm
M -7~
—-—— / N
~
s, \\
e \ * ’
\ N
A ) A
(s
o o}

Then, using dimensional analysis, one estimates for the MSSM soft terms

(3.176)

where the «, /47 is a loop factor for Feynman diagrams involving gauge interactions, and Mpess
is a characteristic scale of the masses of the messenger fields. So if M,ess and 1/ (F') are roughly
comparable, then the scale of supersymmetry breaking can be as low as about /(F) ~ 10* GeV
(much lower than in the gravity-mediated case!) to give mgog of the right order of magnitude.
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3.4 Summary: How to construct the SUSY Lagrangian

In a supersymmetric theory, the interactions of all particles are fixed by three ingredients

a) the gauge transformation properties:

, , 1
Efree+gauge :8H¢*z ufbi + wﬁzguaﬂwi _ ZF;(ZVFWG + i)\TaE”DH)\“
* 1 *
— (V29T )X +cc) = 5 3 g2 (6iT i) (3.177)

a

b) the superpotential W

. 1 . 1 ..
W(9) = L'+ 5 M76i6; + oy bics; b (3.178)
which results in
1 8W SW |?
Einz—*ii‘ .C. | — 1
t 2(5@6%1#1#]—1—00) ‘5@ (3.179)
c) Soft-susy breaking terms

L _ 1M A%\ 1tijk e 1bij e lz . 2\i 1j* 1

soft — — 5 a + 6 qj)z(bj(bk + 5 (bzd)] + qbz +c.c. | — (m )J¢ (bz
+ (non — standard soft — terms) (3.180)

The scalar potential, which is for instance responsible for gauge symmetry breaking, is the sum of

V =Vr + Vb + Viort
2

ow 1 2( axrpa s \2 20 1 Ik 1 i
‘5@ +§;ga<¢iT 6i)° + (m2)j67" 60 + ( 7 0s05 0 + 5b70i0; + U'i + c.c.
(3.181)
From the different parts of the Lagrangian different kinds of interactions arise
¢* ¢* Ay Ay
\ \\\
Kinetic Terms for scalars /\'VV\’ Ay J ¢ ---
a) EZDH¢D“¢* // /,
¢ ¢ Ay Ay
~g ~g? ~vg?
(3.182)
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b) Kinetic Terms for Fermions
L =t Dt

Gaugino-Matter interactions

) £ = Vage TN

d Vector Self-interactions
) £=FmE,,

Vector Gaugino-Interactions

®) [ = ixtaghD Ao

Scalar interactions

- —|F|? = D* = T%¢;¢;¢%

¢T

Ay (3.183)

/-~ A (3.184)

A5 AL A,

>-~ Ap (3.185)

A A

~9g

A
>~A/-A
A
—_—
~g

s
" (3.186)

bj hr ol
\ / \
N2 \

A Pt Pk (3.187)

’ \ /
’ \ /

o )8 o

~Y?24g2 ~pY oY 24vg24Tidk
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Chapter 4

The Minimal Supersymmetric Standard

Model

4.1 Particle Content and Superpotential

It’s time now to write down minimal supersymmetric standard model, the MSSM. The building blocks

of the MSSM are

a) Vector Superfields: since the gauge sector of the SM consists of three gauge groups, we need the
three corresponding vector superfields. The naming conventions for the superfield names as well as

their component fields are as follows:

Name | SF | spin § [ spin 1 | SUB)c,SU@)L, Uy |
gluino, gluon Ja Ja Ja (8,1,0)
winos, W bosons | W; W; w; (1,3,0)
bino, B boson B B B (1,1,0)

b) Chiral Superfields: each SM fermion needs a scalar superpartner. Therefore, five chiral superfield
are needed to arrange the matter sector. Also the Higgs doublets needs to be arranged in one
superfield. However, it turns out that a second Higgs superfield is needed for two reason:

(a) One needs two fermions to cancel all gauge anomalies
(b) Since the superpotential is a holomorphic function, it is not possible to write down Yukawa

terms for up- and down-quarks as in the SM

Therefore, the full list of chiral supermultiplets in the SM is
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| Name | SF | spin0 | spin i | SUB)c x SUQR)Lx U1y |

squarks, quarks | § (i, dr) (ur dr) (3,2, %)
(3 generations) i ak uly (3,1,-2)

d dy di, 3,1,1)
sleptons, leptons | [ (vér) (ver) (1,2,-3)
(3 generations) é €r e}} (1,1,1)
Higgs, Higgsinos | H, | (H;} HO) | (H; HY) (1,2,3)

1o | (HYHy) | (H)Hy) (1.2, -3)

c) Superpotential: the MSSM superpotential is
W =Yl ey Hyeij + Vi G0% doy Hy€ij + Y Gl it HY €35 + p HY, Hjeij . (4.1)

Here, Yy ., are Yukawa couplings, which we treat as complex 3 x 3 matrices, known from the SM.
However, not only the coupling strength of the Higgs to two fermions is given by these couplings,
but also the Higgsino interactions with a (s)fermion pair.

qr,j qr.j qr.j

UR, UR,i UR.;

it is a supersymmetric mass term for the Higgs superfields. Often, the simplified assumption is
made that only third generation Yukawa couplings are non-negligible. This corresponds to

00 0 00 0 00 0
Yo~ |0 0 0], Ya=|0 0 0|, Ye=]|0 0 0 (4.2)
00 Y 00 Y 00 Y,

The superpotential becomes in this limit

WMSSM ~ Y{g(ﬁLtRHS - bLtRH:r) - Y},(tLbRH; - bLbRHg) - YT(I/T_’LTRH(; — TL’TRHdO)
+p(Hf Hy — HOHY). (4.3)

where we have expanded the isospin indices. We are using this simplified version of the superpo-
tential to list the other interactions stemming from the superpotential:
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(a) Quartic scalar interactions: the F-terms involving four scalars are
Lauartic =Y’ ((|7'5L|2 + [ErP)HY? + oo P [Hf[* + ([Lbp HOH, + C~C~>
+ Y2 (B + Bal)HYP + L PLE [+ (o HOHS +cc.)
+ Y2 (7l + 7R ) HG | + 0r P Hy [P + (77 1T HGH + c.c.)
VY, (ERHS”,‘%HJ ViR H b HY + c.c.)
+YY, (%L%Riyzé’;% — O TRtibg + c.c.) (4.4)

