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Chapter 1

Motivation to look beyond the SM

The standard model of particle physics (SM) is very successful and experimentally well con�rmed. How-
ever, some questions can't be addressed within the SM.

1.1 Observations

1.1.1 Dark Matter

The energy budget of the universe is well known today:

Visible Matter 0.03% Heavy Elements

0.3% Neutrinos

0.5% Stars

4 % Free hydrogen and helium

Dark Matter 25 % Weakly interacting new particle (WIMP)?

Dark Energy 70% ???

⇒ The SM can only explain 4.9% of the entire energy in the universe

1.1.2 Baryon Asymmetry

We don't see any anti-matter in the observable universe. However, the Big Bang should have produced
equal amounts of matter and anti-matter, i.e. the asymmetry must have been introduced later.
In general: one needs interactions which violate CP (charge-parity) to break the symmetry between mat-
ter and anti-matter.

⇒ The amount of CP violation in the SM is too small to explain the observed matter�anti-matter
asymmetry
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1.2. EXPERIMENTAL DEVIATIONS

1.2 Experimental deviations

Not all experiments are in perfect agreement with the SM. In some observables, a sizeable deviation was
found

Anomalous magnetic dipole moment

The magnetic momentum of an elementary particle is given by

mS = −gµBS
~

(1.1)

µB : Bohr magneton; S: Spin
The g factor is predicted to be 2 by Dirac's theory, but higher order e�ects change this.:

Anomalous magnetic moment a =
g − 2

2
(1.2)

The anomalous magnetic moments are among the best measured and most precisely calculated observ-
ables:

aSM
µ = 0.001 165 918 04 (51) (1.3)

aexp
µ = 0.001 165 920 9(6) (1.4)

⇒ There is a 3.5 σ deviation between the measured anomalous magnetic moment of the myon
and the SM prediction

1.3 Theoretical Issues

1.3.1 Gauge coupling uni�cation

The coupling strength between particles is an energy dependent quantity. The energy dependence is
described by the renormalisation group equations (RGEs). For the three gauge couplings of the SM one
�nds the following behaviour:

4 6 8 10 12 14 16
log(Q/GeV)

20

30

40

50

60

α-1

α1

α2

α3

⇒ The gauge couplings in the SM don't unify. However, a grand uni�ed theory (GUT) like SO(10)
or SU(5) predict such an uni�cation.

It's not possible to embed the SM in a GUT theory without introducing new matter. It's not clear at
which scale the new particles come into play. However, the lighter they are, the bigger their impact is:
less particles are needed in low-scale BSM models.
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Motivation to look beyond the SM

1.3.2 Hierarchy problem

The Higgs particle is the only fundamental scalar in the SM. While fermion and vector boson masses are
protected by symmetries (chiral and gauge symmetries) against large radiative corrections, the masses of
scalars don't have such a protection mechanism. Therefore, the observable mass is given by

m2,obs = m2,Tree + δm2 (1.5)

' m2,Tree + Λ2 (1.6)

where m2,Tree is the mass parameter in the Lagrangian and Λ is the scale of new physics. We know that
(at least) one scale exists at which new interactions come into play: the Planck scale (MP ∼ 1018 GeV)
at which gravity becomes important.

︸ ︷︷ ︸
m2,exp
H

=

︸ ︷︷ ︸
m2,Tree
H

+

︸ ︷︷ ︸
∼Λ2

(1.7)

⇒ The SM has no natural explanation why the observed Higgs mass is ∼ 125 GeV, but it demands
a cancellation of 32 digits between unrelated parameters.

1.4 Why supersymmetry?

Supersymmetry (SUSY) provides possible explanations for all these questions:

• New Particles can form the DM

• New sources of CP violation to generate the Baryon asymmetry

• New loop contributions to aµ

• Changes the running of gauge couplings → Uni�cation!

• The Higgs mass is protected by the new symmetry and naturally light

Because of these reasons, minimal supersymmetry was for a long time the top candidate for an extensions
of the SM. However, with the negative searches at LHC the picture is changing: heavier SUSY masses
introduce a new (small) hierarchy problem in the theory. Nevertheless:

• Other bene�ts of SUSY (dark matter, gauge coupling uni�cation, CP violation) are hardly a�ected

• The corrections to the Higgs mass are only logarithmic dependent on the SUSY scale, not quadratic
as in the SM alone
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1.4. WHY SUPERSYMMETRY?

• There are still unexplored corners in which light SUSY particles are possible within minimal super-
symmetry

• There is an increasing interest in non-minimal SUSY models which avoid the small hierarchy prob-
lem
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Chapter 2

Basics

2.1 Notations and conventions

• Natural units (formally ~ = c = 1) are used everywhere.

• Lorentz indices are always denoted by Greek characters, µ, ν, .. = 0, 1, 2, 3.

• Four-vectors for space�time coordinates and particle momenta are written as

x = (xµ) = (x0, ~x), x0 = t ,

p = (pµ) = (p0, ~p ), p0 = E =
√
~p 2 +m2 .

• Co- and Contravariant vectors are related by

aµ = gµν a
ν ,

with the metric tensor

(gµν) =


1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1


• The 4-dimensional scalar product is

a2 = gµν a
µaν = aµa

µ, a · b = aµb
µ = a0b0 − ~a ·~b .

• Covariant and contravariant components of the derivatives are written as

∂µ =
∂

∂xµ
= gµν ∂

ν , ∂ν =
∂

∂xν
[ ∂0 = ∂0, ∂k = −∂k ] ,

� = ∂µ∂
µ =

∂2

∂t2
−∆ .
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2.2. GROUP THEORY

2.2 Group Theory

2.2.1 Axioms

A collection of elements gi form a group if the following conditions are ful�lled:

a) Closure under a multiplication operator; i.e., if gi and gj are members of the group, then gi · gj is
also a member of the group

b) Associativity under multiplication; i.e.

gi · (gj · gk) = (gi · gj) · gk (2.1)

c) An identity element; i.e., there exist an element 1 such that

1 · gi = gi · 1 = gi (2.2)

d) An inverse; i.e. every element gi has an element g−1
i such that

gi · g−1
i = 1 (2.3)

2.2.2 Lie Groups

2.2.2.1 De�nition

Lie Groups are both groups and di�erentiable manifolds.

Any group element continuously connected to the identity can be written

U = eiΘaT
a

(2.4)

where the Θa is a real parameter and the T a are the group generators, which live in the Lie
Algebra.

The generators T a , which generate in�nitesimal group transformations, form the Lie Algebra.

The Lie algebra is de�ned by its commutation relations

[T a, T b] = ifabcTc (2.5)

where fabc are known as the structure constants.

By de�nition they are antitsymmetric

fabc = −facb (2.6)

2.2.2.2 Groups considered in the following

We are interested in so called semi-simple Lie groups as SU(N) and SO(N). We focus in the following
on SU(N). These groups preserve a complex inner product. Finite dimensional representations of semi-
simple Lie algebras are always Hermitian, so one can build quantum theories which are unitarity based
on such algebras. The complex inner product is

U†U = 1 (2.7)
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Basics

de�ned on N dimensional complex vector spaces, for U(N). Note that in all cases we can write U(N) =
SU(N)× U(1) where the U(1) represents an overall phase. There are N2 − 1 generators for SU(N). To
see this, let us write the identity in�nitesimally as

0 =1− e0 (2.8)

=1− e[iΘaTa+(iΘaTa)†] (2.9)

=1− (1 + iΘaTa)(1− iΘaT
†
a ) (2.10)

=− iΘa(T †)a + iΘaTa (2.11)

⇒ T =T † (2.12)

so we can count the generators by counting N ×N Hermitian matrices. Such matrices have 1
2N(N − 1)

imaginary components and 1
2N(N + 1) real components, but then we subtract the identity matrix, which

just generates U(1). Thus, we �nd for the number of generators

#(Ta) =
1

2
N(N − 1) +

1

2
N(N + 1)− 1 = N2 − 1 (2.13)

2.2.2.3 Representations

The groups and algebras discussed above are abstract mathematical objects. We want to have these
groups act on quantum states and �elds, which are vectors, so we need to represent the groups as
matrices. There are an in�nite number of di�erent representations for a given simple group. However,
there are two obvious and most important representations, which occur most often in physics settings.
They are

a) the fundamental representations

b) the adjoint representations

The fundamental representation is the representation de�ning SU(N) and SO(N) as N × N
matrices acting on N dimensional vectors. To write the fundamental formally, we say that N
�elds transform under it as

φi → φi + iαa(T af )jiφj (2.14)

where i = 1, . . . , N , a = 1, . . . N2 − 1 and the αa are real numbers. The complex conjugate �elds
transform in the anti-fundamental f , which is just the conjugate of this

φ∗i → φ∗i − iαa(T a∗f )jiφ
∗
j (2.15)

Since T af are Hermitian, we have Tf = (Tf )∗.
The normalisation of generators is arbitrary and is usually chosen so that

TrT af T
b
f =

1

2
δab (2.16)

The other important representation is the adjoint. The point is to think of the generators them-
selves as the vectors. Thus, the generators are

(T aadj)
b
c = −ifabc (2.17)
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2.2. GROUP THEORY

How can we see that the Tadj actually satisfy the Lie algebra, and thus are really a representation? This
is given immediately by the Jacobi identity

[A, [B,C]] + [B, [C,A]] + [C, [A,B]] = 0 (2.18)

written as

0 = [T a, f bcdTd] + [T b, f cadTd] + [T c, fabdTd] (2.19)

= f bcd[T a, Td] + f cad[T b, Td] + fabd[T c, Td] (2.20)

= f bcdfadeTe + f cadf bdeTe + fabdf cdeTe (2.21)

⇒f cbdfade − fabdf cde = f cadfdbe (2.22)

⇒[T cadj, T
a
adj] = if cadT dadj (2.23)

The dimension of the adjoint representation is N2 − 1 for SU(N).

2.2.2.4 Group constants

The quadratic Casimir is de�ned as

T aRT
a
R = C2(R)1 (2.24)

This must be proportional to the identity (when acting on a single given irreducible representation)
because it commutes with all generators of the group, which follows from

[T aRT
a
R, T

b
R] =T aRT

a
RT

b
R − T bRT aRT aR (2.25)

=T aR([T aR, T
b
R] + T bRT

a
R])− ([T bR, T

a
R] + T aRT

b
R)T aR (2.26)

=T aR(ifabcT cR)− (if bacT cRT
a
R) (2.27)

=ifabcT aRT
c
R + ifabcT cRT

a
R (2.28)

=0 (2.29)

because of anti-symmetry of fabc.
Another important quantity is the Dynkin index I(R)

Tr[T aRT
b
R] = I(R)δab (2.30)

The quantity I(R) is the index of the representation. We have that

I(f) =
1

2
(2.31)

and

I(G) = N (2.32)

for SU(N) and our normalisation. The Dynkin index and the quadratic Casimir are related

d(R)C2(R) = I(R)d(G) (2.33)

where d(R) is the dimension of the representation, and d(G) of the algebra, namely N2 − 1 for SU(N).
Thus

C2(f) =
N2 − 1

2N
(2.34)

C2(G) =N (2.35)
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Basics

2.2.2.5 Why do we need that?

a) The interactions between gauge bosons (and gauginos) are proportional to the generators of Lie
group

ψ̄i

ψj

AaµT aij

b) Loop corrections with gauge bosons/gauginos (or decays into them) are proportional to the quadratic
Casimir C2

∑
a

∑
k

Aaµ

Ψk

Ψi Ψj

T aik T akj ∑
a

∑
j

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ψ̄i

ψj

Aaµ

T aij

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2

c) Loop corrections to gauge bosons/gauginos (or decays of them) are proportional to the Dynkin
index I

∑
i

∑
j

Ψj

Ψi

Aaµ Abµ

T aij T bji ∑
i

∑
j

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

λa

ψj

φ∗i

T aij

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2

2.2.2.6 Examples

2.2.2.6.1 SU(2)
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2.2. GROUP THEORY

For SU(2) the common generators for the fundamental representation T af are related to the Pauli
matrices σa (i = 1, 2, 3) by

T af =
1

2
σa (2.36)

with

σ1 =

(
0 1

1 0

)
σ2 =

(
0 −i
i 0

)
σ3 =

(
1 0

0 −1

)
(2.37)

For later, it is also helpful to introduce

σ0 = σ0 =

(
1 0

0 1

)
(2.38)

and σi = −σi. The Lie algebra

[σa, σb] = ifabcσc (2.39)

is ful�lled for

fabc = εabc (2.40)

where εabc is the Levi-Civita tensor. And we have

d(f) =2 d(a) = 3 (2.41)

C2(f) =
3

4
C2(a) = 3 (2.42)

I(f) =
1

2
I(a) = 2 (2.43)

2.2.2.6.2 SU(3)

The common representation for SU(3) are given by the Gell-Mann Matrices λa

T af =
1

2
λa (2.44)
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With

λ1 =


0 1 0

1 0 0

0 0 0

 λ2 =


0 −i 0

i 0 0

0 0 0

 (2.45)

λ3 =


1 0 0

0 −1 0

0 0 0

 λ4 =


0 0 1

0 0 0

1 0 0

 (2.46)

λ5 =


0 0 −i
0 0 0

i 0 0

 λ6 =


0 0 0

0 0 1

0 1 0

 (2.47)

λ7 =


0 0 0

0 0 −i
0 i 0

 λ8 =
1√
3


1 0 0

0 1 0

0 0 −2

 (2.48)

And we have

d(f) =3 d(a) = 8 (2.49)

C2(f) =
4

3
C2(a) = 3 (2.50)

I(f) =
1

2
I(a) = 3 (2.51)

2.2.3 Other groups relevant in particle physics

a) Lorentz Group: the Lorentz group is the set of all 4× 4 real matrices that leave the line element
in Minkowski space invariant:

s2 = (x0)2 − (xi)2 = xµgµνx
ν (2.52)

It is parametrised by

x′µ = Λµνx
ν (2.53)

The Lorentz group has six generators:

• three generators J i creating rotations

• three generators Ki creating boosts

b) Poincare Group: the Poincare group is the generalisation of the Lorentz group including trans-
lation:

x′µ = Λµνx
ν + aµ (2.54)

The generator of the translation is the four momentum operator pµ
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2.3. QUANTUM FIELD THEORY

2.3 Quantum Field Theory

2.3.1 Lagrangian formalism

We are working with the Lagrangian formalism of quantum �eld theory. The basic features are

• space�time symmetry in terms of Lorentz invariance, as well as internal symmetries like gauge
symmetries

• causality

• local interactions

Particles are described by �elds that are operators on the quantum mechanical Hilbert space of the
particle states, acting as creation and annihilation operators for particles and antiparticles. We need in
the following particles characterised by their spin:

• spin-0: complex or real scalar �elds φ(x), ϕ(x)

• spin- 1
2 : fermions, described by two- or four component spinor �elds ψL,R, ψ(x).

• spin-1: vector bosons Aµ(x)

The dynamics of the physical system involving a set of �elds Φ is determined by the Lorentz-invariant
Lagrangian L. The action is given by

S[Φ] =

∫
d4xL

(
Φ(x)

)
, (2.55)

The equations of motions follow as Euler�Lagrange equations from Hamilton's principle,

δS = S[Φ + δΦ]− S[Φ] = 0 . (2.56)

Let's go back to mechanics: for n generalised coordinates qi and velocities q̇i the Lagrangian reads:
L(q1, . . . q̇1, . . . ) The equations of motion are calculated from (i = 1, . . . n)

d

dt

∂L

∂q̇i
− ∂L

∂qi
= 0 . (2.57)

Going to �eld theory, one has to perform the replacement

qi → Φ(x) , q̇i → ∂µΦ(x) , L(q1, . . . qn, q̇1, . . . q̇n)→ L(Φ(x), ∂µΦ(x)) (2.58)

The equations of motion become �eld equations which are calculated from

∂µ
∂L

∂(∂µΦ)
− ∂L
∂Φ

= 0 , (2.59)

2.3.2 Free quantum �elds

2.3.2.1 Scalar �elds

The equation of motion for a scalar �eld is known as �Klein�Gordon equation:

(∂µ∂
µ +m2)φ = 0 . (2.60)
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The solution can be expanded in terms of the complete set of plane waves e±ikx,

φ(x) =
1

(2π)3/2

∫
d3k

2k0
[a(k) e−ikx + a†(k) eikx ] (2.61)

with k0 =

√
~k

2
+m2. Here, we used annihilate and creation operators a†, a:

a†(k) |0〉 = |k〉

a(k) |k′〉 = 2k0 δ3(~k − ~k ′) |0〉 . (2.62)

The Lagrangian for a free real or complex scalar �eld with mass m is

Lreal =
1

2
(∂µφ)2 − m2

2
φ2 (2.63)

Lcomplex = (∂µφ)†(∂µφ)−m2 φ†φ (2.64)

One can easily check that they give us the Klein�Gordon Equation as equation of motion. A complex
scalar �eld φ† 6= φ has two degrees of freedom. It describes spin-less particles which carry a charge and
can be interpreted as particles and antiparticles.

So far, we have considered particles without any space�time restrictions. Now, we want to consider the
case that a particle propagates from a point-like source at a given space-time point. This is described by
the inhomogeneous �eld equation

(∂µ∂
µ +m2)D(x− y) = −δ4(x− y) . (2.65)

D(x− y) is called Green function. The solution can easily be determined by a Fourier transformation

D(x− y) =

∫
d4k

(2π)4
D(k) e−ik(x−y) (2.66)

giving in momentum space

(k2 −m2)D(k) = 1 . (2.67)

The solution

iD(k) =
i

k2 −m2 + iε
(2.68)

is the causal Green function or the Feynman propagator of the scalar �eld. The overall factor i is by
convention. The term +iε in the denominator with an in�nitesimal ε > 0 is a prescription of how to treat
the pole in the integral (2.66); it corresponds to the special boundary condition of causality for D(x− y)
in Minkowski space, which means

• propagation of a particle from y to x if x0 > y0,

• propagation of an antiparticle from x to y if y0 > x0.
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2.3. QUANTUM FIELD THEORY

In a Feynman diagram, the scalar propagator is drawn as dashed line.

Complex Scalar φ(k,m) 1
k2−m2+iε (2.69)

Real Scalar ϕ(k,m) 1
k2−m2+iε (2.70)

For complex scalars the arrow shows the �ow of the charge.

2.3.2.2 Dirac �elds

Equation of motion Spin- 1
2 particles with mass m are often described by 4-component spinor �elds,

ψ(x) =


ψ1(x)

ψ2(x)

ψ3(x)

ψ4(x)

 . (2.71)

and obey the Dirac�Equation

(iγµ∂µ −m)ψ = 0 . (2.72)

This equation is obtained from the Lagrangian

Lfermion = ψ (iγµ∂µ −m)ψ , (2.73)

involving the adjoint spinor

ψ = ψ† γ0 = (ψ∗1 , ψ
∗
2 ,−ψ∗3 ,−ψ∗4) . (2.74)

The Dirac matrices γµ (µ = 0, 1, 2, 3) are 4× 4 matrices which ful�l the anti-commutator relations

{γµ, γν} ≡ γµγν + γνγµ = 2gµν . (2.75)

One possible representation is to express the matrices in terms of the the Pauli matrices σ1,2,3 as

γ0 =

(
1 0

0 −1

)
, γk =

(
0 σk

−σk 0

)
. (2.76)

Another matrix, γ5, is often very useful:

γ5 =

(
−1 0

0 1

)
(2.77)
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There are two types of solutions for the Dirac equation, corresponding to particle and anti-particle wave
functions,

u(p) e−ipx and v(p) eipx (2.78)

which are used to write the Dirac �eld as

ψ(x) =
1

(2π)3/2

∑
σ

∫
d3k

2k0

[
cσ(k)uσ(k) e−ikx + d †σ(k) vσ(k) eikx

]
, (2.79)

with

• annihilation operators cσ for particles and dσ for anti-particles

• creation operators c†σ and d†σ for particles and antiparticles

We still have to determine the propagator of the Dirac �eld, which is the solution of the inhomogeneous
Dirac equation with point-like source,

(iγµ∂µ −m)S(x− y) = 1 δ4(x− y) . (2.80)

Using a Fourier transformation as in the scalar case, we �nd

i S(k) =
i

6 k −m+ iε
=

i (6 k +m)

k2 −m2 + iε
, (2.81)

We introduce a graphical symbol for the propagator:

Dirac Fermion ψ(k,m) i /k−m
k2−m2+iε (2.82)

The arrow at the line denotes the �ow of the particle charge.
External fermions are depicted as

incoming particle u(k) (2.83)

incoming anti-particle v(k) (2.84)

outgoing anti-particle v(k) (2.85)

outgoing particle u(k) (2.86)
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2.3. QUANTUM FIELD THEORY

2.3.2.3 Vector �elds

A vector �eld Aµ(x) describes particles with spin 1. We concentrate here on the massless case with two
degrees of freedom.
The Lagrangian of such a �eld is

L = −1

4
FµνF

µν with Fµν = ∂µAν − ∂νAµ + gfabcAbµA
c
ν . (2.87)

The last term is only present for non-Abelian gauge �elds. The �eld equations are Maxwell's equations
for the vector potential,(

� gµν − ∂µ∂ν
)
Aν = 0 . (2.88)

The propagator of the vector �elds depends on the chosen gauge. In general Rξ gauge it is given by

iDρν(k) =
i

k2 + iε

[
−gνρ + (1− ξ) kνkρ

k2

]
. (2.89)

which becomes very simple in Feynman gauge with ξ = 1.

The graphical symbol for the vector-�eld propagator (for both massive and massless) is a wavy
line which carries the momentum k and two Lorentz indices

massless Vector boson Aµ(k) − i gµν
k2+iε (2.90)

massive Vector boson Aµ(k,m) − i gµν−
kνkµ

m2

k2−m2+iε (2.91)

(Possible) arrows at the lines denote the �ow of the particle charge.
External vectors are depicted as

incoming particle εµ (2.92)

outgoing particle ε∗µ (2.93)

2.3.3 Gauge invariance

So far, we have not considered any symmetry. We change that now and apply (local) gauge transforma-
tions to the �elds.

φ(x)→ eigΛ(x)φ(x) (2.94)

φ(x)∗ → φ(x)∗e−igΛ(x) (2.95)

Ψ(x)→ eigΛ(x)Ψ(x) (2.96)

Ψ̄(x)→ Ψ̄e−igΛ(x) (2.97)
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However, one can check that the Lagrangians for scalars and fermions are not invariant under these
transformations. For instance, the fermionic part of the Lagrangian transforms as

L′fermion =i(Ψ̄)′ /∂(Ψ)′ −m(Ψ̄)′Ψ′ (2.98)

=iΨ̄e−igΛ(x) /∂eigΛ(x)Ψ−mΨ̄ (e−igΛ(x)eigΛ(x))︸ ︷︷ ︸
=1

Ψ (2.99)

=iΨ̄(ig /∂Λ(x))(/∂Ψ)−mΨ̄Ψ (2.100)

6=Lfermion (2.101)

We need another ingredient to built kinetic terms for scalars and fermions which are gauge invariant: we
introduce a massless gauge �elds Aµ which transforms as

Aµ → Aµ − ∂µΛ(x) (2.102)

In addition, we de�ne the covariant derivative:

∂µ → Dµ = ∂µ + igAµ (2.103)

g is a free parameter which we call 'gauge coupling'. One �nds that the covariant derivative transforms
as

(DµΨ)′ =D′µΨ′ (2.104)

=(∂µ + ig(Aµ − ∂µΛ))eigΛΨ (2.105)

=eigΛ(∂µ + igAµ)Ψ− eigΛig∂µΛΨ + (∂µe
igΛ)Ψ (2.106)

=eigΛ(∂µ + igAµ)Ψ (2.107)

=eigΛDµΨ (2.108)

Thus, the Lagrangian with derivatives replaced by covariant derivatives are invariant.

Ψ̄DµΨ→ (Ψ̄)′(DµΨ)′ = Ψ̄e−igΛeigΛDµΨ = Ψ̄DµΨ (2.109)

Similarly, one can show that for the scalar terms in the Lagrangian the identity

(DµφD
µφ∗)′ = DµφD

µφ∗ (2.110)

holds.
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2.3. QUANTUM FIELD THEORY

In order to obtain a gauge theory, i.e. a theory in which the Lagrangian is invariant under a local
transformation, the derivative must be replaced by the covariant derivative involving gauge
�elds:

∂µ → Dµ = ∂µ + igT aAaµ (2.111)

Here, T a are the generators of the gauge croup (SU(N)) and a = 1, . . . , N2 − 1.
This introduces interaction terms between the fermions and scalars and the gauge �elds which are
represented by the following Feynman diagrams:

ψ̄

ψ

Aaµ

φ∗

φ

Aaµ

φ∗

φ

Aaµ

Abν

igT aγµ igT a(pµin − p
µ
out) ig2{T a, T b}gµν

2.3.4 Spontaneous symmetry breaking

A mass term for gauge bosons would read

m2
VAµA

µ (2.112)

However, this is not gauge invariant:

(m2
VAµA

µ)′ = m2
VAµA

µ −Aµ∂µΛ− ∂µΛAµ +m2
V (∂µΛ)(∂µΛ) (2.113)

Thus, explicit mass terms are not possible and we must generated them Spontaneously. This idea is the
famous Higgs�mechanism. For that, let's assume a real scalar ϕ and the following potential:

V (ϕ) =
1

2
λϕ4 + µ2ϕ2 (2.114)

Depending on the sign of µ2 the shape of the potential is di�erent
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-1000 -500 500 1000
ϕ

5.0×1010

1.0×1011

1.5×1011

2.0×1011

V(ϕ)

λ=0.1, μ2=300^2

-1000 -500 500 1000
ϕ

-2.0×1010

-1.5×1010

-1.0×1010

-5.0×109

5.0×109

1.0×1010

V(ϕ)

λ=0.1, μ2=-300^2

µ2 > 0 µ2 < 0

For

• µ2 > 0: ϕ = 0 is the correct vacuum

• µ2 < 0: ϕ = 0 corresponds not to the bottoum of the potential, i.e. the correct vacuum is at ϕ 6= 0

We shift ϕ in a way that we are for ϕ = 0 at the minimum of the potential:

ϕ→ ϕ+ v (2.115)

We �nd

V (ϕ = 0) =
1

2
λv4 + µ2v2 (2.116)

→ ∂V

∂v
=2λv3 + 2vµ2 ≡ 0 (2.117)

Thus

v =
√
−µ2/λ (2.118)

is the value of the VEV (vacuum expectation value).

Higgs mechanism We consider now a gauge theory with a complex �eld φ. This �eld is decomposed
in it's real components as well as a VEV as

φ→ 1√
2

(ϕ+ v + iσ) (2.119)

When we insert this in the general Lagrangian

L = DµφD
µφ∗ −m2|φ|2 − λ|φ|4 − 1

4
FµνF

µν (2.120)

we get

L =− 1

4
FµνF

µµ +
1

2
∂µϕ∂

µϕ+
1

2
∂µσ∂

µσ

+ gvAµ∂
µσ − 1

2
g2v2AµA

µ

+
1

2
g2(Aµ)2ϕ(2v + ϕ)− 1

2
ϕ2(3λv2 +m2)− λvϕ3 − 1

4
λϕ4 (2.121)

The �rst line show the ordinary kinetic terms. However, we see that an e�ective mass term 1
2g

2v2 for the
vector bosons has been generated (last term in second line). On the other side, σ is massless, but there
is also a term which mixes the �eld σ and Aµ.
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Interpretation A massive vector boson has three degrees of freedom, while a massless one has only
two. Therefore, one says that σ is 'eaten' by the vector boson to form its longitudinal component. σ is
called 'Goldstone' (or 'Nambu-Goldstone') boson.
It is common to introduce gauge �xing terms in a way that they cancel the mixing terms between �eld
σ and Aµ.

LGF = − 1

2ξ
(∂µA

µ − gvξσ)
2

(2.122)

Thus, the Lagrangian becomes

L+ LGF = +
1

2
∂µσ∂

µσ − 1

2
g2v2ξσ2 − 1

2
g2v2AµA

µ + . . . (2.123)

what gives a relation between the Goldstone mass and the mass of the vector boson

M2
G = ξM2

A (2.124)

In the unitarity gauge ξ →∞, the Goldstone disappears from the spectrum.
The same could have been obtained by starting with a gauge transformation. Using

(ϕ+ iσ + v)→ eiσ/v(v + ϕ) (2.125)

together with

φ→ φ′ =e−iσ/vφ =
1√
2

(v + ϕ) (2.126)

Aµ → A′µ =Aµ −
1

gv
∂µσ (2.127)

which leads to the Lagrangian

L =− 1

4
F ′µνF

′µµ +
1

2
∂µϕ∂

µϕ+
1

2
g2v2A′µA

′µ

+
1

2
g2(A′µ)2ϕ(2v + ϕ)− 1

2
ϕ2(3λv2 +m2)− λvϕ3 − 1

4
λϕ4 (2.128)

The Higgs mechanism generates mass terms for vector-boson due to vacuum expectation values
of a complex scalar �eld

φ→ 1√
2

(ϕ+ iσ + v) (2.129)

While the real (CP-even) component ϕ of the scalar is a physical degree of freedom, the imaginary
(CP-odd) component σ becomes the longitudinal mode of the massive vector boson. In general
Rξ gauge the Goldstone mass MG is related to the mass MA of the vector boson Aµ by

M2
G = ξM2

A (2.130)
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2.3.5 Weyl Fermions

We have so far used 4-component (Dirac) fermions. However, it will turn out that it is often more
convenient to use 2-component notation:

• in any model which violates parity (as the SM or all extension of it), each Dirac fermion has left-
handed and right-handed parts with completely di�erent electroweak gauge interactions:
→ The two-component Weyl fermion notation has the advantage of treating fermionic degrees of
freedom with di�erent gauge quantum numbers separately from the start.

• if one uses four-component spinor notation in the SM (or beyond), then there would be a sea of
projection operators

PL = (1− γ5)/2, PR = (1 + γ5)/2 (2.131)

• in supersymmetric models the minimal building blocks of matter are chiral supermultiplets, each
of which contains a single two-component Weyl fermion

Since the two-component notation might less familiar, we want to discuss it a bit.

2.3.5.1 Two-component spinors

In this representation, a four-component Dirac spinor is written in terms of 2 two-component, complex
anti-commuting objects ξα and (χ†)α̇ ≡ χ†α̇, with two distinct types of spinor indices α = 1, 2 and
α̇ = 1, 2:

ΨD =

(
ξα

χ†α̇

)
. (2.132)

It follows that

ΨD = Ψ†D

(
0 1

1 0

)
=
(
χα ξ†α̇

)
. (2.133)

Undotted (dotted) indices from the beginning of the Greek alphabet are used for the �rst (last) two
components of a Dirac spinor. The �eld ξ is called a �left-handed Weyl spinor" and χ† is a �right-handed
Weyl spinor". The names �t, because

PLΨD =

(
ξα

0

)
, PRΨD =

(
0

χ†α̇

)
. (2.134)

The Hermitian conjugate of any left-handed Weyl spinor is a right-handed Weyl spinor:

ψ†α̇ ≡ (ψα)† = (ψ†)α̇ , (2.135)

and vice versa:

(ψ†α̇)† = ψα. (2.136)

Any particular fermionic degrees of freedom can be described equally well using a left-handed Weyl
spinor (with an undotted index) or by a right-handed one (with a dotted index). By convention,
all names of fermion �elds are chosen so that left-handed Weyl spinors do not carry daggers and
right-handed Weyl spinors do carry daggers.
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2.3.5.2 Index operations

The heights of the dotted and undotted spinor indices are important. The spinor indices are raised and
lowered using the anti-symmetric symbol

ε12 = −ε21 = ε21 = −ε12 = 1, ε11 = ε22 = ε11 = ε22 = 0, (2.137)

according to

ξα = εαβξ
β , ξα = εαβξβ , χ†α̇ = εα̇β̇χ

†β̇ , χ†α̇ = εα̇β̇χ†
β̇
. (2.138)

This is consistent since εαβε
βγ = εγβεβα = δγα and εα̇β̇ε

β̇γ̇ = εγ̇β̇εβ̇α̇ = δγ̇α̇.