From these many terms, one can see how economic the superfield notation is. The Feynman
diagrams corresponding to the couplings prop. to Y;? are

i HO* & HO* b H b H
\\\ 7/ \\\ , \\\ , \\\ ,
NAC: RAC: NAT: ReC:
AN ANE: ANE: ANL
RN RN RN RN
/ / / /
’ N ’ \ ’ \ ’ \
th HY i HY br HF tr HY
(b) Cubic scalar interactions: also trilinear, scalar couplings arise due to the presence of the -
term:
Lowic =  p @Y UHY + dYqdHY + €Y eHY*
Y WdH;* + dY quH* + €Y THF*) + c.c. (4.5)
tr
\
\
\\
.
/
/
/
tr

d) Soft-Breaking terms: the general soft-breaking interactions in the MSSM are
1 . — o~
chg — 2 (Mggg + MoWW + MyBB + c.c.)
~ ~ o~ ~ o~ ~ ~ ~ - ~
—Qf mé Q-Lf m% L— ﬂm%ﬂT - dmé—d —em? ET — m%,uHZHu - m?{dH(}‘Hd
- (%Tu OH, —dTy;QHy — T, LHy + c.c.) — (B H Hy+c.c.). (4.6)

Here, we have

e Ms, Ms, and M; are the gluino, wino, and bino mass terms. These are complex parameters
with mass dimension of 1.

e Mass squared terms for all chiral superfields. While mf; (f =4{Q,L,u,d,e}) are Hermitian

3 x 3 matrices, m3; and m real parameters.
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4.1. PARTICLE CONTENT AND SUPERPOTENTIAL

e For each term in the superpotential purely scalar interactions appears. These are trilinear
scalar couplings T; (i = {d,u,e}) which are complex 3 x 3 matrices as well as Higgs mixing
term B,, which is complex as well.

4.1.1 R-parity

The superpotential which we have written down does not include all interactions which are allowed by
gauge invariance. Other possible terms would be

1 .. . _ .

War=1 = iAzjkLiLjék‘FX”kLindk +€'LiH, (4.7)
1

Wa=1 = iA//Z]kﬂidjdk (4.8)

The terms in Way,—; violate total lepton number by 1 unit and those in Wag—; violate baryon number
by 1 unit. Note, ¢; in this context is not the anti-symmetric tensor but a common nomenclature for a
superpotential term.

The presence of such terms is highly constrained by proton decay, for instance. For instance, the combi-
nation \ - M can trigger proton decay via diagrams like

u e+
M >'/\H X< i
d SR u
We can estimate the life-time of the proton just from a dimensional analysis as:
FP—>6+7rO ~ mf)roton Z |)‘/11i)‘”11i|2/m327 (49)
i=2,3

The lower limit on the proton life-time is 1032 years what corresponds to 10~*GeV ™. Thus, for SUSY
masses in the TeV range, we obtain a limit of

INN'| <1026 (4.10)

Such tight constraints usually point towards a symmetry which completely forbid the underlying process.
Therefore, a new symmetry called R-parity is introduced.

R-parity is a Zs symmetry which is defined as
PR _ (71)3(BfL)+25 (411)

where s is the spin of the particle, while B and L are its baryon respectively lepton number.

With this definition, it turns out that all SM particles are even under R-parity, while their superpartners
are odd. Therefore, ’supersymmetric particles’ or ’sparticles’ are a synonym for particles with Pr = —1.
This has tremendous consequences:

e If R-parity is conserved, there can’t be any mixing between supersymmetric particles and SM ones
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e All interaction vertices must be involved an even number of supersymmetric particles
e The lightest supersymmetric particle (LSP) can’t decay, i.e. it might be a candidate for dark matter
e Always an even number of supersymmetric particles is produced at colliders

Note, sometimes also 'matter parity’ is used which is a Z, for the entire superfield. The matter parity
of a superfield is identical to the R-parity of its scalar component. Therefore, both symmetries allow
equivalent terms in the superpotential independently if W is expressed in terms of superfields or scalars.

If either B or L violating operators are present, proton decay is not possible. Therefore, one could also
relax the condition of R-parity violation and study models with A, X’ and €, or with A" alone. Such R-
parity violating scenarios can be motivated by other symmetries and have interesting phenomenological
consequences.

4.1.2 Constraints on Soft-terms

We have written down the most general form of soft-breaking terms. However, there exist stringent
constraints on their shape, because large off-diagonal entries would trigger flavour violating processes
and huge phases have an impact on CP observables like dipole moments. Let’s give two examples:

a) Flavour violation: For example, suppose that m2 is not diagonal in the basis (¢, fig, 7r). In that
case, flavor mixing in the slepton occurs, so the individual lepton numbers will not be conserved,
even for processes that only involve the sleptons as virtual particles. A particularly strong limit on
this possibility comes from the experimental bound on the process p — ey, which could arise from
the one-loop diagram as

7!
~
~
~
~
\\
X oA Y
~
g
i KR
€R
&

Here, “x" on the slepton line represents the insertion of the off-diagonal soft-term. The result of
calculating this diagram gives roughly

2 4
m2. 2.1\~ (100 GeV
Br(p—ey) ~ 107 ( e © (4.12)

ZR mZR

where we assumed that . ..

i ; 2 — 2 — 2
e the diagonal entries are degenerated mz, . =mg, . = m;
2 2 . . B
* my > M to get mass eigenstates with mass my..

e The neutralino is a pure bino
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This result is to be compared to the present experimental upper limit
Br(p — eY)exp < 5.7 x 10713 (4.13)

So, we find for 1 TeV slepton masses that

|mf1*RéR|
—5— | <0.1 (4.14)
m=
Lr
must hold. Thus, the soft-matrix can’t be random but must follow some hierarchy.
b) CP violation:
Additional sources of CP violation are constrained by the measured dipole moments of the SM

particles. For instance, the dipole moment of the electron receives new SUSY contributions from
the imaginary part of diagrams like

e
~
~
~
~
- ~
X /MN’Y
-
-
-
-
-
e

In the case, that the neutralino is a Higgsino-Wino mixture, one gets

de =~ =megs|Myp|tan fsin ®cep x K(mgL,MQ,M2) (4.15)

| =

with a kinematic function K. Here, sin ®cp is the misalignment of the phases of My and p and
must be below 0.01 for SUSY masses of about 1 TeV.