As a convention, repeated spinor indices contracted like

α
α or α̇

α̇ (2.139)

can be suppressed. In particular,

ξχ ≡ ξαχα = ξαεαβχ
β = −χβεαβξα = χβεβαξ

α = χβξβ ≡ χξ (2.140)

with, conveniently, no minus sign in the end. [A minus sign appeared �rst from exchanging the order of
anti-commuting spinors, but it disappeared due to the anti-symmetry of the ε symbol.] Likewise, ξ†χ†

and χ†ξ† are equivalent abbreviations for χ†α̇ξ
†α̇ = ξ†α̇χ

†α̇, and in fact this is the complex conjugate of ξχ:

(ξχ)∗ = χ†ξ† = ξ†χ†. (2.141)

The explicit relation between σ and σ is

σµαα̇ = εα̇β̇εαβσ
µ,β̇β (2.142)

Using that, one can check that

(χ†σµξ)∗ = ξ†σµ,†χ

= ξ†σµχ

= ξ†α̇σ
µ,α̇αχα

= ξ†α̇ε
α̇β̇εαβσµ

ββ̇
χα

= ξ†,β̇σµ
ββ̇
χβ

= −χβσµ
ββ̇
ξ†,β̇

= −χσµξ†

= −(ξσµχ†)∗ (2.143)

Note that when taking the complex conjugate of a spinor bilinear, one reverses the order. The spinors
here are assumed to be classical �elds; for quantum �elds the complex conjugation operation in these
equations would be replaced by Hermitian conjugation in the Hilbert space operator sense.
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Other hepful identities are:

(χ†σνσµξ†)∗ = ξσµσνχ = χσνσµξ = (ξ†σµσνχ†)∗, (2.144)

σµαα̇ σ
β̇β
µ = 2δβαδ

β̇
α̇, (2.145)

σµαα̇ σµββ̇ = 2εαβεα̇β̇ , (2.146)

σµα̇α σβ̇βµ = 2εαβεα̇β̇ , (2.147)[
σµσν + σνσµ

]
α
β = 2gµνδβα, (2.148)[

σµσν + σνσµ
]β̇
α̇ = 2gµνδβ̇α̇, (2.149)

σµσνσρ = gµνσρ + gνρσµ − gµρσν − iεµνρκσκ, (2.150)

σµσνσρ = gµνσρ + gνρσµ − gµρσν + iεµνρκσκ, (2.151)

where εµνρκ is the totally antisymmetric tensor with ε0123 = +1.
The so called Fierz identity, which we will need later, is

χα (ξη) = −ξα (ηχ)− ηα (χξ), (2.152)

2.3.5.3 Lagrangian for Weyl fermions

With these conventions, the Dirac Lagrangian can now be rewritten:

LDirac = iξ†σµ∂µξ + iχ†σµ∂µχ−M(ξχ+ ξ†χ†) (2.153)

where we have dropped a total derivative piece −i∂µ(χ†σµχ), which does not a�ect the action.
A four-component Majorana spinor can be obtained from the Dirac spinor of eq. (2.133) by imposing the
constraint χ = ξ, so that

ΨM =

(
ξα

ξ†α̇

)
, ΨM =

(
ξα ξ†α̇

)
. (2.154)

The four-component spinor form of the Lagrangian for a Majorana fermion with mass M ,

LMajorana =
i

2
ΨMγ

µ∂µΨM −
1

2
MΨMΨM (2.155)

can therefore be rewritten as

LMajorana = iξ†σµ∂µξ −
1

2
M(ξξ + ξ†ξ†) (2.156)

in the more economical two-component Weyl spinor representation. Note that even though ξα is anti-
commuting, ξξ and its complex conjugate ξ†ξ† do not vanish, because of the suppressed ε symbol, see
eq. (2.140). Explicitly, ξξ = εαβξβξα = ξ2ξ1 − ξ1ξ2 = 2ξ2ξ1.

Any theory involving spin-1/2 fermions can always be written in terms of a collection of left-handed
Weyl spinors ψi with

L = iψ†iσµ∂µψi −M ij(ψ†iψ
†
j − ψiψj) (2.157)

For i = j one has a Majorana mass term, and i 6= j gives Dirac mass term.
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2.4. THE STANDARD MODEL OF PARTICLE PHYSICS

Given any expression involving bilinears of four-component spinors

Ψi =

(
ξi

χ†i

)
, (2.158)

labelled by a �avor or gauge-representation index i, one can translate into two-component Weyl spinor
language (or vice versa) using the dictionary:

ΨiPLΨj = χiξj , ΨiPRΨj = ξ†iχ
†
j , (2.159)

Ψiγ
µPLΨj = ξ†i σ

µξj , Ψiγ
µPRΨj = χiσ

µχ†j (2.160)

2.4 The Standard Model of Particle Physics

2.4.1 Gauge Symmetries

The so called standard model of particle physics (SM) is a gauge theory.

The gauge symmetry of the SM is

G = SU(3)C × SU(2)L × U(1)Y (2.161)

with

• C: Colour

• L: Left

• Y : Hypercharge

2.4.2 Particle Content

Before symmetry breaking, the particle content of the SM is

Vector Bosons B (1,1)0

W (1,3)0

g (8,1)0

Fermions eR (1,1)1

(3 Generations) l (1,2)−1/2

uR (3̄,1)−2/3

dR (3̄,1)1/3

q (3,2)1/6

Scalar H (1,2)1/2

The last column shows the quantum numbers with respect to G. These quantum numbers are not as
random as it might look. Special conditions must be ful�lled to avoid anomalies, e.g.

• Gauge anomalies∑
f

Y (f)3 ≡ 0 (2.162)
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• Gauge × gravity anomalies∑
f

Y (f) ≡ 0 (2.163)

• Witten anomaly: even number of SU(2) doublets

Check:

∑
f

Y (f) = 3︸︷︷︸
generations

×

Y (e) + 2︸︷︷︸
isospin

×Y (l) + 3︸︷︷︸
color

×Y (uR) + 3× Y (dR) + 2× 3× Y (q)


(2.164)

=3×
(

1 + 2

(
−1

2

)
+ 3

(
−2

3

)
+ 3

(
1

3

)
+ 6

(
1

6

))
(2.165)

=3× (1− 1− 2 + 1 + 1) (2.166)

=0 (2.167)∑
f

Y (f)3 =3×
(

1 + 2

(
−1

8

)
+ 3

(
− 8

27

)
+ 3

(
1

27

)
+ 6

(
1

216

))
(2.168)

=3×
(

1− 1

4
− 8

9
+

1

9
+

1

36

)
(2.169)

=0 (2.170)

⇒ One needs to be careful when adding new fermions in order not to introduce anomalies

2.4.3 Gauge part of the Lagrangian

The gauge part of the Lagrangian before symmetry breaking reads

L = DµHD
µH∗ + i

∑
f

f†σµDµf +
∑
V

VµνV
µν (2.171)

with f = {l, eR, q, dR, uR} and V = {B,W a, ga}. Let's be more explicit at some examples. Note, we
consider only one generation of fermions because gauge couplings are always �avour diagonal.

• Right leptons

e†Rσ
µDµeR = e†Rσ

µ(∂µ + ig1Bµ)eR (2.172)

• Left leptons carry one isospin index, i.e. li with i = 1, 2

l†σµDµl = l†iσ
µ

(
∂µδij − i

1

2
g1Bµδij + ig2

σaij
2
W a
µ

)
lj (2.173)

• Right up-quarks carry one colour index, i.e. uR,α with α = 1, 2, 3

u†Rσ
µDµuR = u†R,ασ

µ

(
∂µδαβ − i

2

3
g1Bµδαβ + ig3

λaαβ
2
Ga
)
uR,β (2.174)
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• Left quarks carry one colour and one isospin index, i.e. qi,α with α = 1, 2, 3, i = 1, 2

q†σµDµq = q†i,ασ
µ

(
∂µδαβδij − i

1

3
g1Bµδαβδij + ig2δαβ

σaij
2
W a + ig3δij

λaαβ
2
Ga
)
qi.β (2.175)

From these expressions the vertices are derived:

eR

eR

Bµ

li

lj

Bµ

li

lj

W a
µ

σµg1 −σµδij g12 σµσ
a
ij
g2
2

qiα

qjβ

W a
µ

qiα

qjβ

gaµ

σµδαβσ
a
ij
g2
2 σµδijλ

a
ij
g3
2

2.4.4 Electroweak symmetry breaking

2.4.4.1 The Higgs potential

The Higgs potential in the SM is given by

V (H) =
1

2
λ|H|4 + µ2|H|2 (2.176)

Note, di�erent conventions for the normalisation of the quartic coupling exist in literature. µ2 < 0 causes
a spontaneous breaking of the electroweak symmetry (EWSB). The Higgs �eld is written as(

H+

H0

)
→

(
G+

1√
2

(
h+ iG0 + v

) ) (2.177)
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The Higgs potential becomes

V =
1

8
λ((G0)2 + (h+ v)2 + 2G+G−)2 +

1

2
µ2((G0)2 + (h+ v)2 + 2G+G−) (2.178)

We can calculate the Higgs coupling and masses form this potential

a) Tadpole conditions: The condition for being at the minimum of the potential is

∂V (h = G = G+ = 0)

∂v
≡ 0 =

∂

∂v

(
1

8
λv4 +

1

2
µ2v2

)
(2.179)

=
1

2
λv3 + µ2v (2.180)

→ µ2 =− 1

2
v2λ (2.181)

Thus, one can eliminate µ2 from all following expressions.

b) CP-even mass: the Higgs mass is given by

m2
h =

∂2V

∂h2
|h=G0=G+=0 (2.182)

=
3

2
λv2 + µ2 (2.183)

=
3

2
λv2 − 1

2
λv2 (2.184)

= λv2 (2.185)

c) Goldstone masses: the mass of G0 becomes

m2
G0 =

∂2V

∂G02 |h=G0=G+=0 (2.186)

= µ2 +
1

2
λv2 (2.187)

= 0 (2.188)

Since we are working here in Landau gauge, the Goldstone mass vanishes as expected. Similarly,
one can show m2

G+ = 0

d) Cubic Higgs coupling: the cubic Higgs self-interaction is

chhh =
∂3L

∂h3
|h=G0=G+=0 (2.189)

= −3vλ (2.190)

= −3
m2
h

v
(2.191)

e) Quartic Higgs coupling: the quartic Higgs self-interaction is

chhhh =
∂4L

∂h4
|h=G0=G+=0 (2.192)

= −3λ (2.193)
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The entire Higgs sector of the SM can be parametrised after EWSB by just two parameters: λ
(or mh) and v.

2.4.4.2 Electroweak gauge bosons

The gauge interactions of the Higgs �eld become after EWSB:

DµHD
µH∗ =

(
∂µδik + i

(
1

2
g1Bµδik + g2

σaik
2
W a

)
Hi

)(
∂µδjk − i

(
1

2
g1Bµδjk + g2

σajk
2
W a

)
H∗j

)
(2.194)

=
1

2
∂µh∂

µh+
1

2
∂µG

0∂µG0 + ∂µG
+∂µG−

+
1

4

(
(h+ v)2 + (G0)2

) (
g2

1B
2 − 2g1g2BW

3 + g2
2(W 2

1 +W 2
2 +W 2

3 )
)

+ . . . (2.195)

On can see in the second line that not only mass terms for the vector bosons are generated, but also a
mixing between B and W 3 occurs. The neutral mass matrix MV reads

M2
V = (B W3)

(
1
4v

2g2
1 − 1

4g1g2v
2

− 1
4g1g2v

2 1
4g

2
2v

2

)(
B

W3

)
(2.196)

One �nds that

detM2
V = 0 (2.197)

i.e. one eigenvalue is zero. The mixed particles, which appear after diagonalisation, are called photon
(γ) and Z-Boson (Z). Their masses are the eigenvalues which are given by

mγ =0 (2.198)

m2
Z =

1

4
(g2

1 + g2
2)v2 (2.199)

The rotation matrix which diagonalises M2
V is(

γ

Z

)
=

(
cos ΘW sin ΘW

− sin ΘW cos ΘW

)(
B

W 3

)
(2.200)

with the Weinberg angle ΘW . This de�nes the electric charge, the coupling strength of the photon, as:

e = g1 cos ΘW = g2 sin ΘW (2.201)

One remaining massless gauge boson corresponds to one unbroken symmetry. Therefore, the remaining
symmetry of the SM is

G → SU(3)C × U(1)em (2.202)

Since W1 and W2 are not electromagnet eigenstates, they are combined to new eigenstate of U(1)em

W± =
1√
2

(W1 ± iW2) (2.203)
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The mass of W± is given by

M2
W =

1

4
g2v2 (2.204)

The massless states G0 and G± are the Goldstone bosons of Z and W± and form their longitudinal
components.

Let's count the real components of the particles

Before EWSB After EWSB

massless vectors: B, W a 4 massless vectors: γ 1

massive vectors: - 0 massive vectors: Z, W± 3

complex scalars: H0, H± 4 complex scalars: G± 2

real scalars: - 0 real scalars: h, G0 2

The count of physical degrees of freedom gives

Before EWSB After EWSB

massless vectors: B, W a 8 massless vectors: γ 2

massive vectors: - 0 massive vectors: Z, W± 9

complex scalars: H0, H± 4 complex scalars: - 0

real scalars: - 0 real scalars: h 1

Higgs interactions with vector bosons The kinetic term for the mass eigenstates h, the SM Higgs
boson, becomes after applying all rotations:

L =

(
∂µδij + i

1

2
g1δijBµ + i

1

2
g2σ

a
ijW

a
µ

)
Hi

(
∂µδij − i

1

2
g1δijB

µ − i1
2
g2σ

a
ji(W

a)µ
)
H∗j

= . . .

=
1

4
(h+ v)2

[
2g2

2W
+
µ (W−)µ + γµZ

µ
(
(g2

1 − g2
2) sin 2ΘW + 2g1g2 cos 2ΘW

)
+

γµγ
µ(g1 cos ΘW − g2 sin ΘW )2 + ZµZ

µ(g1 sin ΘW + g2 cos Θ)2
]

+ (∂µ + iγµ(g1 cos Θ− g2 sin Θ) + iZµ(g1 sin ΘW + g2 cos Θ))h

(∂µ − iγµ(g1 cos Θ− g2 sin Θ)− iZµ(g1 sin ΘW + g2 cos Θ))h (2.205)

+ L(G0, G+, h)

=
1

4

e2

sin2 ΘW

(h+ v)2

(
2W+

µ (W−)µ +
1

cos2 ΘW
ZµZ

µ

)
+

1

2
∂µh∂

µh+ L(G0, G+, h) (2.206)

Thus, the couplings between the Higgs to the photon drops out after performing all replacements cor-
rectly1. There is also no h− h−Z interaction (which is forbidden by CP), but only h−G0 −Z. On the
other side, one �nds interactions between one Higgs and two Z- or W bosons. The vertices for the Higgs
to the gauge bosons are given by

1The general rule is: 'At tree-level, the photon couples only to charged particles and the Higgs only to massive ones'
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Zµ

Zµ

h

(W−)µ

W+
µ

h

2iv e2

sin2 2ΘW
1
2 iv

e2

sin2 ΘW

Zµ

Zµ

h

h

W+
µ

(W−)µ

h

h

2i e2

sin2 2ΘW
1
2 i

e2

sin2 ΘW

The interaction between one scalar and two-vector bosons is always propotional to a VEV and
can exist only after gauge symmetry breaking.

2.4.5 Fermion masses and Yukawa sector

It is not possible in the SM to write down mass terms for fermions because of the quantum numbers for
left and right �elds.

⇒ Fermion masses are spontaneously generated after EWSB via interactions with the Higgs �eld

The interactions between the Higgs and the SM fermions are called 'Yukawa' interactions.

LY = YuquRH + YdqdRH
∗ + YeleRH

∗ + h.c. (2.207)

In the general case, Yf are (complex) 3 × 3 matrices. Thus, in the most general form the Lagrangian
reads with all indices written explicitly

YuquRH ≡ δαβYu,abqaiαuR,bβεijHj (2.208)

with colour indices α, β, isospin indices i, j, and generation indices a, b. If we neglect �avour mixing for
the moment, one can write

LYu = YuqiαuR,βεijHj (2.209)

= Yu(uL,αH0 − dL,αH+)uR,βδαβ (2.210)
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what becomes after EWSB

LYu =
1√
2

(v + h)YuuLαuRα + . . . (2.211)

i.e. the fermion mass is given by

mu =
1√
2
vYu (2.212)

And therefore,

LYu =
mu

v
huLαuRα + . . . (2.213)

i.e. the Higgs coupling to SM fermions is proportional to their mass.

If we include �avour mixing, the mass terms for the quarks after EWSB read

Lq = (dLsLbL)


vYd,11 vYd,12 vYd,13

vYd,21 vYd,22 vYd,33

vYd,31 vYd,32 vYd,33




dR

uR

bR

+(uLcLtL)


vYu,11 vYu,12 vYu,13

vYu,21 vYu,22 vYu,33

vYu,31 vYu,32 vYu,33




uR

cR

tR


(2.214)

where we suppressed colour indices.
The six quark masses are the eigenvalues of the matrices vYd and vYu. These matrices are diagonalised
by four unitary matrices:

uR →UR = U∗uuR (2.215)

dR →DR = U∗ddR (2.216)

uL →UL = VuuL (2.217)

dL →DL = VduL (2.218)

Only one combination of these matrices is physically relevant and de�nes the CKM (Cabibbo-Kobayashi-
Maskawa) matrix

VCKM = V †uVd (2.219)

The entire �avour structure of the SM quark sector is encoded in the CKM matrix which can be
parametrised by three angles Θ12, Θ23, Θ13 and one phase δ

VCKM =


1 0 0

0 c23 s23

0 −s23 c23




c13 0 s13e
−iδ

0 1 0

−s13e
iδ 0 c13



c12 s12 0

−s12 c12 0

0 0 1

 (2.220)

δ is the only source of CP violation in the SM and highly restricted by experiments

The CKM matrix shows up explicitly in vertices involving the W -boson or the Goldstone G. Using
two-component �elds, one has

36



2.4. THE STANDARD MODEL OF PARTICLE PHYSICS

U†L,iα

DL,jβ

W+
µ

UR,iα

DL,jβ

G+

D†L,iα

U†R,jβ

G+

− i√
2
g2σµV

∗ij
CKMδαβ i

√
2
mui
v V ∗ijCKMδαβ i

√
2
mdj
v V ∗ijCKMδαβ

The Dirac Spinors can be built from Di, Ui as follows

d =

(
DL

D†R

)
u =

(
UL

U†L

)
(2.221)

Note, before EWSB is is not possible to write Dirac fermions consisting of left and right degrees of free-
dom because of di�erent quantum numbers with respect to U(1)Y × SU(2)L.

ūiα

djβ

W+
µ

ūiα

djβ

G+

− i√
2
g2γµV

∗ij
CKMδαβPL + 0PR i

√
2
v V

∗ij
CKMδαβ(muiPL +mdjPR)
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Chapter 3

Supersymmetric Formalities

3.1 Basics

3.1.1 SUSY transformations

A supersymmetry transformation turns a bosonic state into a fermionic state, and vice versa.

Q|Boson〉 = |Fermion〉, Q|Fermion〉 = |Boson〉. (3.1)

The properties of the operator Q are:

• Q is an anti-commuting spinor

• Q† is also a symmetry generator

• Q, Q† carry spin 1/2 → SUSY is a space�time symmetry.

• Q and Q† satisfy the following algebra (schematically):

{Q,Q†} = Pµ, (3.2)

{Q,Q} = {Q†, Q†} = 0, (3.3)

[Pµ, Q] = [Pµ, Q†] = 0, (3.4)

where Pµ is the four-momentum generator of spacetime translations. Note, we skipped here the
spinor indices on Q, Q†. (The accurate expressions could be given once we have developed the
necessary formalism.)

• Q and Q† commute with P 2

• Q and Q† commute with all generators of gauge transformations

A non-trivial connection between internal and external symmetries was forbidden by the no-go theorem
of Coleman-Mandula. However, this doesn't apply to spinor operators.

We consider only the case of a single set of generators Q, Q†, what is also called N = 1 supersymmetry.
N = 2 or N = 4 theories are mathematically interesting, but phenomenologically not relevant in four
space�time dimensions. One would need extra dimensions to get chiral fermions or parity violation.
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3.1.2 Representations

A supersymmetric theory must consist of states which are irreducible representations of the SUSY algebra.
These states are called �supermultiplets�. The properties of supermultiplets are:

• Each supermultiplet consists of both fermionic and bosonic states. Those are called �superpartners�

• If |Ω〉 and |Ω′〉 are members of the same supermultiplet, then |Ω′〉 is proportional to some combi-
nation of Q and Q† operators acting on |Ω〉 (up to space�time translation or rotation)

• particles within the same supermultiplet must have equal eigenvalues of P 2, i.e. equal masses

• particles within the same supermultiplet must sit in the same representation of the gauge groups

• Each supermultiplet contains an equal number of fermionic and bosonic degrees of freedom

nB = nF (3.5)

We are mainly interested in the following two kinds of supermultiplets:

a) Chiral supermultiplet: the simplest possibility for a supermultiplet consistent with eq. (3.5) has
a single Weyl fermion (with two spin helicity states, so nF = 2) and two real scalars (each with
nB = 1). It is convenient to arrange the real scalars as one complex �eld.

b) Vector supermultiplet: the simplest possibibility of a supermultiplet containing gauge �elds
contains a spin-1 vector boson. We are only interested in renormalizable gauge theories, i.e. the
vector boson must be massless (before spontaneous symmetry breaking) and has therefore two
degrees of freedom: nB = 2. Its superpartner is therefore a massless spin-1/2 Weyl fermion, again
with two helicity states, so nF = 2.

If we include gravity, then the spin-2 graviton (with 2 helicity states, so nB = 2) has a spin-3/2 super-
partner called the gravitino. The gravitino would be massless if supersymmetry were unbroken, and so
it has nF = 2 helicity states.

One can check that other possible combinations of particles which satisfy nB = nF are always reducible.
For example: If a gauge symmetry could be broken without SUSY breaking then a massless vector super-
multiplet would �eat� a chiral supermultiplet. The degrees of freedom of the massive vector supermultiplet
are:

massive vector : nB = 3

massive Dirac fermion : nF = 4

a real scalar : nB = 1

3.2 SUSY Lagrangian

Based on Steve Martin's primer, sec. 3

39



Supersymmetric Formalities

3.2.1 A free chiral supermultiplet

We have already seen that the easiest supersymmetric object is a chiral supermultiplet with a single
left-handed two-component Weyl fermion ψ and a complex scalar φ. We forget for the moment about all
possible interaction or mass terms. Under this assumption, the action of a single supermultiplet can be
written in terms of its component �elds as:

S =

∫
d4x (Lscalar + Lfermion) , (3.6)

with

Lscalar =∂µφ∗∂µφ (3.7)

Lfermion =iψ†σµ∂µψ. (3.8)

where φ and ψ are superpartners. This is called the massless, non-interacting Wess-Zumino model.

3.2.1.1 SUSY invariance

A SUSY transformation should turn the scalar boson �eld φ into something involving the fermion �eld
ψα. The simplest possibility is

δφ = εψ, δφ∗ = ε†ψ†, (3.9)

where εα parameterizes the supersymmetry transformation. εα is an in�nitesimal, anti-commuting, two-
component Weyl fermion which we assume for now to be constant, i.e.

∂µε
α = 0 (3.10)

The mass dimension is

[ε] = [φ]− [ψ] = 1− 3

2
= −1

2
(3.11)

Applying the transformation, we �nd that the scalar part of the Lagrangian transforms as

δLscalar = ε∂µψ ∂µφ
∗ + ε†∂µψ† ∂µφ. (3.12)

This must be canceled by δLfermion (up to a total derivative). We can guess now how the transformation
of the fermion must look like. There is only one chance (up to overall constants) that a cancellation can
happen, namely

δψα = −i(σµε†)α ∂µφ, δψ†α̇ = i(εσµ)α̇ ∂µφ
∗. (3.13)

With this guess, one immediately obtains

δLfermion = i(δψ†)σµ∂µψ + iψ†σµ∂µ(δψ) (3.14)

= i(iεσµ∂µφ
∗)σν∂νψ + iψ†σν∂ν(−iσµε†∂µφ) (3.15)

= −εσµσν∂νψ ∂µφ∗ + ψ†σνσµε† ∂µ∂νφ (3.16)

This can be simpli�ed by employing the Pauli matrix identities[
σµσν + σνσµ

]
α
β = 2gµνδβα (3.17)[

σµσν + σνσµ
]β̇
α̇ = 2gµνδβ̇α̇ (3.18)
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as follows:

ψ†σνσµε† ∂µ∂νφ =
1

2
ψ†σνσµε† ∂µ∂νφ+

1

2
ψ†σνσµε† ∂ν∂µφ (3.19)

=
1

2
ψ†σνσµε† ∂µ∂νφ+

1

2
ψ†σµσνε† ∂µ∂νφ (3.20)

=
1

2
ψ†[σνσµ + σµσν ]ε† ∂µ∂νφ (3.21)

=ψ†ε†∂µ∂µφ (3.22)

=∂µ(ψ†ε†∂µφ)− (∂µψ
†)(∂µφ) (3.23)

εσµσν∂νψ ∂µφ
∗ =ε(2gµν − σνσµ)∂νψ∂µφ

∗ (3.24)

=2ε∂µψ∂µφ
∗ − εσνσµ∂νψ∂µφ∗ (3.25)

=2ε∂µψ∂µφ
∗ − ∂ν(εσνσµψ∂µφ

∗) + εσνσµψ∂ν∂µφ
∗) (3.26)

=2ε∂µψ∂µφ
∗ − ∂ν(εσνσµψ∂µφ

∗) + εψ∂µ∂µφ
∗ (3.27)

=2ε∂µψ∂µφ
∗ − ∂ν(εσνσµψ∂µφ

∗) + ∂µ(εψ∂µφ
∗)− ε(∂µψ)∂µφ

∗) (3.28)

=ε∂µψ∂µφ
∗ − ∂µ(εσµσνψ∂νφ

∗ − εψ∂µφ∗) (3.29)

and we get

δLfermion = −ε∂µψ ∂µφ∗ − ε†∂µψ† ∂µφ
−∂µ

(
εσµσνψ ∂νφ

∗ − εψ ∂µφ∗ − ε†ψ† ∂µφ
)
. (3.30)

The �rst two terms here just cancel against δLscalar, while the remaining contribution is a total derivative.
So we arrive at

δS =

∫
d4x (δLscalar + δLfermion) = 0, (3.31)

justifying our guess of the numerical multiplicative factor made in eq. (3.13).

3.2.1.2 Closure of the SUSY algebra

We have shown so far that the Wess�Zumino Lagrangian is invariant under a SUSY transformation.
However, me must also show that the SUSY algebra closes: the commutator of two SUSY transformations
is another symmetry of the theory.

[δε1 , δε2 ]φ = (δε2δε1 − δε1δε2)φ (3.32)

= δε2(δε1φ)− δε1(δε2φ) (3.33)

= δε2(ε1ψ)− δε1(εψφ) (3.34)

= i(−ε1σµε†2 + ε2σ
µε†1) ∂µφ. (3.35)

Here, we used δφ = εψ and δψα = −i(σµε†)α ∂µφ.
We have found that the commutator of two supersymmetry transformations gives us back the derivative
of the original �eld. In the Heisenberg picture of quantum mechanics i∂µ corresponds to the generator
of spacetime translations Pµ. Thus, this result agrees with our expectations from the SUSY algebra.
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We must repeat the exercise for the fermionic case.

[δε1 , δε2 ]ψα = (δε2δε1 − δε1δε2)ψα (3.36)

= δε2(−i(σµε†1)α ∂µφ)− δε1(−i(σµε†2)α ∂µφ)) (3.37)

= −i(σµε†1)α︸ ︷︷ ︸
χα

ε2︸︷︷︸
ξ

∂µψ︸︷︷︸
η

+i(σµε†2)α ε1∂µψ using χα (ξη) = −ξα (ηχ)− ηα (χξ) (3.38)

= i
[
ε2α((∂µψ)(σµε†1)) + (∂µψ)α((σµε†1)ε2))− (ε1 ↔ ε2)

]
(3.39)

Using the identity,

(χ†σµξ)∗ = ξ†σµχ = −χσµξ† = −(ξσµχ†)∗ (3.40)

this becomes

[δε1 , δε2 ]ψα = i(−ε1σµε†2 + ε2σ
µε†1) ∂µψα + iε1α ε

†
2σ
µ∂µψ − iε2α ε†1σµ∂µψ (3.41)

Thus, if we apply the Dirac equation

σµ∂µψ = 0 (3.42)

we �nd

[δε1 , δε2 ]ψα = i(−ε1σµε†2 + ε2σ
µε†1) ∂µψα (3.43)

which is very similar to the scalar case.

We found so far that the SUSY algebra closes only on-shell. In order to consider the o�-shell case, we
play a trick and introduce another ingredient, so called auxiliary �elds F . F are complex scalar �elds
which don't propagate. Their Lagrangian is just

Lauxiliary = F ∗F . (3.44)

Note, the mass dimension of F is 2. One can easily check that the equation of motion from Lauxiliary is

F = F ∗ = 0 (3.45)

We impose the following property of F under a SUSY transformation:

δF = −iε†σµ∂µψ (3.46)

δF ∗ = i∂µψ
†σµε. (3.47)

Now the auxiliary part of the Lagrangian density transforms as

δLauxiliary = −iε†σµ∂µψ F ∗ + i∂µψ
†σµε F, (3.48)

which vanishes on-shell, but not for arbitrary o�-shell �eld con�gurations. We also modify the transfor-
mation properties of our fermions:

δψα = −i(σµε†)α ∂µφ+ εαF, (3.49)

δψ†α̇ = i(εσµ)α̇ ∂µφ
∗ + ε†α̇F

∗, (3.50)
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3.2. SUSY LAGRANGIAN

One can check that the additional contribution to δLfermion cancels the ones from δLauxiliary, up to a
total derivative term. Thus

δL = δLscalar + δLfermion + δLauxiliary = 0 (3.51)

If we now repeat the calculation from before, one �nds for all �elds X = φ, φ∗, ψ, ψ†, F, F ∗

(δε2δε1 − δε1δε2)X = i(−ε1σµε†2 + ε2σ
µε†1) ∂µX (3.52)

also without applying the equations of motion. So, we found that the SUSY algebra closes all o�-shell
once we include the auxiliary �elds.

What is the interpreation of all that? On-shell, the complex scalar �eld φ has two real propagating
degrees of freedom, matching the two spin polarization states of ψ. O�-shell, however, the Weyl fermion
ψ is a complex two-component object, so it has four real degrees of freedom. (Going on-shell eliminates
half of the propagating degrees of freedom for ψ, because the Lagrangian is linear in time derivatives,
so that the canonical momenta can be re-expressed in terms of the con�guration variables without time
derivatives and are not independent phase space coordinates.) To make the numbers of bosonic and
fermionic degrees of freedom match o�-shell as well as on-shell, we had to introduce two more real scalar
degrees of freedom in the complex �eld F , which are eliminated when one goes on-shell. This counting
is by

φ ψ F

on-shell (nB = nF = 2) 2 2 0

o�-shell (nB = nF = 4) 2 4 2

We can summarize the main outcame as follows:

A chiral super�eld consists of

• A complex scalar φ

• A Weyl fermion ψ

• An auxiliary �eld F

and the free Lagrangian is given by

Lfree chiral = ∂µφ∗∂µφ+ iψ†σµ∂µψ + F ∗F (3.53)

3.2.2 Interactions of chiral supermultiplets

We go now one step further and consider several chiral supermultiplets which can interact among each
other. We won't introduce gauge interactions, yet.

We start with the Lagrangina density of several free chiral supermultiplets labelled by an index i. We
can easily generalise the result for one �elds by writing

Lfree = ∂µφ∗i∂µφi + iψ†iσµ∂µψi + F ∗iFi, (3.54)
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where we sum over repeated indices i. This Lagrangian is invariant under the individual supersymmetry
transformation

δφi = εψi, δφ∗i = ε†ψ†i, (3.55)

δ(ψi)α = −i(σµε†)α ∂µφi + εαFi, δ(ψ†i)α̇ = i(εσµ)α̇ ∂µφ
∗i + ε†α̇F

∗i, (3.56)

δFi = −iε†σµ∂µψi, δF ∗i = i∂µψ
†iσµε . (3.57)

We want to �nd the most general set of renormalizable interactions that respects SUSY invariance. We
start by writing down:

Lint =

(
−1

2
W ijψiψj +W iFi + xijFiFj

)
+ c.c.− U, (3.58)

where the di�erent coe�cients are polynomials in the scalar �elds φi, φ
∗i of the schematic form:

• W ij ∼ φa

• W i ∼ φaφb

• xij ∼ const

• U ∼ φaφbφcφd

We must now require that Lint is invariant under the supersymmetry transformations, since Lfree was
already invariant by itself. The very schematic transformation properties of the di�erent terms are

• δ(W ijψiψj) ∼ (εψ)ψ2 + φ(ε(∂µφ+ F ))ψ

• δ(W iFi) ∼ (εψ)φF + φ2(ε∂µψ)

• δU ∼ (εψ)φ3

• δxijFiFj ∼ (ε∂ψ)F

There is no possibility that to cancel the terms arising from U and xij against something else. So, we
are left with

Lint =

(
−1

2
W ijψiψj +W iFi

)
+ c.c. (3.59)

At this point, we are not assuming that W ij and W i are related, but we will see that thye are. From

ξχ ≡ ξαχα = ξαεαβχ
β = −χβεαβξα = χβεβαξ

α = χβξβ ≡ χξ (3.60)

we see that W ij is symmetric under i↔ j.

We want to �nd the most general form whichW ij andW i can have which is in agreement with the SUSY
transformations. For this purpose we can check di�erent pieces which must cancel separately.

a) We start with the part that contains four spinors.