One could avoid these constraints if specific assumptions are made about the form of the soft-breaking
terms. Very simple possibilities would:

e Consider an idealised limit in which the squark and slepton squared-mass matrices are flavor-blind,
each proportional to the 3 x 3 identity matrix in family space:

m2 :mZQI, m% zmél, mz—zmgl, m

) ¥ =mil, mi=mil (4.16)

e

Then all squark and slepton mixing angles are rendered trivial, because squarks and sleptons with
the same electroweak quantum numbers will be degenerate in mass and can be rotated into each
other at will. Supersymmetric contributions to flavor-changing neutral current processes will there-
fore be very small in such an idealised limit, up to mixing induced by T, Ty, Te.

e Making the further assumption that the (scalar)® couplings are each proportional to the correspond-
ing Yukawa coupling matrix,

T, = Au Yu; T, = Ad Yd; T, = Ae }/;a (417)

will ensure that only the squarks and sleptons of the third family can have large (scalar)® couplings.
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e Finally, one can avoid disastrously large CP-violating effects by assuming that the soft parameters
do not introduce new complex phases. This is automatic for m%; and m% , and for sfermion soft
masses if eq. is assumed. Ome can also fix u in the superpotential and B, in soft potential
to be real, by appropriate phase rotations of fermion and scalar components of the H, and Hy

supermultiplets. The remaining phases which need to be small are
Im(My), Im(Ms), Im(M3), Im(A4,), Im(Ag), Im(A,) (4.18)

If those exactly vanish, then the only CP-violating phase in the theory will be the usual CKM phase
found in the ordinary Yukawa couplings.

The MSSM with these flavor- and CP-preserving relations imposed has far fewer parameters than the
most general case. The new parameters beside the SM ones, are

e 3 independent real gaugino masses
e 5 real squark and slepton squared mass parameters
e 3 real scalar cubic coupling parameters

e 4 Higgs mass parameters (2 can be eliminated by the minimum conditions as we will see)

4.2 Gauge Coupling Unification and SUSY Breaking mechanism
4.2.1 RGE Running

Lagrangian parameters are scaled dependent, i.e. they change with the energy at which the test the
model. This energy dependence is described by the renormalisation group equations (RGEs). The RGEs
are calculated in a chosen renormalisation scheme. For non-supersymmetric models, it is convenient to
choose the so called 'MS scheme’ (dimensional regularisation). In this scheme , the number of space-time
dimensions is continued to d = 4 — 2¢. The B-functions calculated in MS, which describe the energy
dependence of the parameters O, are defined as

dO;
i = . 4.19
Bi = p du ( )
Here, i is an arbitrary mass scale. 8; can be expanded in a perturbative series:
L m
- , 4.20
Bi Z (16772)"B’ ( )

n

Bfl) is the one-loop contributions which we will use here. Since the 3 function for gauge couplings is
related to the anomalous dimension via

By = g7 (4.21)

The one-loop RGEs for gauge couplings can be calculated from diagrams as

A \
WJ/ )
r\/\/\/
By =g X + \ +
4 \ /
fermions ~_-7 scalars
~fiTy fizy ~TiTd ~TT3
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More precisely, we need to calculate the divergent part of each contribution to the wave function renor-
malisation constant. When doing that, one finds that the general expression for the g function of the
gauge coupling in an arbitrary model is given by

d B (2 1 11
W= = o (Z1(F)+21,(8)— — 4.22
B0 = G0 = 1oty (5P + §1a(S) - 5 CalC) (1.22)
Here, C5(G) is the quadratic Casimir index of the group, and I5(F'), I5(.S) are the Dynkin indices summed
over all fermions respectively scalars. Note, S counts the real scalar degrees of freedom.

We get for the Standard model

2 1 1 4 2 1 1 1,15 41 .
1) .3 — 3
551)791 g><3><3><(2><%+9+9)+§><3><(2><Z+1)+6><2><2><(Z) 3= 0%
L quarks leptons Higgs
(4.23)
11 2 1 2 1 1 1 19
W —g3 | - = x (2)4= )+= N4+ x2x(2)] =——¢2 4.24
B =gd |~ 5 X )+ 3 xBxBx (543 x3x (5)+3 x2x ()| =~ 63 (424)
L W bosons left quarks left leptons Higgs
11 2 1 1
B —g3 g X @) T3 x3x (145 +5) =743 (4.25)
L gluon quarks

Note the additional factor 2 for Higgs particles because the expressions are given in terms of real scalars.
Moreover, we have added a factor 1/5/3 which is the ’‘GUT normalisation’ for a SU(5).

If we turn to a supersymmetric theory, it is actually not possible to perform the calculation in MS scheme:
it introduces a mismatch between the numbers of gauge boson degrees of freedom and the gaugino degrees
of freedom off-shell. Therefore, one uses the slightly different 'DR scheme’ (dimensional reduction). In
this scheme, all momentum integrals are still performed in d = 4 — 2¢ dimensions, but the vector index
v on the gauge boson fields Aj, now runs over all 4 dimensions to maintain the match with the gaugino
degrees of freedom. It turns out, that one loop S-functions are always the same in these two schemes.
Therefore, one can immediately derive the expression for the S-function in a supersymmetric theory from
the result above. One finds

By (12(®) — 3C2(@)), (4.26)

162

Here, ® is the sum over all superfields. We have used here that one gaugino appears in the adjoint
representation and that appear always together. We get now for the MSSM

AWM —3’ (4.27)
BY =g3 (4.28)
B = — 343 (4.29)

The difference in the running looks as follows:
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Qo

Qaz
20

- - - - - - — log(Q/GeV)
4 6 8 10 12 14 16

Here, we assumed a SUSY scale of 1 TeV. One sees that the gauge couplings unify in the MSSM (within

the theoretical uncertainty) at a scale M = 2 -10'6 GeV. This scale is often called GUT scale, Mgyt
because it might be the scale at which a GUT theory (SO(10), String theory) gets broken to the MSSM.

4.2.2 Boundary conditions at the GUT scale

The unification of the gauge couplings at a scale of M = 2-10'® GeV have motivated how SUSY could be
broken at that scale. A very popular assumption is that the SUSY breaking parameters of the MSSM are
induced at that scale via gravitational interactions. One can built explicit models how this can happen,
e.g. minimal supergravity. The outcome is that in the minimal version only all soft-breaking terms in
the MSSM (107!) are fixed by only three parameters. These are

a) A common mass myg for scalar fields
b) A common mass M, , for gaugino fields
c) A parameter Ay which relates the trilinear soft-terms and the Yukawa interactions.

The boundary conditions at the GUT scale are

mé =m% =m% =m% =m?L = 1m? (4.30)
m%ld = m%u = m? (4.31)
My = My = My = My s (4.32)
T, = AY, (4.33)
Ty = AyYy (4.34)
T, = AyY, (4.35)

Although B,, would also be predicted at the GUT scale by the SUSY breaking mechanism, it is usually
fixed by the condition that tadpole equations are fulfilled at the SUSY scale. Also |u|? is fixed by this
condition. Thus, the only free parameter in this setup are

mo, M1/2, AO) tanﬁ, phase(:u) (436)
This version of the MSSM is called the *Constrained MSSM’ because of obvious reasons.