δLint|4−spinor =

[
−1

2

δW ij

δφk
(εψk)(ψiψj)−

1

2

δW ij

δφ∗k
(ε†ψ†k)(ψiψj)

]
+ c.c. (3.61)
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The term proportional to (εψk)(ψiψj) cannot cancel against any other term. However, the Fierz
identity

χα (ξη) = −ξα (ηχ)− ηα (χξ) (3.62)

implies

(εψi)(ψjψk) + (εψj)(ψkψi) + (εψk)(ψiψj) = 0, (3.63)

Thus, in order to get δLint = 0, the term δW ij/δφk must be totally symmetric under interchange
of i, j, k. Consequently, W can only involve φ but not φ∗, i.e. W ij is a holomorphic function
of the complex �elds φ.

Combining what we have learned so far, we can write

W ij = M ij + yijkφk (3.64)

Because of this form, we can write W ij as

W ij =
δ2

δφiδφj
W (3.65)

where we have introduced a useful object

W =
1

2
M ijφiφj +

1

6
yijkφiφjφk, (3.66)

called the superpotential.

b) We turn to the parts of δLint that contain a spacetime derivative:

δLint|∂ =
(
iW ij∂µφj ψiσ

µε† + iW i ∂µψiσ
µε†
)

+ c.c. (3.67)

Here we have used the again the identity

(χ†σµξ)∗ = ξ†σµχ = −χσµξ† = −(ξσµχ†)∗ (3.68)

on the second term, which came from (δFi)W
i. Now we can use eq. (3.65) to observe that

W ij∂µφj = ∂µ

(
δW

δφi

)
. (3.69)

Therefore, eq. (3.67) will be a total derivative if

W i =
δW

δφi
= M ijφj +

1

2
yijkφjφk , (3.70)

which explains why we chose its name as we did.
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c) The remaining terms in δLint are all linear in Fi or F
∗i. We can use the results for W i and W ij to

check that these cancel as well:

δLint|F =− 1

2

(
M ij + yijkφk

)
((εFi)ψj + ψi(εFj))+(

M ij(εψj) +
1

2
yijk((εψj)φk + φj(εψk)

)
Fi (3.71)

=0 (3.72)

We have found that the most general non-gauge interactions for chiral supermultiplets are deter-
mined by a single holomorphic function of the complex scalar �elds, the superpotential W . The
general form of the superpotential in terms of scalar �elds is

W (φ) = Liφi +
1

2
M ijφiφj +

1

6
yijkφiφjφk (3.73)

With

• M ij is a symmetric mass matrix for the fermion �elds

• yijk is a (Yukawa) coupling of a scalar φk and two fermions ψiψj that must be totally
symmetric under interchange of i, j, k

• Li a linear (tadpole) term which is only possible for pure gauge singlets

The auxiliary �elds Fi and F
∗i can be eliminated using their classical equations of motion.

Lfree + Lint = FiF
∗i +W iFi +W ∗i F

∗i + . . . (3.74)

where the dots represent all terms independent of F , F ∗. The equations of motion are

Fi = −W ∗i , F ∗i = −W i . (3.75)

Thus the auxiliary �elds can be expressed in terms of the scalar �elds. Therefore, the Lagrangian can be
written as

L = ∂µφ∗i∂µφi + iψ†iσµ∂µψi −
1

2

(
W ijψiψj +W ∗ijψ

†iψ†j
)
−W iW ∗i . (3.76)

The scalar potential of the theory without gauge interactions and unbroken supersymmetry is completely
�xed by the superpotential:

V (φ, φ∗) = W kW ∗k = F ∗kFk (3.77)

= M∗ikM
kjφ∗iφj +

1

2
M iny∗jknφiφ

∗jφ∗k +
1

2
M∗iny

jknφ∗iφjφk +
1

4
yijny∗klnφiφjφ

∗kφ∗l

(3.78)

This part is also called the F -term potential which has the following properties:

• This F -term potential is automatically bounded from below and even non-negative

• The scalar masses are given by M∗ikM
kj
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• Th cubic and quartic scalar interactions are not free parameters but prop. to the Yukawa-like
interactions

We have �nally found the most general form of the full interacting Lagrangian stemming from chiral
super�elds:

Lchiral = ∂µφ∗i∂µφi − V (φ, φ∗) + iψ†iσµ∂µψi −
1

2
M ijψiψj −

1

2
M∗ijψ

†iψ†j

−1

2
yijkφiψjψk −

1

2
y∗ijkφ

∗iψ†jψ†k. (3.79)

3.2.3 Lagrangians for vector supermultiplets

We want to include now gauge interactions. As we already mentioned, the gauge �elds Aaµ are part of
vector supermultiplets. The other (propagating!) degrees of freedom are those of a a two-component
Weyl fermion λa which we will call 'gaugino'. The index a here runs over the adjoint representation of
the gauge group. The gauge transformations of the vector supermultiplet �elds are

Aaµ → Aaµ − ∂µΛa + gfabcAbµΛc, (3.80)

λa → λa + gfabcλbΛc, (3.81)

Before we start to check the SUSY properties, we count this time �rst the degrees of freedom in the on-
and o�-shell case:

• The on-shell degrees of freedom for Aaµ and λaα amount to two bosonic and two fermionic helicity
states (for each a), as required by supersymmetry.

• O�-shell λaα consists of two complex, or four real, fermionic degrees of freedom, while Aaµ only has
three real bosonic degrees of freedom one degree of freedom is removed by the inhomogeneous gauge
transformation eq. (3.80).

We will see that we need one real bosonic auxiliary �eld Da to balance the degrees of freedom (and to
close the SUSY algebra o�-shell). The counting of degrees of freedom is summarized as

Aµ λ D

on-shell (nB = nF = 2) 2 2 0

o�-shell (nB = nF = 4) 3 4 1

The properties of the D �eld are:

• D transforms in the adjoint representation of the gauge group

• (Da)∗ = Da holds

• D �elds have mass dimension of 2 as F �elds

• D �elds don't propagate, i.e.their Lagrangian is

Lauxiliary =
1

2
DaDa (3.82)
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Therefore, the Lagrangian density for the components of a vector supermultiplet are

Lgauge = −1

4
F aµνF

µνa + iλ†aσµDµλ
a +

1

2
DaDa, (3.83)

where

Dµλ
a = ∂µλ

a − gfabcAbµλc (3.84)

is the covariant derivative of the gaugino �eld.

Of course, Lgauge must form a supersymmetric theory. That means that is must be invariant under SUSY
transformations and that the SUSY algebra closes. One can guess how SUSY transformations might look
like which ful�ll these properties. They must have the following properties:

• they should be linear in the in�nitesimal parameters ε, ε† which have mass dimension 1
2

• δAaµ is real

• δDa should be real and proportional to the �eld equations for the gaugino (in analogy with the role
of the auxiliary �eld F )

Up to multiplicative constants, this results in

δAaµ = − 1√
2

(
ε†σµλ

a + λ†aσµε
)
, (3.85)

δλaα = − i

2
√

2
(σµσνε)α F

a
µν +

1√
2
εα D

a, (3.86)

δDa =
i√
2

(
−ε†σµDµλ

a +Dµλ
†aσµε

)
. (3.87)

The factors of
√

2 are chosen so that the action obtained by integrating Lgauge is indeed invariant.
After some (tedious) work, which we skip here, one �nds that

• δLgauge = 0

• (δε2δε1 − δε1δε2)X = i(−ε1σµε†2 + ε2σ
µε†1)DµX for X = {F aµν , λa, λ†a, Da}

If we had not included the auxiliary �eld Da, then the supersymmetry algebra would hold only after
using the equations of motion for λa and λ†a. The auxiliary �elds satis�es a trivial equation of motion
Da = 0, but this is modi�ed if one couples the gauge supermultiplets to chiral supermultiplets, as we
now do.

3.2.4 Supersymmetric gauge interactions

The �nal step to obtain the full Lagrangian for a supersymmetric theory is to add gauge interactions
between vector and chiral supermultiplets. As we already mentioned, supersymmetric and gauge trans-
formations commute, i.e. the scalar, fermion, and auxiliary component of a chiral super�eld is in the
same representation of the gauge group, so

Xi → Xi + igΛa(T aX)i (3.88)
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for Xi = φi, ψi, Fi. Exactly as for non-supersymmetric models, we obtain a supersymmetric gauge theory
by replacing ordinary derivatives ∂µ, by covariant derivatives:

Dµφi = ∂µφi + igAaµ(T aφ)i (3.89)

Dµφ
∗i = ∂µφ

∗i − igAaµ(φ∗T a)i (3.90)

Dµψi = ∂µψi + igAaµ(T aψ)i. (3.91)

In that way, we couple the vector bosons to the matter �elds. Note, we have not yet checked that
this replacement is in agreement with SUSY invariance! Moreover, the di�erence compared to non-
supersymmetric models is that the vector super�elds includes also gauginos and auxiliary �elds. Thus,
for full generality, we need to check if those can also couple to the components of the chiral super�eld.
If we restrict ourselves to renormalizable couplings, there are only three possibilities which one can write
donwn

a) (φ∗T aψ)λa

b) λ†a(ψ†T aφ)

c) (φ∗T aφ)Da

We must now check if these terms can � or even must � be included to obtain a supersymmetric theory.
And if, what their overall coe�cients are. To that end, we need to change our SUSY transformations as
follows:

• Normal derivatives must be replaced by covariant derivatives

• δFi must include a new term involving gauginos

The full SUSY transformations for matter �elds become:

δφi = εψi (3.92)

δψiα = −i(σµε†)α Dµφi + εαFi (3.93)

δFi = −iε†σµDµψi +
√

2g(T aφ)i ε
†λ†a. (3.94)

which result in a supersymmetric theory if the additional terms in the Lagrangian are

L = Lchiral + Lgauge

−
√

2g(φ∗T aψ)λa −
√

2gλ†a(ψ†T aφ) + g(φ∗T aφ)Da. (3.95)

There is actually a 'naive' explanation for the �rst two terms in the second line: one takes the usual
interaction between a vector boson and two fermions and replaces two particles by their superpartners.
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In a supersymmetric gauge theory, the supersymmetrized version of a coupling of a gauge boson
to a pair of scalars or fermions becomes the interaction of a gaugino to a fermion/scalar which
are superpartners:

ψ

ψ†

Aµ,

φ

φ∗

Aµ ⇒

φ

ψ†

λ

Lλ = −
√

2g(φ∗T aψ)λa −
√

2gλ†a(ψ†T aφ) (3.96)

With the last term in eq. (3.96), the Lagrangian for the D �elds becomes

LD =
1

2
DaDa + g(φ∗T aφ)Da (3.97)

which results in the equation of motion

Da = −g(φ∗T aφ). (3.98)

Thus, like the auxiliary �elds Fi and F
∗i, the Da can be expressed by a pair of the scalar �elds. Conse-

quently, DaDa corresponds to a φ4 term which is part of the scalar potential.

The full scalar potential of the theory is a sum of D- and F -term contributions

V (φ, φ∗) = F ∗iFi +
1

2

∑
a

DaDa = W ∗i W
i +

1

2

∑
a

g2
a(φ∗T aφ)2. (3.99)

Here, we have explicitly written
∑
a which is the sum over all gauge groups of the theory. In

contrast to non-supersymmetric models, the scalar potential has no free parameters (quartic cou-
plings) but is completely �xed by gauge and Yukawa interactions.

3.2.5 Super�elds and superspace

All the results which we have derived so far could also be obtained using so called 'super�eld methods'.
This approach is mathematically more elegant but also more involved. Therefore, we give here only the
basic idea.
The so called superspace extends the four space�time coordinates by four additional coordinates Points
in superspace are labeled by coordinates:

xµ, θα, θ†α̇. (3.100)
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Here θα and θ†α̇ are constant complex anti-commuting two-component spinors (Grassmann coordinates).
Considering a single Grassmann variable η with

η2 = 0 (3.101)

one can express any function f(η) as

f(η) = f0 + ηf1 (3.102)

Integration and derivation with respect to Grassmann variables are de�ned as:

df

dη
=f1 (3.103)∫

dη = 0∫
dηη = 1

}∫
dηf =f1 (3.104)

One can write a super�elds as function of Grassmann coordinates:

Φ̂ = φ(y) +
√

2θψ(y) + θθF (y), (3.105)

The superpotential can be written in terms of super�elds

W (Φ̂) = LiΦ̂
i +

1

2
MijΦ̂

iΦ̂j +
1

6
yijkΦ̂iΦ̂jΦ̂k (3.106)

from which the Lagrangian can be calculted as

L =

∫
d2θθ(W (Φ̂) + c.c.) (3.107)

We �nd that a product of three super�elds becomes

Φ̂iΦjΦk = φiφjφk +
√

2θ(ψiφjφk + ψjφiφk + ψkφiφj)

+ θθ(φiφjFk + φiφkFj + φjφkFi − ψiψjφk − ψiψkφj − ψjψkφi) (3.108)

Thus,

L =

∫
d2θθΦ̂iΦjΦk (3.109)

=(φiφjFk + φiφkFj + φjφkFi − ψiψjφk − ψiψkφj − ψjψkφi) (3.110)

Where we recovered the Yukawa-like interactions (ψψφ) and F -terms (Fφφ).
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In order to de�ne a supersymmetric theory, often the superpotential in terms of super�elds is
given:

W (Φ̂) = LiΦ̂
i +

1

2
MijΦ̂

iΦ̂j +
1

6
yijkΦ̂iΦ̂jΦ̂k (3.111)

The obtained Lagrangian from

L =

∫
d2θθ(W (Φ̂) + c.c.) (3.112)

is identical to the one which one gets from

W (φ) = Liφi +
1

2
M ijφiφj +

1

6
yijkφiφjφk (3.113)

and

L =

(
−1

2

δ2W

δφiδφj
ψiψj +

δW

δφi
Fi

)
+ c.c. (3.114)

3.3 SUSY breaking

Based on Steve Martin's primer, sec. 7

We have so far assumed that SUSY is an unbroken symmmetry. In this case all components of the
supermultiplets have the same masses. However,this would rule out the theory immediately because it
predicts for instance a fundamental scalar with the same mass and charge as the electron:

mẽ = me (3.115)

Such a particle, called selectron, would have been discovered long ago. The current limits for the selec-
tron mass are actually about 100 GeV. Therefore, one needs to introduce a mass splitting between the
superpartners. In other words, SUSY must be broken. We want to discuss two di�erent approaches for
SUSY breaking:

a) spontaneous SUSY breaking

b) Hidden sector SUSY breaking

We will see that the �rst attempt to break SUSY similar to gauge theory spontaneously is phenomeno-
logical not possible. Nevertheless, we are going to discuss this case because it gives important insights.

3.3.1 Spontaneous SUSY breaking

3.3.1.1 General considerations

We start with a discussion of spontaneous SUSY breaking. By de�nition, this means that the vacuum
state |0〉 is not invariant under supersymmetry transformations, so Qα|0〉 6= 0 and Q†α̇|0〉 6= 0. Now, in
global supersymmetry, the Hamiltonian operator H is related to the supersymmetry generators through
the algebra

{Qα, Q†α̇} = −2σµαα̇Pµ (3.116)
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3.3. SUSY BREAKING

Note, here we have added the explicit form of the spinor indices. For H = P 0 we get

H = P 0 =
1

4
(Q1Q

†
1 +Q†1Q1 +Q2Q

†
2 +Q†2Q2). (3.117)

We can distinguish two cases:

a) H|0〉 = 0: SUSY is unbroken and the vacuum has zero energy

b) H|0〉 6= 0: SUSY is broken and the vacuum energy is

〈0|H|0〉 =
1

4

(
‖Q†1|0〉‖2 + ‖Q1|0〉‖2 + ‖Q†2|0〉‖2 + ‖Q2|0〉‖2

)
> 0 (3.118)

This is positive for a positive norm in the Hilbert space. From 〈0|H|0〉 = 〈0|V |0〉 we get the
condition

〈0|VF |0〉+ 〈0|VD|0〉 > 0 (3.119)

Where VF and VD are the F - and D-term potentials.

SUSY is spontaneously broken if and only if it is not possible to satisfy

Fi = 0 ∨ Da = 0 (3.120)

for any �eld con�guration.

If any state exists in which all Fi and D
a vanish, then it will have zero energy, implying that supersym-

metry is not spontaneously broken in the true ground state. Aanother possibility is that the vacuum
state in which we live is not the true ground state (which may preserve supersymmetry), but is instead
a higher energy metastable supersymmetry-breaking state with lifetime at least of order the present age
of the universe. Finite temperature e�ects can indeed cause the early universe to prefer the metastable
supersymmetry-breaking local minimum of the potential over the supersymmetry-breaking global mini-
mum. The potential for the three possibilities looks schematically like

ϕ

V(ϕ)

ϕ

V(ϕ)

ϕ

V(ϕ)

If SUSY is broken spontaneously, a massless Nambu-Goldstone particle must be present. Since SUSY
generators are spinors, this particle is a massless, neutral Weul fermion called the Goldstino. If we would
consider local supersymmetry in which SUSY is combined with gravity, the Goldstino would get eaten
up by the Gravitino. The Gravitino is a spin 3/2 particle and the superpartner of the Graviton. This is
called Super-Higgs mechanism.
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Supersymmetric Formalities

3.3.1.2 Sum rule

We want to show an important relation between the masses of fermions, scalars and vector-bosons after
spontaneous SUSY breaking. For this purpose, we consider the general mass matrices for these �elds.

a) Scalars We are interested in the masses of the scalar after symmetry breaking. Those masses are
the eigenvalues of the matrix m2

S which can be used to express the Lagrangian as

V =
1

2

(
φ∗j φj

)
m2

S

(
φi

φ∗i

)
. (3.121)

The general scalar potential reads

V = W ∗kW
k +

1

2
g2
a(φ∗kT

aφl)(φ
∗
mT

aφn) (3.122)

From that, we get for m2
S

m2
S =

W ∗jkW ik + g2
a(T aφ)j(φ

∗T a)i − gaT aij Da W ∗ijkW
k + g2

a(T aφ)i(T
aφ)j

W ijkW ∗k + g2
a(φ∗T a)i(φ∗T a)j W ∗ikW

jk + g2
a(T aφ)i(φ

∗T a)j − gaT aji Da

 ,(3.123)

Here, we used W ijk = δ3W/δφiδφjδφk, and we kept the scalar �elds which are replaced by their
VEVs. The sum of the two eigenvalues is just the trace of this matrix. This trace is calculated to

Tr(m2
S) = 2W ∗ikW

ik + 2g2
aCa(i)φ∗iφi − 2gaTr(T a)Da, (3.124)

with the Casimir invariants Ca(i)δij = (T aT a)ij .

b) Fermions: bilinear fermion terms can appear after symmetry breaking in the terms coming from
the superpotential as well as in gaugino-fermion-scalar interactions.

L = −
√

2gaφiT
aλaψi −W ikψiψj + c.c. (3.125)

Therefore, the mass matrix mF de�ned as

V = −
(
λaj ψj

)
mF

(
λai

ψi

)
. (3.126)

is

mF =

(
0

√
2ga(T aφ)i√

2ga(T aφ)j W ij

)
(3.127)

Thus, the mass matrix squared becomes

m†FmF =

 2gagb(φ
∗T aT bφ)

√
2gb(T

bφ)kW
ik

√
2ga(φ∗T a)kW ∗jk W ∗jkW

ik + 2g2
c (T cφ)j(φ

∗T c)i

 , (3.128)

so the sum of the two-component fermion squared masses is

Tr(m†FmF) = W ∗ikW
ik + 4g2

aCa(i)φ∗iφi. (3.129)
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3.3. SUSY BREAKING

c) Vectors: mass terms from vector always come from the kinetic terms of scalars. The general form
of the mass matrix is

m2
V = g2

a(φ∗{T a, T b}φ), (3.130)

so

Tr(m2
V) = 2g2

aCa(i)φ∗iφi. (3.131)

It follows that the supertrace of the tree-level squared-mass eigenvalues, de�ned in general by a
weighted sum over all particles with spin j:

STr(m2) ≡
∑
j

(−1)2j(2j + 1)Tr(m2
j ), (3.132)

satis�es the sum rule

STr(m2) = Tr(m2
S)− 2Tr(m†FmF) + 3Tr(m2

V) = −2gaTr(T a)Da = 0. (3.133)

The last equality assumes that the traces of the U(1) charges over the chiral super�elds are 0.
This holds for any non-anomalous gauge symmetry.

The sum rules are a handy tool to check . . .

• . . . if SUSY is broken spontaneously

• . . . the calculated masses for a supersymmetric model which should ful�ll this rule when taking the
limit of unbroken supersymmetry

3.3.1.3 Example: F -term supersymmetry breaking

We want to discuss an explicit example of F -term SUSY breaking. These models are also called O'Raifear-
taigh models. The basic idea is to �nd a set of chiral supermultiplets Φi ⊃ (φi, ψi, Fi) and a superpotential
W in such a way that the equations Fi = −δW ∗/δφ∗i = 0 have no simultaneous solution. The simplest
example for this has three chiral supermultiplets Φ1,2,3 and the superpotential

WO′R = −kΦ1 +mΦ2Φ3 +
y

2
Φ1Φ2

3. (3.134)

Note, that the linear term k is crucial. Otherwise, φi = 0 will also correspond to a supersymetric
conserving vacuum. Without loss of generality, we can choose k, m, and y to be real and positive: The
scalar potential following from WO′R is

Vtree−level = |F1|2 + |F2|2 + |F3|2 (3.135)

with

F1 = k − y

2
φ∗23 (3.136)

F2 = −mφ∗3 (3.137)

F3 = −mφ∗2 − yφ∗1φ∗3. (3.138)
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Obviously, it is ont possible to get F1 = 0 and F2 = 0 at the same time, ie SUSY must be broken.
We assume from now on m2 > yk, then the absolute minimum of the classical potential is

V (φ1, φ2 = 0, φ3 = 0) = k2 (3.139)

φ1, which doesn't lift the vacuum, is called a '�at direction'.
We can now check the masses for the di�erent �elds. For this purpose, we parametrize the complex
scalars as real �elds

φ1 =
1√
2

(v1 + ϕ1 + iσ1) (3.140)

φ2 =
1√
2

(ϕ2 + iσ2) (3.141)

φ3 =
1√
2

(ϕ3 + iσ3) (3.142)

Note the VEV for p1 which is responsible for SUSY breaking. The mass matrix for the scalars in the
basis (ϕ1, σ1, ϕ2, σ2, ϕ3, σ3) is

m2
S =



0 0 0 0 0 0

0 0 0 0 0 0

0 0 m2 0 mv1y√
2

0

0 0 0 m2 0 mv1y√
2

0 0 mv1y√
2

0 m2 +
v21y

2

2 + ky 0

0 0 0 mv1y√
2

0 m2 + 1
2y
(
v2

1y − 2k
)


(3.143)

and the eigenvalues of this matrix are

m2
ϕ,1 =0 (3.144)

m2
ϕ,2 =0 (3.145)

m2
ϕ,3 =

1

4

(
y

(
−
√

(v2
1y − 2k)

2
+ 8m2v2

1 − 2k + v2
1y

)
+ 4m2

)
(3.146)

m2
ϕ,4 =

1

4

(
y

(√
(v2

1y − 2k)
2

+ 8m2v2
1 − 2k + v2

1y

)
+ 4m2

)
(3.147)

m2
ϕ,5 =

1

4

(
y

(
−
√

(2k + v2
1y)

2
+ 8m2v2

1 + 2k + v2
1y

)
+ 4m2

)
(3.148)

m2
ϕ,6 =

1

4

(
y

(√
(2k + v2

1y)
2

+ 8m2v2
1 + 2k + v2

1y

)
+ 4m2

)
(3.149)

(3.150)

and we �nd

Tr(m2
S) = 4m2 + v2

1y
2 (3.151)

We turn now to the fermion sector. The Yukawa-like potential of this model is

LFFS = mψ2ψ3 +
1

2
φ∗1ψ

2
3y + yφ∗3ψ1ψ3 + h.c. (3.152)
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3.3. SUSY BREAKING

The fermionic mass matrix in the basis (ψ1, ψ2, ψ3) is

mF =


0 0 0

0 0 m

0 m 1√
2
v1y

 (3.153)

from what the eigenvalues of mFm
†
F are calculated to

m2
ψ,1 =0 (3.154)

m2
ψ,2 =− 1

4

√
2m2v2

1y
2 + v4

1y
4 +m2 +

1

4
v2

1y
2 (3.155)

m2
ψ,3 =

1

4

√
2m2v2

1y
2 + v4

1y
4 +m2 +

1

4
v2

1y
2 (3.156)

and we have

Tr(m2
F ) = 2m2 +

1

2
v2

1y
2 (3.157)

Thus, we can now verify that

STr(m2) = Tr(m2
S)− 2Tr(m2

F ) = 0 (3.158)

holds.

3.3.1.4 Example: D-term supersymmetry breaking

It is in principle also possible to break SUSY via D-terms. This option is known as Fayet-Iliopoulos

mechanism. If the gauge symmetry includes a U(1) factor, then one can write down a term linear in the
auxiliary �eld of the corresponding gauge supermultiplet,

LFI = −κD, (3.159)

where κ is a constant with dimensions of [mass]2. This term is gauge-invariant and supersymmetric by
itself. The relevant part of the scalar potential become

V = κD − 1

2
D2 − gD

∑
i

qi|φi|2. (3.160)

Here the qi are the charges of the scalar �elds φi under the U(1) gauge group in question. The presence
of the Fayet-Iliopoulos term modi�es the equation of motion the D-�eld to

D = κ− g
∑
i

qi|φi|2. (3.161)

Now suppose that the scalar �elds φi that are charged under the U(1) all have non-zero superpotential
masses mi. Then the potential will have the form

V =
∑
i

|mi|2|φi|2 +
1

2
(κ− g

∑
i

qi|φi|2)2. (3.162)
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Since this cannot vanish, supersymmetry must be broken. This is also obvious from the masses:

m2
S,i =|mi|2 − gqiκ (3.163)

m2
F,i =

1

2
|mi|2 (3.164)

The supertrace becomes

STr(m2) = −gκTr(qi) (3.165)

which vanishes if the U(1) is anomaly free.

However, one needs to state that there are some problems building a realistic model with D-term breaking

• In SUSY versions of the SM, it is not possible to use U(1)Y because many �elds don't get super-
potential mass terms. (We will see this explicitly in the next chapter)

• If another (additional) U(1) is used, this group must not couple to SM particles. However, this
makes it di�cult to generate appropriate masses for all superpartners of SM �elds.

3.3.1.5 The problem of spontaneous SUSY breaking

The sum rules obtainted so far are relations between all masses in the theory. However, we could assume
that some particles don't mix with the rest. In that case, individual sum rules are found for the sub-sets
of �elds that mix. A well motivated choice is to assume that the mixing of the (s)electron with other
�elds is negligble small or zero. This would predict the following relation between the two selectrons and
the electron:

m2
ẽ1 +m2

ẽ2 = 2m2
e, (3.166)

mass. Even small deviations from lepton �avour violation won't change the conclusion that the sum rules
rule out phenomenologically acceptable SUSY masses. Therefore, we need to search for possibilities how
to circumvent the sum rules.

3.3.2 Soft supersymmetry breaking interactions

We have discussed so far the spontaneus SUSY breaking as origin of a mass splitting between scalars and
fermions of the same multiplet. For pratical purposes, one can also choose another approach and ask the
questions: which terms can I add to my Lagrangian in order to keep the most important SUSY properties?
The guiding principle is that all terms which we add only introduce a soft breaking of SUSY. 'Soft'
means, that no quadratic divergences appear. This means that only dimensionful parameters can be
added 1. The most important soft supersymmetry-breaking terms in the Lagrangian of a general theory
are

Lsoft = −
(

1

2
Ma λ

aλa +
1

6
tijkφiφjφk +

1

2
bijφiφj + liφi

)
+ c.c.− (m2)ijφ

j∗φi, (3.167)

These terms are

• gaugino masses Ma for each vector super�eld. Gaugino masses Ma are always allowed by gauge
symmetry.

1We will discuss in more detail at the example of the MSSM
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3.3. SUSY BREAKING

• scalar squared-mass terms (m2)ji for each chiral super�eld. The (m2)ij terms are allowed for i, j

such that φi, φ
j∗ transform in complex conjugate representations of each other under all gauge

symmetries; in particular this is true of course when i = j, so every scalar is eligible to get a mass
in this way if supersymmetry is broken.

• holomorphic soft-terms li, b
ij , tijk of one to three scalars. The tijk, bij , and li terms have the same

form as the yijk, M ij , and Li terms in the superpotential, so they will each be allowed by gauge
invariance if and only if a corresponding superpotential term is allowed.

The t terms are special in that sense that they modify scalar interactions, while all other terms enter the
masses/mass matrices:

φi

φj

φktijk

In addition, two other possibilities exists which, however, are not studied as intensively as these standard
terms:

a) Non-holomorphic soft term:

Lnon−holomorphic = cjki φ
∗iφjφk + µ̃ijψiψj + c.c. (3.168)

These terms can only be added if no singlet is involved because they are not soft otherwise.

b) Dirac Gaugino mass terms:

L = −Ma
Diracλ

aψa + c.c. (3.169)

These terms need a chiral super�eld in the adjoint representation

3.3.3 Hidden Sector SUSY breaking

One the one side, spontaneus SUSY breaking is not in ageement with observation, one the other side,
putting soft-masses by hand is often unsatisfying.

If we consider the MSSM, there are 107 parameters appeaing in the most general soft-breaking
Lagrangian. Therefore, is very attractive to relate them to a SUSY breaking mechanism which
reduces the number of free parameters and which explains why CP phases and/or dangerous
�avour changing parameters are small.

A possible solution to both problems is that soft terms arise indirectly or radiatively, rather than from
tree-level renormalizable couplings to the supersymmetry-breaking order parameters:
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Supersymmetry breaking evidently occurs in a �hidden sector" of particles that have no (or only
very small) direct couplings to the �visible sector" chiral supermultiplets of the MSSM. However,
the two sectors do share some interactions that are responsible for mediating supersymmetry
breaking from the hidden sector to the visible sector, resulting in the MSSM soft terms.

hidden sector:
SUSY-Breaking

interactions
←→

visible sector:
MSSM

In this scenario, the tree-level squared mass sum rules need not hold, even approximately, for the physical
masses of the visible sector �elds, so that a phenomenologically viable superpartner mass spectrum is, in
principle, achievable.
There are two main mechanims how SUSY breaking is mediated:

a) Gravitational interactions:
These scenarios are associated with the new physics, including gravity, that enters near the Planck
scale. If supersymmetry is broken in the hidden sector by a VEV 〈F 〉, then the soft terms in the
visible sector should be roughly

msoft ∼ 〈F 〉/MP, (3.170)

by dimensional analysis. The reason is

• we know that msoft must vanish in the limit 〈F 〉 → 0 where supersymmetry is unbroken

• in the limit MP → ∞ (corresponding to GNewton → 0) in which gravity becomes irrelevant,
msoft must also become zero

For msoft of order a few hundred GeV, one would therefore expect that the scale associated with the
origin of supersymmetry breaking in the hidden sector should be roughly

√
〈F 〉 ∼ 1010 or 1011 GeV.

A bit more explicitly, the soft Lagrangian can be expected to have the form

Lsoft =

(
− 〈F 〉

2MP
faλ

aλa − 〈F 〉
MP

njiφjW
i
MSSM + · · ·+ c.c.

)
− 〈F 〉

2

M2
P

(kij + nipn
p
j )φ
∗jφi, (3.171)

with dimensionless parameters fa, n, n, k which are given by the setup in the hidden sector. Under
the radical assumption that the hidden sector is very simple and couple the same to all scalars and
gauginos, all soft-terms are �xed by just four parameters

M1/2 = f
〈F 〉
MP

, m2
0 = (k+n2)

|〈F 〉|2

M2
P

, A0 = (α+3n)
〈F 〉
MP

, B0 = (β+2n)
〈F 〉
MP

. (3.172)

Here, M1/2 and m2
0 are universal soft-masses for all scalars and gauginos:

(m2)ijφ
iφj∗ =δijm

2
0|φi|2 (3.173)

Maλ
aλa =M1/2λ

aλa (3.174)

A0 and B0 de�ne the proportionality between soft-parameters and superpotential parameters:

tijk = A0yijk bij = B0Mij (3.175)

This ansatz is called minimal supergravity (mSugra).
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3.3. SUSY BREAKING

b) Gauge interactions:
In that case, the �avor-blind mediating interactions for supersymmetry breaking are the ordinary
electroweak and QCD gauge interactions. In this gauge-mediated supersymmetry breaking (GMSB)
scenario, the MSSM soft terms come from loop diagrams involving some messenger particles. The
messengers are new chiral supermultiplets that couple to a supersymmetry-breaking VEV 〈F 〉, and
also have SU(3)C × SU(2)L × U(1)Y interactions, which provide the necessary connection to the
MSSM. Examples for the diagrams which generate SUSY breaking masses are

ψM

φM

λ λ

φM

φ φ

Then, using dimensional analysis, one estimates for the MSSM soft terms

msoft ∼
αa
4π

〈F 〉
Mmess

(3.176)

where the αa/4π is a loop factor for Feynman diagrams involving gauge interactions, and Mmess

is a characteristic scale of the masses of the messenger �elds. So if Mmess and
√
〈F 〉 are roughly

comparable, then the scale of supersymmetry breaking can be as low as about
√
〈F 〉 ∼ 104 GeV

(much lower than in the gravity-mediated case!) to give msoft of the right order of magnitude.
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3.4 Summary: How to construct the SUSY Lagrangian

In a supersymmetric theory, the interactions of all particles are �xed by three ingredients

a) the gauge transformation properties:

Lfree+gauge =∂µφ∗i∂µφi + iψ†iσµ∂µψi −
1

4
F aµνF

µνa + iλ†aσµDµλ
a

− (
√

2g(φ∗i T
aψi)λ

a + c.c.)− 1

2

∑
a

g2
a(φ∗i T

aφi)
2 (3.177)

b) the superpotential W

W (φ) = Liφi +
1

2
M ijφiφj +

1

6
yijkφiφjφk (3.178)

which results in

Lint =− 1

2

(
δ2W

δφiδφj
ψiψj + c.c.