4.2.3 Running Soft-Masses
4.2.3.1 Gaugino mass parameters

The generic RGEs for the gaugino masses are given by

W= 8952 (I2(®) — 3Co(@)) M, (4.37)
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Thus, the S function can directly be read off from the RGEs of the gauge couplings, i.e. on has

51(2 _ (4.38)
B = (4.39)
B = (4.40)
At the one-loop level, it is possible to solve the RGEs analytically. For that, we re-write

d 4 d 1 4 1 919

6 =20 —qg. = 2 = —9 4.41
g2 = 290190 = 290 X 55 9aPa = 1552Pa(9a) (4.41)
d 1

—M, = ——2B.92M, 4.42
i Ma = qgra2PagaMa (442)

From that, we find

_ ga(Mgur)?
-1+ 2/6aga(MGUT)2t

_ My (Mgur)
Ma(t) B - -1+ 2Ba9a(MGUT)2t (443)

ga(t)® =

Thus
My(t)  My,(Mgur

507~ 5.(Maur)? (449
We find that the ration of the gaugino mass parameters at SUSY scale are given by

M M M. M.

For A AR (41)
From ¢g; ~ 0.45, go ~ 0.65 and g3 ~ 1.1, we get

My:My:Mg~1:2:6 (4.46)

This is one of the reasons why in many cases the lightest neutralino, i.e. the dark matter candidate is
assumed to be bino-like. The big hierarchy between the bino and gluino is also very helpful from the
experimental point view: the production cross section of the gluino at the LHC is very high, i.e. it’s
mass is already pushed in the TeV range. Nevertheless, light electroweakinos are still possible even in
this simple, unified scenario.

At the two-loop level this prediction is (moderately) changed, because the higher order corrections for
the gluino are more important than for the bino and wino. We show the running at one-loop (dashed)
and two-loop (full lines) in the following plot:

M,
500
400}

— M

300} Mo

M

“t /
- . . L . — log(Q/GeV)
4 6 8 10 12 14 16
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4.2.3.2

Scalar masses

Also for all other soft-masses generic expressions exist up to full two-loop and even partial three-loop
level. However, the explicit expressions are not necessary for the following discussion. We only want to
understand the general features qualitatively.

The B-function for scalar soft masses m? is of the form:

T Y2(m? + A%) — g*|M|? (4.47)
—_———— ——
Yukawa Gauge

where we have used T' = Y A, ie assumed a proportionality between trilinear soft-terms and Yukawa
couplings. We see, that the gauge contributions enter with a different sign than the Yukawa contributions.
This observation leads to many important features.

If we

Even

often also the assumptions made about SUSY spectra at the low scale even if no explicit GUT
model is assumed.

assume that all scalar soft-masses unify at the GUT scale, we will find at the SUSY scale:

Squarks are usually heavier than sleptons because of the additional contributions from the
strong gauge coupling

Left-Sfermions are heavier than right Sfermions because of the contributions from g

Third generation particles are usually lighter than first and second generation because of
bigger Yukawa contributions

The stops are lighter than the sbottoms because of the bigger Yukawa contributions
The lightest Sfermion gauge eigenstate is often .

The up-Higgs run much faster than the down-Higgs because of the contribution from the
top Yukawa coupling.

if these hierarchies are motivated by a GUT theory based on unified masses they influence

We can compare in the following numerical the running of the following particles to confirm our estimates:
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7~—L; 7~'R, éL, tNL, IgR, lNJR, CiL, CiR. The RGEs are given by

6
800 == (S0P + 6RIMP?) + 2hm v + 72 (1.48)
TL
1) 24 2 24,2 2
Bz :_391|M1\ +A[mp Y7 + 17 (4.49)
TR
6
5,(,2 =— (5g§|M1|2+6‘g§|M2|2) (4.50)
L
(1) 2 5 2, 32 5 2 2 2 2 12 2 2 y2 2
Bz == ( g9iIMil" + 563 Ms|” + 6g3| Me| | +2[mp Yy + T] + 2[my Yy + T7] (4.51)
tL
1) 32 5 2 2 2 2
Bz = 15 97| M| *fgslMgl +4[my Y72 + T7] (4.52)
'R
32
B = LRI — SRIMP? + Al Y + 7] (4.53)
R
8 32
Bt =~ g I — g M (4.54)
dr
with
mi =m}, + mlg3 +m2, (4.55)
mg =mi;, +mtg + mg, (4.56)
m?, (de—i-mi +m2,) (4.57)

We use for the following example
mo = 250 GeV, M5 =200 GeV, Ay=0 (4.58)
The running masses as function of the scale @ evolve like this:

m[GeV] m[GeV]
280 |

275
— 1L 5 .
270 R
A
br 265
er
— dr 260

255

log(Q/GeV) L L L L L . — log(Q/GeV)
6 16

Finally, we can also check the running of the two Higgs soft masses. Their § functions are given by

6
Bz, = —2 G IM P —6g3|Mal* + 6[mbY; + T3] +2[mi Y7 + T7) (4.59)
d
58 =~ 2glIAG — 61N + 6[m} ¥ + 7] (4.60)
and we get:
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mP[GeV?]

_— Y
50000 [
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Note, we have plotted here the mass squared. Thus, we can see that m%{u runs negative. This alone is
not yet sufficient for EWSB, because

my, +p? <0 (4.61)

must hold to break the ew symmetry.

4.3 From gauge to mass eigenstates

We have so far only considered the so called 'gauge eigenstates’ before electroweak symmetry breaking.
However, these particles mix after EWSB to new 'mass eigenstates’. And these mass eigenstates the
particles which we would observe at colliders if SUSY exists. This is analogue to the rotation of B and
W3 bosons to v and Z-boson.

We are going to assume that the electroweak symmetry gets broken by Higgs VEVs

(H3) :\%Ud (4.62)
(H) -1, (4.63)

\/5 u
with v = \/’ug + v2 ~ 246 GeV. And the ratio of v, v, defines

tan f = —* (4.64)
Vd

Much more details about the Higgs sector will be given in a dedicated section. The mixing takes place
between particles of same quantum numbers after symmetry breaking. We start with list of all mixing
which we will discuss step by step in the following

a) Sneutrino

Do, Dy s - A (4.65)

b) Charged Sleptons

éL7ﬁLa7-LvéR7[LR77~—R — é17~~~7éﬁ (466)
c) Squarks

dr,31,b1,dR,dR,br — di,...,ds 4.67

r,er,tr, UR,Cr, tr — Uy .- -5 U 4.68)
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d) Neutralinos

H; ,W—/H W+ — XT, X5 (4.70)

f) Higgs
HY, HO - h,H,GO, A° (4.71
Hy, H} - Gt H* (4.72)

4.3.1 Sfermion Sector
4.3.1.1 Sleptons

We start with the mixing in the Sfermion sector, more specifically with sleptons. For simplicity, we start
with the assumption that only third generation Yukawas contribute and no flavour mixing is present. In
that case, we get slightly different Lagrangians for the staus and the first two generations of sleptons.
The important parts to understand the stau sector are

—Lz =mZ |7l* + m2, |7L* + (T, H)77L + c.c.)

soft terms

+ Y2 Ha* (|70 ? + |7r|?) — pYs (Hu 77 + c.c.)

F-terms

1 1, ~ 1 .
+ 59t (1Ha* = [HP) G I7e — 17al?) + o3 (1 Hal* — [Hy*) |7 (4.73)

D-terms

The first line are the soft-terms, the second lines comes from the F-term potential and the third line from
the D-term potential. After inserting the Higgs VEVs, we get

. . 1 v o
—Lz =mZ_|7r|* + m2, |7L]* + (—=TrvaTh7L + c.c.)

V2

1 1
SV 2p2(17 |2 nl2) — —— uYo (0,757 .
+ YRR +7af) = oY (v + cc)
1 1,. - 1 -
+ 30308 = )17 — [Fal?) — 76303 + 027 (474)

We see that there are mass contributions from SUSY and EWSB, but also left-right mixing appears.
Therefore, one writes the Lagrangian as

—Lr = ()M} () (4.75)
TR

with the mass matrix given by

1Y, 7 + %(g% - g%) (vﬁ - vi) +mZ, \% (UdT: - vu,uYT)

2
1 4.
(07 = vt ) e k(o) e, |
\/5 T u T d T 291 d u Fn

N[
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The physical masses msz,, msz, are the eigenvalues of this matrix. The relation between mass and gauge
eigenstates is given by a rotation matrix

1 _ [ cos 0, sinf, L (@77)
To —sinf, cosf, TR

From this result, one can simply derive the mass matrices for the first two generations of of sleptons.
They are given by

(ot - a3) (v —02) + 2, 0

2 _
Mp = 1.2( 2 2 2
0 —191 (vd —’Uu) +mz,

(4.78)

Thus, in our approximation there is no left-right mixing and the mass eigenstates correspond to gauge
eigenstates. The effects from first generations Yukawas and from flavour mixing are usually only a small
perturbation. If one works in the fully general setup, a 6 x 6 matrix needs to be considered:

er,

fir
~k o~k ~ok o~k o~k ~k %L

—L; = (eLULTLeRMRTR)MI% : (4.79)

R

KR

TR

with

sv3Y Y. + é(fg% +g%)1(—v3 +v§) +m? %(vdTJ *vuuYJ)

M} =
7 (”dTe - ”uYe“*) 30 Y Yd + ig?l( — v+ vi) +m?

(4.80)

In this case, a 6 x 6 matrix is needed to diagonalise the mass matrix. The eigenstates are called é; with
i =1,...6. The ordering is

me, < Mg, < -+ < Mgy (481)

4.3.1.2 Squarks

The mass matrices for Squarks can be derived in exactly the same way by replacing the corresponding
parameters. A bit care is just necessary for the terms proportional to g?. The Lagrangian with flavour
violation is written as

dr, ur,
Sp cL
L~ — Tx ~ B* d'* ~% B* M2 bL ~k o~k Tk ~k o~k K M2 EL 4.89
—Lg = (A5 bLdRSRVR)Mp | < | + (4Lt uRCRER) My | _ (4.82)
dr UR
SR CR
ZN)R ER
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with
e[ (33 +93)1( — 02+ 03) + 3 (2m2 + 03¥Va) L5 (vat] — vuny])
2
% (’Ude — vqu,u*) 1—129%1( — 2+ ’Uz) + %(ng + v?inYdT)
(4.83)
L _214(—395 —|—g%)1<—v3 +v§) + %(Zmi—i—vﬁYJYu) %(—vd,uYJ—i—vuTJ)
i (= vt +0,T.) L2m2 + 2y + dgi1( = o2 +03)
(4.84)

From diagonalising these matrices, one obtains twice six mass eigenstates d;, @; with i = 1,...6. The
relation between mass and gauge eigenstates is given by unitary 6 x 6 matrices called Z” and ZY.

The full 6 x 6 mass matrices are usually needed when considering flavour observables. In other cases,
flavour mixing as well as the mixing of the first two generations can often be neglected. Thus, only the
two stops and sbottom mix to two mass eigenstates each

R tr

. b - i
—Lg, = (bpbp) M <5L> + (L tR) M7 <L> (4.85)

with
e [ (30 et ) (i o) + 4 (2, odmil?) 3 (vt — vty
b J(vas = vaine') Boi( - o3+ 02) + 3 (2m2 + 3l
(4.86)
e [ A (30 at) (= ok +ud) + 5 (2md, +evip) (= vy + 0T
t Ve~ v + o L(2m2, +o2vil) + g3 ( — o2 +03)
(4.87)

These mass matrices are then diagonalised by two orthogonal matrices which depend only on the angles
©; respectively O;.

The importance of these mixing angles are for instance visible from the couplings of the (SM-like) Higgs
to the stop mass eigenstates which are

Opiyq, = (v cos Y + V2 cos ©;sin ©;(pusin a¥; + cos aTy)) + O(e?) (4.88)

We skipped here all terms sub-dominant proportional to 2, and the angle « is the rotation angle in the
Higgs sector which we will discuss in detail later. We can see from this expression that the second term
becomes only very large if there is a large mixing in the stop sector.
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4.3.2 Chargino and Neutralino Sector

We turn now to the electroweakino sector which is formed by the electroweak gauginos and the Higgsinos.
The relevant terms in the Lagrangian to understand the mixing are

—Ly =M BB+ MyWW®+ pHyH, Hc.c.
—_——

soft-terms superpotential

1 -~ N 1 .
+ 5\/5913<HdH; — H H) + 5\/5920“ We(HLH? + HLHY) (4.89)

j

gaugino-fermion-scalar interactions
=M BB + May(W'W' + W?W? + W3W?) + w(HYH? — H; H ) + c.c.
1 5 ~ 1 < - -
+ 5\/§g1B(zargﬂg* + HyH ) + 5\/592 WO +W2 () +W3() (4.90)
W' and W? get rotated similar to the W-boson to get electric eigenstates:
_ L
V2

After inserting the Higgs VEVs, we finally have

W (Wl + iW2> (4.91)
~L; =M BB+ Ma(WTW = + W3W3) + u(HIHL — Hy H) + c.c.
1 - 1 /o= - L -
+ gngngd + 592 (ng%d + HXW30, + H; Who, + qujW_> (4.92)

We want to write our Lagrangian in the form

B
1 o w3 = W
—Ly = 5 (BW?HiHy}) Mo o |t (WHH) Mg+ <H> (4.93)
d d
EO

We see an important difference between the neutral and charged sector:

e In the neutral sector, the mass matrix is symmetric. We will need one matrix to diagonalise it.
Therefore, the four gauge eigenstates BW?3HJH{ will mix to four Majorana fermions. We call them
neutralinos XY, ... x9.