)
−
∣∣∣∣δWδφi

∣∣∣∣2 (3.179)

c) Soft-susy breaking terms

Lsoft =−
(

1

2
Ma λ

aλa +
1

6
tijkφiφjφk +

1

2
bijφiφj + liφi + c.c.

)
− (m2)ijφ

j∗φi

+ (non− standard soft− terms) (3.180)

The scalar potential, which is for instance responsible for gauge symmetry breaking, is the sum of

V =VF + VD + Vsoft

=

∣∣∣∣δWδφi
∣∣∣∣2 +

1

2

∑
a

g2
a(φ∗i T

aφi)
2 + (m2)ijφ

j∗φi +

(
1

6
tijkφiφjφk +

1

2
bijφiφj + liφi + c.c.

)
(3.181)

From the di�erent parts of the Lagrangian di�erent kinds of interactions arise

a)
Kinetic Terms for scalars
L = DµφD

µφ∗

φ

φ∗

Aµ

︸ ︷︷ ︸
∼g

φ

φ∗

Aµ

Aµ

︸ ︷︷ ︸
∼g2

φ

Aµ

Aµ

︸ ︷︷ ︸
∼vg2

(3.182)
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b)
Kinetic Terms for Fermions
L = ψ†Dµψ∗

ψ

ψ†

Aµ

︸ ︷︷ ︸
∼g

(3.183)

c)
Gaugino-Matter interactions
L =

√
2gφ∗T aλψ

ψ

φ∗

λ

︸ ︷︷ ︸
∼
√

2g

(3.184)

d)
Vector Self-interactions
L = FµνFµν

Aµ

A∗ν

Aρ

︸ ︷︷ ︸
∼g

Aµ

A∗ν

Aρ

Aσ

︸ ︷︷ ︸
∼g2

(3.185)

e)
Vector Gaugino-Interactions
L = iλ†aσµDµλ

a

λ

λ

Aµ

︸ ︷︷ ︸
∼g

(3.186)

f)
Scalar interactions
L = −|F |2 −D2 − T ijkφiφjφk

φi

φj

φk

φl

︸ ︷︷ ︸
∼Y 2+g2

φi

φj

φk

︸ ︷︷ ︸
∼µY+vY 2+vg2+T ijk

(3.187)
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Chapter 4

The Minimal Supersymmetric Standard

Model

4.1 Particle Content and Superpotential

It's time now to write down minimal supersymmetric standard model, the MSSM. The building blocks
of the MSSM are

a) Vector Super�elds: since the gauge sector of the SM consists of three gauge groups, we need the
three corresponding vector super�elds. The naming conventions for the super�eld names as well as
their component �elds are as follows:

Name SF spin 1
2 spin 1 SU(3)C , SU(2)L, U(1)Y

gluino, gluon ĝα g̃α gα (8,1, 0)

winos, W bosons Ŵi W̃i Wi (1,3, 0)

bino, B boson B̂ B̃0 B0 (1,1, 0)

b) Chiral Super�elds: each SM fermion needs a scalar superpartner. Therefore, �ve chiral super�eld
are needed to arrange the matter sector. Also the Higgs doublets needs to be arranged in one
super�eld. However, it turns out that a second Higgs super�eld is needed for two reason:

(a) One needs two fermions to cancel all gauge anomalies

(b) Since the superpotential is a holomorphic function, it is not possible to write down Yukawa
terms for up- and down-quarks as in the SM

Therefore, the full list of chiral supermultiplets in the SM is
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Name SF spin 0 spin 1
2 SU(3)C × SU(2)L × U(1)Y

squarks, quarks q̂ (ũL d̃L) (uL dL) (3,2, 1
6 )

(3 generations) û ũ∗R u†R (3̄,1,− 2
3 )

d̂ d̃∗R d†R (3̄,1, 1
3 )

sleptons, leptons l̂ (ν̃ ẽL) (ν eL) (1,2,− 1
2 )

(3 generations) ê ẽ∗R e†R (1,1, 1)

Higgs, Higgsinos Ĥu (H+
u H

0
u) (H̃+

u H̃
0
u) (1,2, 1

2 )

Ĥd (H0
d H

−
d ) (H̃0

d H̃
−
d ) (1,2,− 1

2 )

c) Superpotential: the MSSM superpotential is

W = Y abe l̂ja êb Ĥ
i
d εij + Y abd q̂jαa d̂αb Ĥ

i
d εij + Y abu q̂iαa ûαb Ĥ

j
u εij + µ Ĥi

u Ĥ
j
dεij . (4.1)

Here, Yd,u,e are Yukawa couplings, which we treat as complex 3× 3 matrices, known from the SM.
However, not only the coupling strength of the Higgs to two fermions is given by these couplings,
but also the Higgsino interactions with a (s)fermion pair.

uR,i

qL,j

HuY iju

uR,i

q̃L,j

H̃uY iju

ũR,i

qL,j

H̃uY iju

µ is a supersymmetric mass term for the Higgs super�elds. Often, the simpli�ed assumption is
made that only third generation Yukawa couplings are non-negligible. This corresponds to

Yu ≈


0 0 0

0 0 0

0 0 Yt

 , Yd ≈


0 0 0

0 0 0

0 0 Yb

 , Ye ≈


0 0 0

0 0 0

0 0 Yτ

 . (4.2)

The superpotential becomes in this limit

WMSSM ≈ Yt(tLtRH
0
u − bLtRH+

u )− Yb(tLbRH−d − bLbRH
0
d)− Yτ (ντ,LτRH

−
d − τLτRH

0
d)

+µ(H+
u H

−
d −H

0
uH

0
d). (4.3)

where we have expanded the isospin indices. We are using this simpli�ed version of the superpo-
tential to list the other interactions stemming from the superpotential:
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(a) Quartic scalar interactions: the F -terms involving four scalars are

Lquartic =Y 2
t

(
(|t̃L|2 + |t̃R|2)|H0

u|2 + |b̃L|2|H+
u |2 + (t̃Lb̃

∗
LH

0
uH
−
u + c.c.

)
+ Y 2

b

(
(|b̃L|2 + |b̃R|2)|H0

d |2 + |t̃L|2|H−d |
2 + (b̃Lt̃

∗
LH

0
dH

+
d + c.c.

)
+ Y 2

τ

(
(|τ̃L|2 + |τ̃R|2)|H0

d |2 + |ν̃τ,L|2|H−d |
2 + (ν̃τ,Lτ̃

∗
LH

0
dH

+
d + c.c.

)
− YtYb

(
t̃RH

0
ub̃
∗
RH

+
d + t̃RH

+
u b̃
∗
RH

0∗
d + c.c.

)
+ YbYτ

(
τ̃Lτ̃Rb̃

∗
Lb̃
∗
R − ν̃τ τ̃Rt̃∗Lb̃R + c.c.

)
(4.4)

From these many terms, one can see how economic the super�eld notation is. The Feynman
diagrams corresponding to the couplings prop. to Y 2

t are

t̃R

t̃∗R

H0
u

H0∗
u

Y 2
t

t̃L

t̃∗L

H0
u

H0∗
u

Y 2
t

b̃L

b̃∗L

H+
u

H−u

Y 2
t

t̃L

b̃∗L

H0
u

H−u

Y 2
t

(b) Cubic scalar interactions: also trilinear, scalar couplings arise due to the presence of the µ-
term:

Lcubic = µ∗(ũYuũH
0∗
d + d̃Ydd̃H

0∗
u + ẽYeẽH

0∗
u

+ũYud̃H
−∗
d + d̃YdũH

+∗
u + ẽYeν̃H

+∗
u ) + c.c. (4.5)

t̃L

t̃R

H0∗
dµYt

d) Soft-Breaking terms: the general soft-breaking interactions in the MSSM are

LMSSM
soft = −1

2

(
M3g̃g̃ +M2W̃W̃ +M1B̃B̃ + c.c.

)
−Q̃†m2

Q̃
Q̃− L̃†m2

L̃
L̃− ũm2

ũ ũ
† − d̃m2

d̃
d̃
†
− ẽ m2

ẽ ẽ
† − m2

HuH
∗
uHu −m2

Hd
H∗dHd

−
(
ũ Tu Q̃Hu − d̃ Td Q̃Hd − ẽ Te L̃Hd + c.c.

)
− (BµHuHd + c.c.) . (4.6)

Here, we have

• M3, M2, and M1 are the gluino, wino, and bino mass terms. These are complex parameters
with mass dimension of 1.

• Mass squared terms for all chiral super�elds. While m2
f̃
(f = {Q,L, u, d, e}) are Hermitian

3× 3 matrices, m2
Hd

and m2
Hu

real parameters.
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4.1. PARTICLE CONTENT AND SUPERPOTENTIAL

• For each term in the superpotential purely scalar interactions appears. These are trilinear
scalar couplings Ti (i = {d, u, e}) which are complex 3 × 3 matrices as well as Higgs mixing
term Bµ which is complex as well.

4.1.1 R-parity

The superpotential which we have written down does not include all interactions which are allowed by
gauge invariance. Other possible terms would be

W∆L=1 =
1

2
λijkLiLjek + λ′ijkLiQjdk + εiLiHu (4.7)

W∆B=1 =
1

2
λ′′ijkuidjdk (4.8)

The terms in W∆L=1 violate total lepton number by 1 unit and those in W∆B=1 violate baryon number
by 1 unit. Note, εi in this context is not the anti-symmetric tensor but a common nomenclature for a
superpotential term.
The presence of such terms is highly constrained by proton decay, for instance. For instance, the combi-
nation λ′ · λ′′ can trigger proton decay via diagrams like

p

 s̃Rd

u

u

u

u∗

e+

λ′′ λ′


π0 + e+

We can estimate the life-time of the proton just from a dimensional analysis as:

Γp→e+π0 ∼ m5
proton

∑
i=2,3

|λ′11iλ′′11i|2/m4
d̃i
, (4.9)

The lower limit on the proton life-time is 1032 years what corresponds to 10−64GeV−1. Thus, for SUSY
masses in the TeV range, we obtain a limit of

|λ′λ′′| < 10−26 (4.10)

Such tight constraints usually point towards a symmetry which completely forbid the underlying process.
Therefore, a new symmetry called R-parity is introduced.

R-parity is a Z2 symmetry which is de�ned as

PR = (−1)3(B−L)+2s (4.11)

where s is the spin of the particle, while B and L are its baryon respectively lepton number.

With this de�nition, it turns out that all SM particles are even under R-parity, while their superpartners
are odd. Therefore, 'supersymmetric particles' or 'sparticles' are a synonym for particles with PR = −1.
This has tremendous consequences:

• If R-parity is conserved, there can't be any mixing between supersymmetric particles and SM ones
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• All interaction vertices must be involved an even number of supersymmetric particles

• The lightest supersymmetric particle (LSP) can't decay, i.e. it might be a candidate for dark matter

• Always an even number of supersymmetric particles is produced at colliders

Note, sometimes also 'matter parity' is used which is a Z2 for the entire super�eld. The matter parity
of a super�eld is identical to the R-parity of its scalar component. Therefore, both symmetries allow
equivalent terms in the superpotential independently if W is expressed in terms of super�elds or scalars.

If either B or L violating operators are present, proton decay is not possible. Therefore, one could also
relax the condition of R-parity violation and study models with λ, λ′ and ε, or with λ′′ alone. Such R-
parity violating scenarios can be motivated by other symmetries and have interesting phenomenological
consequences.

4.1.2 Constraints on Soft-terms

We have written down the most general form of soft-breaking terms. However, there exist stringent
constraints on their shape, because large o�-diagonal entries would trigger �avour violating processes
and huge phases have an impact on CP observables like dipole moments. Let's give two examples:

a) Flavour violation: For example, suppose that m2
e is not diagonal in the basis (ẽR, µ̃R, τ̃R). In that

case, �avor mixing in the slepton occurs, so the individual lepton numbers will not be conserved,
even for processes that only involve the sleptons as virtual particles. A particularly strong limit on
this possibility comes from the experimental bound on the process µ→ eγ, which could arise from
the one-loop diagram as

ẽR

µ̃R

χ

e

µ

γ

Here, �×" on the slepton line represents the insertion of the o�-diagonal soft-term. The result of
calculating this diagram gives roughly

Br(µ→ eγ) ' 10−6

(
|m2

µ̃∗RẽR
|

m2
˜̀
R

)2(
100 GeV

m˜̀
R

)4

(4.12)

where we assumed that . . .

• the diagonal entries are degenerated m2
ẽRẽR

= m2
µ̃Rµ̃R

= m2
l̃R

• m2
l̃R
� m2

µ̃∗RẽR
to get mass eigenstates with mass ml̃R

.

• The neutralino is a pure bino
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This result is to be compared to the present experimental upper limit

Br(µ→ eγ)exp < 5.7× 10−13 (4.13)

So, we �nd for 1 TeV slepton masses that(
|m2

µ̃∗RẽR
|

m2
˜̀
R

)
< 0.1 (4.14)

must hold. Thus, the soft-matrix can't be random but must follow some hierarchy.

b) CP violation:
Additional sources of CP violation are constrained by the measured dipole moments of the SM
particles. For instance, the dipole moment of the electron receives new SUSY contributions from
the imaginary part of diagrams like

χ̃

e

e

γ

In the case, that the neutralino is a Higgsino-Wino mixture, one gets

de '
1

2
meg

2
2 |M2µ| tanβ sin ΦCP ×K(m2

ẽL , µ
2,M2) (4.15)

with a kinematic function K. Here, sin ΦCP is the misalignment of the phases of M2 and µ and
must be below 0.01 for SUSY masses of about 1 TeV.

One could avoid these constraints if speci�c assumptions are made about the form of the soft-breaking
terms. Very simple possibilities would:

• Consider an idealised limit in which the squark and slepton squared-mass matrices are �avor-blind,
each proportional to the 3× 3 identity matrix in family space:

m2
Q̃

= m2
Q1, m2

ũ = m2
u1, m2

d̃
= m2

d
1, m2

L̃
= m2

L1, m2
ẽ = m2

e1 (4.16)

Then all squark and slepton mixing angles are rendered trivial, because squarks and sleptons with
the same electroweak quantum numbers will be degenerate in mass and can be rotated into each
other at will. Supersymmetric contributions to �avor-changing neutral current processes will there-
fore be very small in such an idealised limit, up to mixing induced by Tu, Td, Te.

• Making the further assumption that the (scalar)3 couplings are each proportional to the correspond-
ing Yukawa coupling matrix,

Tu = Au Yu, Td = Ad Yd, Te = Ae Ye, (4.17)

will ensure that only the squarks and sleptons of the third family can have large (scalar)3 couplings.
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• Finally, one can avoid disastrously large CP-violating e�ects by assuming that the soft parameters
do not introduce new complex phases. This is automatic for m2

Hu
and m2

Hd
, and for sfermion soft

masses if eq. (4.16) is assumed. One can also �x µ in the superpotential and Bµ in soft potential
to be real, by appropriate phase rotations of fermion and scalar components of the Hu and Hd

supermultiplets. The remaining phases which need to be small are

Im(M1), Im(M2), Im(M3), Im(Au), Im(Ad), Im(Ae) (4.18)

If those exactly vanish, then the only CP-violating phase in the theory will be the usual CKM phase
found in the ordinary Yukawa couplings.