e In the charged sector, the mass matrix is not symmetric. We will need two matrices to diagonalise
it. Therefore, the four W*H; W~
H will mix to two Dirac fermions. We call them charginos )zli, )Néc

4.3.2.1 Neutralinos

The mass matrix of the neutralinos is given by

M, 0 —3010d 39104
0 My 19204 —3920y
Mp=| . ’ 3 (4.94)
291Vd  392V4q 1%
39100 —5Galu  —H 0
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This matrix is diagonalised by an unitary matrix N:

mgo 0 0 0
0 ; 0 0
N*MgpNT = s (4.95)
0 0 mgp 0O
3
0 0 0 my
The ordering of the mass is that

holds. Note, that masses can become negative. One shouldn’t confuse this with a tachyon because the
sign is not physical: it can be absorbed in the rotation matrix N by multiplying the corresponding line
with /i’. N rotates the four Weyl fermions to new states labelled \?. The relation between the gauge and
mass eigenstates is

B=Y N;X (4.97)
J

WO =>"NpA) (4.98)
J

HY =Y N\ (4.99)
J

HY =Y Ny (4.100)
J

From \? we can build four Majorana fermions

0 A7
o /\0 (4.101)

The neutralino play a very important role in SUSY models because the lightest neutralino is often the
dark matter candidate. Depending on the hierarchy in the Lagrangian parameters, the nature of the
lightest neutralino is different:

a) My < Ms,u: Bino dark matter
b) M, < Mj,u: Wino dark matter

c) p < My, My: Higgsino dark matter

Although one has in all three cases neutralino dark matter, the properties of the dark matter particle can
be quite different. This becomes already obvious when checking the neutralino—Z vertex. This vertex is
important for the annihilation channel x{x{ — ZZ:
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X1 Z
X z
The expression for the neutralino Z-vertex in four component notation is:
i . . . Py
C9R07 = _5(91 sin Ow + g2 cos Ow ) (NysN13 — N{yNia)v, P (4.102)
—I'r

Thus, only a Higgsino LSP can annihilate in these final states. Bino and Wino LSPs need other
channels which are usually less efficient. Therefore, it’s much easier to obtain the correct relic
density for a Higgsino LSP.

We will discuss this in more detail later.

4.3.2.2 Charginos

In the charged sector, we have the following mass matrix

M- L gov,
M+ :( Rl ) (4.103)
V39204 H

This matrix is obviously not symmetric in general, therefore one needs to rotation matrices U and V to
diagonalise it

0
UMVt = | (4.104)
0 mgs

We assume again that the eigenstates are ordered by their mass
el < Imysl (4.105)

The two matrices U and V can be obtained with a so called singular value decomposition of the matrix

M+, However, in practice it is often easier to consider the squared matrices and use the relations:
2
m_ 4 0
UM MIL Ut = [ X (4.106)
X 0 m2
o+
X2
2
m_ 4 0
VMl Mavi=| % (4.107)
X 0 m2
X5
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The matrices U and V rotate the positive and negative charged fields separately:
AT W+
< i) =V < ~+> (4.108)
)\2 Hu
AL w-
Yl=U( . (4.109)
AJ H,

(4.110)

The Dirac fermions are built from the two Weyl fermion via

X = <(;+)> (4.111)

4.4 Higgs Physics

We turn now to the Higgs sector of the MSSM. The part of the Lagrangian which fixes the masses of the
Higgs reads in terms of gauge eigenstates

Ly = |pPlIHY? + [HT]?) + (|Hg” + [Hy [*)]
F-terms

+ [Bu(HYH; — HIHY) + c.c] +miy (|Ho)? + [H )+ mi, (HJ? + [Hy |°)

Soft terms

_ 1 * —x
(0 + 9 (HP + [H] P = [HY* = [H, [*)* + 59° [ Hy" + HyHy | (4.112)

| =

+

D—terms

The only potentially complex parameters are B, and u. However, possible phases can be rotates away
by a re-definition of the Higgs fields. Therefore, there is no CP violation at tree-level in the MSSM Higgs
sector.

After EWSB, the neutral Higgs fields decompose as

H? = 7(¢i+i0'¢+’l}i) i=d,u (4.113)

K2

N e

with tan 5 = Z—’;, v = \/m = 246 GeV. There are three different parts of the Higgs sector
e CP even: ¢4, ¢, mix to two eigenstates hi, ho
e CP odd: oy, 0, mix to two eigenstates G, A
e charged: H;, H; mix to two eigenstates G*, O+

This categorisation only holds if one assumes that CP is not broken. While at tree-level any CP phase in
the Higgs sector can be rotated away, one can have CP violation via loop corrections from all the other
phases from soft-SUSY breaking. In that case hy, hy and G, A would further mix. However, we will
always work with the assumption that CP is not violated.
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4.4.1 CP odd sector
We start with the CP odd sector. We write the Lagrangian as

LA = (0400)mY <0d> (4.114)
Oy
with
[ 3B a) (=R ed) +md, ®(5,)
ma = 1( 2, 2 2, .9 2 2 (4.115)
%(Bu) —g(g1 "‘92)(‘%"’%) +miy, + [p

This matrix can be further simplified by using the so called tadpole equations: these are the conditions
that one sits at the bottom from the potential:

ov

=0 4.116
8’Ui ( )

These equations read in our case

ov 1
o = ~vuBu 5 (9 +03)va (v —2) + v (i, + 10P) (4.117)
a—V——UB —+—1 24+ g5 Jou (V2 — 07 ) + v, (m3 + |p)? (4.118)
3Uu_ dDy 3 g1 T G2 | Vu| Uy d u H, H '

We can use these equations to eliminate two parameters from the potential. Common choice are to solve
the equations either with respect to i, B, or m%{d, m%{u. For the moment, we use the second option and
find

1 1
iy, = (B 5 (a7 + 58) a0 - o2) — ) (1119)
2 1 Lia o 2 _ 2 2
MH, =~ vgB, — 3 (91 + gz)% (Uu - Ud) — vyl (4.120)
When we insert this in m?%, the matrix becomes rather simple:
B B
my = v " (4.121)
B, #B,
t 1
_p, 0 (4.122)
1 1/tan g
The eigenvalues of this matrix are
mé = (4.123)
1 + tan 52
2
= 4.124
my tanﬂ 12 ( )

The state with zero mass is the Goldstone of the Z-boson because we have performed the calculation in
Landau gauge. Also the matrix which brings the CP odd gauge to the mass eigenstates is completely
fixed in terms of tan 53:

G I cosf  sinf o4 (4.125)
A sin8  cosf Ou .
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4.4.2 CP even sector

We turn now to the CP even sector. As usual, we want to write

1 bd
—Ly = §(¢d¢u)M12LI <¢ ) (4.126)
and find for the scalar mass matrix
e [ 3(gE 4 aB) (38 - w2) i, 1 (93 + 8 )vavu — By .
H= .
~1 (g% + g%)vdvu - B, -1 (g% + g%) ( — 302 + vﬁ) +my + |pl?

After replacing m%{d and m%{u by the solutions of the tadpole equations, and trading B, for M3, the

matrix reads

4M§ tan62+(gf+g§)7j2 tanﬁ((gf+g%)v2+4Mi)
2 _ 4(tan B24+1) - 4(tan B2+1)
Miz = tan B((92+92)v?+4M3)  (g2+g3) tan B2v>+4M3 (4.128)
B 4(tan B2+1) 4(tan B2+1)

We can further simplify the matrix by using M2 = 1 (g7 + g3)v*

Mi tanﬁ2+M§ 7(Mi+M§)tanﬂ
2 an 3241 tan B2+1
My = < _ (z\4t§+[13\4§) tanf M3 t§n§2+M§ ) (4.129)
tan 32+1 tan 82+1
The eigenvalues of this matrix are
1

mp,, = 5 (Mj + M2 F \/ (M2% — Mz)2 + AM2 M3 sin? 2ﬂ) (4.130)
In the so called decoupling limit, M3 > M2 the eigenvalues become

mi = M cos®2f3 (4.131)

m% = M3 (4.132)

The tree-level mass of the light CP even Higgs is bounded in the MSSM by
mp, < Mz cos2f3 (4.133)

Thus, this model would be ruled out immediately if it is not possible to increase the Higgs mass. Therefore,
we need to check the loop corrections.

4.4.2.1 Higgs couplings

The scalar mass and the gauge eigenstates are related by

h\ [—sina cosa bq (4.134)
g) \ cosa sina o '
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At tree-level, the following relations between o and [ exist:

sin2a m3 +m3 tan2o M3 + My (4.135)
sin 28 m¥ —mi )’ tan 23 M%—Mz)’ '
Thus, for M4 > my, Mz both angles are related by o = 8 — %ﬂ'.
The mass matrices SM fermions are given by
M ! Y, (4.136)
=—=Yv .
d NG dvd
1
M, =—=Y,v, 4.137
7 (4.137)
1
M, =—=Yv 4.138
l NG 1Vd ( )
In the limit of vanishing flavour mixing, we get
mgq 1 Yd e 1 Yu Me 1 Y;
Mg = E’U(i YS Mme = E’Uu Yc my = ﬁvd Yl»‘« (4139)
mp Y, my Y; mr Y,

We can now check how the Higgs couplings are modified compared to the SM.

a) Couplings to fermions: under the assumption that only third generation Yukawa couplings are
non-negligible, the Lagrangian for the gauge eigenstates is

L =YqrtrH, + YyqrbrHy + Y, legHy + c.c. (4.140)
:Y;gtLtRHS+HbLbRH3+YT€LeRH3+ -+-+cC.C. (4141)
2 2 2m..
:@tLtRH}j + v2my brbrHY + v2m ererH) +---+c.c. (4.142)
(N Vd Vd
2 2 2m.,
:\[.mt tLtRH3+ fmb bLbRHg—F \[m eLeRHg—l—---—Fc.c. (4.143)
vsin g v cos 3 v cos (3
2 2 om, .
:[mt trtrhcosa + v2m, brbrhsin o + m ereghsina + - -+ + c.c. (4.144)
vsin 3 vcos f3 vcos f3
2 2 i 2m, i
_ \[mttLtRh Cf)SOz n \[mbbLth sin o n Vom crenh sin « b tee (4.145)
in 3 v cos 3 v cos 3
—_———— |
ciin Chon 2

Similarly, one can derive the changes in the couplings compared to the SM for the other scalars.
The results are

U d l
h cos « _sina _sina
sin 8 cos 3 cos 3
H sin cos « cos «
sin 8 cos 3 cos f3
A ﬁ tan 3 tanpf
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b) Couplings to Vectors: we can repeat the exercise and consider the couplings to vector bosons

=3 BB (H ~ ) + 3oty Wawe (HH]" — HLH) (1146)
_ (4.147)
= %v(gg cos Oy + g1 sin O )?hZ, Z" sin(a — B) + %vg%th_W'H‘ sin(a — ) (4.148)

WYz hww

The overall changes in the Higgs-gauge boson couplings are

zZ w
h  sin(a—p) sin(a—p5)
H cos(a— ) cos(a— )

In the decoupling limit, we find

sin(f—a) - (4.149)

cos(B—a) — 0 (4.150)

—22; —sin(8—a)—tanfBcos(B—a) — 1 (4.151)
ZZZ; =cos(8 —a) +tanBsin(f—a) —  tanp (4.152)
ZZZ‘; =sin(f—a)+cotBeos(B—a) — 1 (4.153)
Zzg =cos(f —a) —cot Bsin(B—a) — 1/tanp (4.154)

So, h has nearly the same couplings to SM fermions and gauge bosons as the Higgs boson of the SM with-
out supersymmetry would have. Even if these tree-level relations get modified by radiative corrections,
the light Higgs in the MSSM is very often SM-like, i.e. its couplings are nearly indistinguishable from
the SM. This is very important because several couplings of the Higgs boson with a mass of 125 GeV to
other particles have already been measured at the LHC. The overall result is that they are close to the
SM expectations:

foy =LATEG5S
nzze =146755]

pww- =1.187531

e =1.44702
pup =0.6370°57

pan =1.18%01]

with

Coupling(hXX)Cchrimcnc
Coupling(hX X )SM
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4.4.2.2 Radiative Corrections to the Light Higgs mass

We have seen that the Higgs mass at tree-level has an upper limit of Myz. Therefore, it’s important to
check if the radiative corrections are sufficient to push the mass to the desired value of 125 GeV. The
calculation of the loop corrected Higgs mass involves two steps:

a)

b)

’Shifting the vacuum’: there are corrections to the tadpole equations from diagrams of the form

O

i

This causes shifts §t; to the tree-level conditions T; = 37‘;

T; + 6t; = 0 (4.156)

Thus, the parameters which are obtained from the tadpole equations change their values once going
to the loop level.

’Self-energies’: once one is working at the loop-corrected minimum of the potential, the second
step is to calculate the loop-corrected self-energies via diagrams of the form

.

In general, the self-energy corrections are not diagonal. Therefore, it is convenient to work with
external gauge eigenstates but mass eigenstates in the loop. Thus, one obtains the one-loop correc-
tions to the mass matrix. The loop corrected masses are then the eigenvalues of the loop-corrected
mass matrix M'°°P calculated as

0t
- T 1L (p°) (4.157)

M = M2 + 55
Here, we have assumed that the tadpole equatoin are solved for the soft-breaking masses: those
appear always on the diagonal of the mass matrices and their change from the loop corrected
tadpole is given by ‘% II(p?) is the self-energy matrix which depends on the external momenta.
This demands usually an iterative procedure to get that the eigenvalues m; match the external
momenta, (on-shell condition). However, we consider here the simplified case p? = 0 at the one-loop
level.
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Since we have outlined the demanded procedure to obtain loop corrected masses, we can check which
diagrams are needed to be calculated at the one-loop level in the MSSM. These are

d,u,l,0,h, HE, A dyu, L, X0, x* Z,W*
7T
/; \
| \
\ ]
\ /
\\",’
| | |
| | |
| | |
| | |
Pi Pi b3
a0, h, HE A Z, W+
s
{ N\
\ ]
\ /
i === ="= @, ¢i == -- 9
d,a,l,0,h, HE, A Z, W+ Z, W=
///—\\\‘ m
¢i ""‘ 1= ¢j ¢1 === - ¢j ¢1 "" === ¢j
/ /
\\ Pid \\ 7
A H=*
d7u7l71/’§€07§2i
¢i === - ¢

Note, we have suppressed here the ghost diagrams which could be related to the vector boson contributions
in Landau gauge. One can imagine, that calculation all of these diagrams becomes quite a piece of work.
Therefore, we pick out those contributions which are the dominant ones. These are the diagrams with

(s)tops: t1, t
-~
;7 \\
/ \
! |
\
\ !
\\ __ P
] ]
| |
| |
| |
¢11 d)z
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1?1752
//,—\\
h \
\ [}
\ !
P — === = ¢j
51752 t
PR
/ \‘
g ---1 - 6 61 —-- S
/

One could now start and calculating all of these Feynman diagrams. However, since we are only interested
in the p? = 0 approximation, a simpler approach exists: one can calculate the one-loop effective potential
given by

1 1 all fields

1 — -
AV 1672 4

m?
3
Here, s; is the spin of the particle, C; the colour factor and r; = 1 for real bosons or Majorana particles,
otherwise 2.

From which the necessary quantities are derived via

OAV

oty = 4.159
! (9’U¢ ( )
0’AV
I, = 4.160
J 8’Uiavj ( )
a) top contributions:
Since the top mass is given by m; = %thu, we find
3 1 Yl [(v2? 3
AOYy = 2 -z 4.161
v 216w2 2 2Q2 2 (4.161)
and therefore
3
®t, = — VA (—1+1 4.162
0ty 392 ( + og Q2 (4.162)
() __3 2 m;
II Y 1-1 4.163
5 3 m?
— -1 ="y (—2log —L 4.164
- Uy, uu 32 t ( 0g 4Q2) ( )

b) stop contributions:
Including only the contributions ~ Y;2, the two stop masses squared are given by mt1 =m?

2 to,r
3Y2v2. And therefore

2 1v2,2 2 1y-2,2
; 31 1 m; +5Y v, 3 1 m; +oYiv, 3
s 9 9 o i 2 2 2,2\2 tr 2
A()V_Zlfi? (( mg, +2th) <1ogLQz—2 +(ng+§Yt%) logRT—§

)
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(4.165)
We get
) m? + Lo2y?
00, = 64 2Y2 ; [ 2(mth + m? +opYy) + (thgL +v2Y?) log “th
2 22 mth + vy
+(2m2 +02Y7) log T} (4.166)
2 1,2y2
3 m;, + 5v,Y;
HSB =612 Y202 { — 2(mth + mtgL +02Y2) + (Qm%L + 3v2Y?) log “T
me, + by
+(2m2, + 302Y?) log tRT] (4.167)
5@ . 3 m? + vy m2 + 202Y2
- i = — @vgyf <log tr o + log —& Q2 (4.168)
The sum of both contributions is
5tu 3 L v2Y2 m? + vaY? m2 + $v2Y2
. I, = ~33.7 v Y; ( 2log o + log —& Q2 + log Q2 (4.169)

We see that in the limit of unbroken SUSY, m~ — 0 the contributions would cancel exactly. This is

the famous solution to the the hierarchy problem Even with broken SUSY, there is only a logarithmic
dependence but not a quadratic one.

4.4.3 The Gluino

The gluino doesn’t mix with the other MSSM fields after EWSB and SUSY breaking because it is a colour
octet. Therefore, it is a rather ’simple’ compared to the other mass eigenstates which involve rotation
matrices. The mass of the gluino is given by

M, = | Ms| (4.170)

Since the gluino is strongly interacting, it is one of the most important field when searching for SUSY at
Hadron colliders.

4.5 Fine-Tuning

We want to discuss here the so called ’fine-tuning’ problem of the MSSM. One can understand this
problem by starting from the tadpole equations which we have derived above

1917 1
B, = uButg (gf + g%)vd (vﬁ —~ vi) + g (m%ld + |u|2> (4.171)
191% 1
A —vdBH + = (g% + g%)uu (vi — vfl) + vy, (m%{u + |M|2) (4.172)
Ovy, 8
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In the decoupling limit (B, ~ M3 — oc) and for large tan 3, these relations simplify to

ov

- = 4.1
Fo; =0 (4.173)
ov 1

B = v(my, + u2§(g12 + g2%)v?) (4.174)

which is often presented in the form
1
ng =-—pd-my . (4.175)

This makes the origin of the (little) hierarchy problem within the MSSM apparent: the r.h.s. contains
terms which are naturally O(Msysy ), the SUSY breaking scale. Thus, in order to obtain the measured
value of Mz there must be a cancellation between these terms which demands a certain level of tuning.
There are different measures to quantify the amount of fine-tuning Apr. A widely used one is the
sensitivity measure

A = max Abs[A,], A, = = —=—" (4.176)

Here, p are the independent parameters of the model, and the quantity A~! gives a measure of the
accuracy to which independent parameters must be tuned to get the correct electroweak breaking scale.
Applying this measure to eq. (4.175]), one finds

Inv?  Oln M2 2 2 Omj,
Olnv* _ 9ln Z_ ol _8%_ h (4.177)
0lnp; In p; M7, Op; op;
Using p* = {u?,my2} the very naive estimate for the fine-tuning is found to be
20 2mj,,

Thus, a small FT needs moderately small |u| and |[m% | at the low scale. Therefore, if these parameters
are pushed to larger values by instance from the negative collider searches, this renders SUSY a more
and more fine-tuned model. This tuning is much lower than the one in the SM, but at some point the
MSSM might no longer a 'natural’ extension of the SM. This has increased the interest in non-minimal
models in which the amount of tuning can be reduced compared to the MSSM.
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