The MSSM with these �avor- and CP-preserving relations imposed has far fewer parameters than the
most general case. The new parameters beside the SM ones, are

• 3 independent real gaugino masses

• 5 real squark and slepton squared mass parameters

• 3 real scalar cubic coupling parameters

• 4 Higgs mass parameters (2 can be eliminated by the minimum conditions as we will see)

4.2 Gauge Coupling Uni�cation and SUSY Breaking mechanism

4.2.1 RGE Running

Lagrangian parameters are scaled dependent, i.e. they change with the energy at which the test the
model. This energy dependence is described by the renormalisation group equations (RGEs). The RGEs
are calculated in a chosen renormalisation scheme. For non-supersymmetric models, it is convenient to
choose the so called 'MS scheme' (dimensional regularisation). In this scheme , the number of space-time
dimensions is continued to d = 4 − 2ε. The β-functions calculated in MS, which describe the energy
dependence of the parameters Θ, are de�ned as

βi = µ
dΘi

dµ
. (4.19)

Here, µ is an arbitrary mass scale. βi can be expanded in a perturbative series:

βi =
∑
n

1

(16π2)n
β

(n)
i (4.20)

β
(1)
i is the one-loop contributions which we will use here. Since the β function for gauge couplings is

related to the anomalous dimension via

βg = gγ (4.21)

The one-loop RGEs for gauge couplings can be calculated from diagrams as

βg = g ×

︸ ︷︷ ︸
∼fixyfjxy

+
∑

fermions

︸ ︷︷ ︸
∼T iT j

+
∑

scalars

︸ ︷︷ ︸
∼T iT j


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More precisely, we need to calculate the divergent part of each contribution to the wave function renor-
malisation constant. When doing that, one �nds that the general expression for the β function of the
gauge coupling in an arbitrary model is given by

β(1)
ga =

d

dt
ga =

g3
a

16π2

(
2

3
I2(F ) +

1

6
I2(S)− 11

3
C2(G)

)
(4.22)

Here, C2(G) is the quadratic Casimir index of the group, and I2(F ), I2(S) are the Dynkin indices summed
over all fermions respectively scalars. Note, S counts the real scalar degrees of freedom.
We get for the Standard model

β(1)
g1 =g3

1

2

3
× 3× 3× (2× 1

36
+

1

9
+

4

9
)︸ ︷︷ ︸

quarks

+
2

3
× 3× (2× 1

4
+ 1)︸ ︷︷ ︸

leptons

+
1

6
× 2× 2× (

1

4
)︸ ︷︷ ︸

Higgs

 5

3
=

41

10
g3

1

(4.23)

β(1)
g2 =g3

2

−11

3
× (2)︸ ︷︷ ︸

W bosons

+
2

3
× 3× 3× (

1

2
)︸ ︷︷ ︸

left quarks

+
2

3
× 3× (

1

2
)︸ ︷︷ ︸

left leptons

+
1

6
× 2× (

1

2
)︸ ︷︷ ︸

Higgs

 = −19

6
g2

2 (4.24)

β(1)
g3 =g3

3

−11

3
× (3)︸ ︷︷ ︸

gluon

+
2

3
× 3× (1 +

1

2
+

1

2
)︸ ︷︷ ︸

quarks

 = −7g3
3 (4.25)

Note the additional factor 2 for Higgs particles because the expressions are given in terms of real scalars.
Moreover, we have added a factor

√
5/3 which is the 'GUT normalisation' for a SU(5).

If we turn to a supersymmetric theory, it is actually not possible to perform the calculation in MS scheme:
it introduces a mismatch between the numbers of gauge boson degrees of freedom and the gaugino degrees
of freedom o�-shell. Therefore, one uses the slightly di�erent 'DR scheme' (dimensional reduction). In
this scheme, all momentum integrals are still performed in d = 4 − 2ε dimensions, but the vector index
µ on the gauge boson �elds Aaµ now runs over all 4 dimensions to maintain the match with the gaugino
degrees of freedom. It turns out, that one loop β-functions are always the same in these two schemes.
Therefore, one can immediately derive the expression for the β-function in a supersymmetric theory from
the result above. One �nds

β(1)
ga =

g3
a

16π2
(I2(Φ)− 3C2(G)) , (4.26)

Here, Φ is the sum over all super�elds. We have used here that one gaugino appears in the adjoint
representation and that appear always together. We get now for the MSSM

β(1)
g1 =

33

5
g3

1 (4.27)

β(1)
g2 =g3

2 (4.28)

β(1)
g3 =− 3g3

3 (4.29)

The di�erence in the running looks as follows:
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Here, we assumed a SUSY scale of 1 TeV. One sees that the gauge couplings unify in the MSSM (within
the theoretical uncertainty) at a scale M = 2 · 1016 GeV. This scale is often called GUT scale, MGUT

because it might be the scale at which a GUT theory (SO(10), String theory) gets broken to the MSSM.

4.2.2 Boundary conditions at the GUT scale

The uni�cation of the gauge couplings at a scale ofM = 2 ·1016 GeV have motivated how SUSY could be
broken at that scale. A very popular assumption is that the SUSY breaking parameters of the MSSM are
induced at that scale via gravitational interactions. One can built explicit models how this can happen,
e.g. minimal supergravity. The outcome is that in the minimal version only all soft-breaking terms in
the MSSM (107!) are �xed by only three parameters. These are

a) A common mass m0 for scalar �elds

b) A common mass M1/2 for gaugino �elds

c) A parameter A0 which relates the trilinear soft-terms and the Yukawa interactions.

The boundary conditions at the GUT scale are

m2
Q = m2

D = m2
L = m2

E = m2L ≡ 1m2
0 (4.30)

m2
Hd

= m2
Hu ≡ m

2
0 (4.31)

M1 = M2 = M3 ≡M1/2 (4.32)

Tu ≡ A0Yu (4.33)

Td ≡ A0Yd (4.34)

Tl ≡ A0Yl (4.35)

Although Bµ would also be predicted at the GUT scale by the SUSY breaking mechanism, it is usually
�xed by the condition that tadpole equations are ful�lled at the SUSY scale. Also |µ|2 is �xed by this
condition. Thus, the only free parameter in this setup are

m0, M1/2, A0, tanβ, phase(µ) (4.36)

This version of the MSSM is called the 'Constrained MSSM' because of obvious reasons.

4.2.3 Running Soft-Masses

4.2.3.1 Gaugino mass parameters

The generic RGEs for the gaugino masses are given by

β
(1)
Ma

=
g2
a

8π2
(I2(Φ)− 3C2(G))Ma (4.37)
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Thus, the β function can directly be read o� from the RGEs of the gauge couplings, i.e. on has

β
(1)
M1

= (4.38)

β
(1)
M2

= (4.39)

β
(1)
M3

= (4.40)

At the one-loop level, it is possible to solve the RGEs analytically. For that, we re-write

d

dt
g2
a = 2ga

d

dt
ga = 2ga ×

1

16π2
g3
aβa =

1

16π2
2βa(g2

a)2 (4.41)

d

dt
Ma =

1

16π2
2βag

2
aMa (4.42)

From that, we �nd

ga(t)2 =− ga(MGUT)2

−1 + 2βaga(MGUT)2t
Ma(t) = − Ma(MGUT)

−1 + 2βaga(MGUT)2t
(4.43)

Thus

Ma(t)

ga(t)2
=

Ma(MGUT

ga(MGUT)2
(4.44)

We �nd that the ration of the gaugino mass parameters at SUSY scale are given by

M1/2

g2
GUT

=
M1

g2
1

=
M2

g2
2

=
M3

g2
3

(4.45)

From g1 ' 0.45, g2 ' 0.65 and g3 ' 1.1, we get

M1 : M2 : M3 ∼ 1 : 2 : 6 (4.46)

This is one of the reasons why in many cases the lightest neutralino, i.e. the dark matter candidate is
assumed to be bino-like. The big hierarchy between the bino and gluino is also very helpful from the
experimental point view: the production cross section of the gluino at the LHC is very high, i.e. it's
mass is already pushed in the TeV range. Nevertheless, light electroweakinos are still possible even in
this simple, uni�ed scenario.

At the two-loop level this prediction is (moderately) changed, because the higher order corrections for
the gluino are more important than for the bino and wino. We show the running at one-loop (dashed)
and two-loop (full lines) in the following plot:
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log(Q/GeV)

200
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4.2.3.2 Scalar masses

Also for all other soft-masses generic expressions exist up to full two-loop and even partial three-loop
level. However, the explicit expressions are not necessary for the following discussion. We only want to
understand the general features qualitatively.
The β-function for scalar soft masses m2 is of the form:

β
(1)
m2 =

1

16π2

Y 2(m2 +A2)︸ ︷︷ ︸
Yukawa

− g2|M |2︸ ︷︷ ︸
Gauge

 (4.47)

where we have used T = Y A, ie assumed a proportionality between trilinear soft-terms and Yukawa
couplings. We see, that the gauge contributions enter with a di�erent sign than the Yukawa contributions.
This observation leads to many important features.

If we assume that all scalar soft-masses unify at the GUT scale, we will �nd at the SUSY scale:

• Squarks are usually heavier than sleptons because of the additional contributions from the
strong gauge coupling

• Left-Sfermions are heavier than right Sfermions because of the contributions from g2

• Third generation particles are usually lighter than �rst and second generation because of
bigger Yukawa contributions

• The stops are lighter than the sbottoms because of the bigger Yukawa contributions

• The lightest Sfermion gauge eigenstate is often t̃R.

• The up-Higgs run much faster than the down-Higgs because of the contribution from the
top Yukawa coupling.

Even if these hierarchies are motivated by a GUT theory based on uni�ed masses they in�uence
often also the assumptions made about SUSY spectra at the low scale even if no explicit GUT
model is assumed.

We can compare in the following numerical the running of the following particles to con�rm our estimates:

74



4.2. GAUGE COUPLING UNIFICATION AND SUSY BREAKING MECHANISM

τ̃L, τ̃R, ẽL, t̃L, t̃R, b̃R, d̃L, d̃R. The RGEs are given by

β
(1)

m2
τ̃L

= −
(

6

5
g2

1 |M1|2 + 6g2
2 |M2|2

)
+ 2[m2

LY
2
τ + T 2

τ ] (4.48)

β
(1)

m2
τ̃R

= −24

5
g2

1 |M1|2 + 4[m2
LY

2
τ + T 2

τ ] (4.49)

β
(1)

m2
ẽL

= −
(

6

5
g2

1 |M1|2 + 6g2
2 |M2|2

)
(4.50)

β
(1)

m2
t̃L

= −
(

2

15
g2

1 |M1|2 +
32

3
g2

3 |M3|2 + 6g2
2 |M2|2

)
+ 2[m2

DY
2
b + T 2

b ] + 2[m2
UY

2
t + T 2

t ] (4.51)

β
(1)

m2
t̃R

= −32

15
g2

1 |M1|2 −
32

3
g2

3 |M3|2 + 4[m2
UY

2
t + T 2

t ] (4.52)

β
(1)

m2
b̃R

= − 8

15
g2

1 |M1|2 −
32

3
g2

3 |M3|2 + 4[m2
DY

2
b + T 2

b ] (4.53)

β
(1)

m2
d̃R

= − 8

15
g2

1 |M1|2 −
32

3
g2

3 |M3|2 (4.54)

with

m2
L =m2

Hd
+m2

l̃3
+m2

τ̃R (4.55)

m2
U =m2

Hu +m2
t̃R

+mq̃3 (4.56)

m2
D =(m2

Hd
+m2

b̃R
+m2

q̃3) (4.57)

We use for the following example

m0 = 250 GeV, M1/2 = 200 GeV, A0 = 0 (4.58)

The running masses as function of the scale Q evolve like this:
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Finally, we can also check the running of the two Higgs soft masses. Their β functions are given by

β
(1)

m2
Hd

= −6

5
g2

1 |M1|2 − 6g2
2 |M2|2 + 6[m2

DY
2
b + T 2

b ] + 2[m2
LY

2
τ + T 2

τ ] (4.59)

β
(1)

m2
Hu

= −6

5
g2

1 |M1|2 − 6g2
2 |M2|2 + 6[m2

UY
2
t + T 2

t ] (4.60)

and we get:
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4 6 8 10 12 14 16
log(Q/GeV)

-50 000

50 000

m2[GeV2]

Hd

Hu

Note, we have plotted here the mass squared. Thus, we can see that m2
Hu

runs negative. This alone is
not yet su�cient for EWSB, because

m2
Hu + µ2 < 0 (4.61)

must hold to break the ew symmetry.

4.3 From gauge to mass eigenstates

We have so far only considered the so called 'gauge eigenstates' before electroweak symmetry breaking.
However, these particles mix after EWSB to new 'mass eigenstates'. And these mass eigenstates the
particles which we would observe at colliders if SUSY exists. This is analogue to the rotation of B and
W 3 bosons to γ and Z-boson.
We are going to assume that the electroweak symmetry gets broken by Higgs VEVs

〈H0
d〉 =

1√
2
vd (4.62)

〈H0
u〉 =

1√
2
vu (4.63)

with v =
√
v2
d + v2

u ' 246 GeV. And the ratio of vd, vu de�nes

tanβ =
vu
vd

(4.64)

Much more details about the Higgs sector will be given in a dedicated section. The mixing takes place
between particles of same quantum numbers after symmetry breaking. We start with list of all mixing
which we will discuss step by step in the following

a) Sneutrino

ν̃e, ν̃µ, ν̃τ → ν̃1, . . . , ν̃3 (4.65)

b) Charged Sleptons

ẽL, µ̃L, τ̃L, ẽR, µ̃R, τ̃R → ẽ1, . . . , ẽ6 (4.66)

c) Squarks

d̃L, s̃L, b̃L, d̃R, d̃R, b̃R → d̃1, . . . , d̃6 (4.67)

ũL, c̃L, t̃L, ũR, c̃R, t̃R → ũ1, . . . , ũ6 (4.68)

76



4.3. FROM GAUGE TO MASS EIGENSTATES

d) Neutralinos

B̃, W̃ 0, H̃0
d , H̃

0
u → χ̃0

1, . . . , χ̃
0
4 (4.69)

e) Charginos

H̃−d , W̃
−/H̃+

u , W̃
+ → χ̃±1 , χ̃

±
2 (4.70)

f) Higgs

H0
d , H

0
u → h,H,G0, A0 (4.71)

H−d , H
+
u → G±, H± (4.72)

4.3.1 Sfermion Sector

4.3.1.1 Sleptons

We start with the mixing in the Sfermion sector, more speci�cally with sleptons. For simplicity, we start
with the assumption that only third generation Yukawas contribute and no �avour mixing is present. In
that case, we get slightly di�erent Lagrangians for the staus and the �rst two generations of sleptons.
The important parts to understand the stau sector are

−Lτ̃ =m2
τ̃R |τ̃R|

2 +m2
τ̃L |τ̃L|

2 + (TτH
0
d τ̃
∗
Rτ̃L + c.c.)︸ ︷︷ ︸

soft terms

+ Y 2
τ |Hd|2(|τ̃L|2 + |τ̃R|2)− µYτ (Huτ̃

∗
Rτ̃L + c.c.)︸ ︷︷ ︸

F-terms

+
1

2
g2

1(|H0
d |2 − |H0

u|2)(
1

2
|τ̃L|2 − |τ̃R|2) +

1

4
g2

2(|H0
d |2 − |H0

u|2)|τ̃L|2︸ ︷︷ ︸
D-terms

(4.73)

The �rst line are the soft-terms, the second lines comes from the F -term potential and the third line from
the D-term potential. After inserting the Higgs VEVs, we get

−Lτ̃ =m2
τ̃R |τ̃R|

2 +m2
τ̃L |τ̃L|

2 + (
1√
2
Tτvdτ̃

∗
Rτ̃L + c.c.)

+
1

2
Y 2
τ v

2
d(|τ̃L|2 + |τ̃R|2)− 1√

2
µYτ (vuτ̃

∗
Rτ̃L + c.c.)

+
1

4
g2

1(v2
d − v2

u)(
1

2
|τ̃L|2 − |τ̃R|2)− 1

4
g2

2(v2
d + v2

u)|τ̃L|2 (4.74)

We see that there are mass contributions from SUSY and EWSB, but also left-right mixing appears.
Therefore, one writes the Lagrangian as

−Lτ̃ = (τ̃∗Lτ̃
∗
R)M2

τ

(
τ̃L

τ̃R

)
(4.75)

with the mass matrix given by

M2
τ̃ =

 1
2v

2
d|Yτ |2 + 1

8

(
g2

1 − g2
2

)(
v2
d − v2

u

)
+m2

τ̃L
1√
2

(
vdT

∗
τ − vuµYτ

)
1√
2

(
vdT

∗
τ − vuµYτ

)
1
2v

2
d|Yτ |2 − 1

4g
2
1

(
v2
d − v2

u

)
+m2

τ̃R

 (4.76)
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The physical masses mτ̃1 , mτ̃2 are the eigenvalues of this matrix. The relation between mass and gauge
eigenstates is given by a rotation matrix(

τ̃1

τ̃2

)
=

(
cos θτ sin θτ

− sin θτ cos θτ

)(
τ̃L

τ̃R

)
(4.77)

From this result, one can simply derive the mass matrices for the �rst two generations of of sleptons.
They are given by

M2
l̃

=

 + 1
8

(
g2

1 − g2
2

)(
v2
d − v2

u

)
+m2

τ̃L
0

0 − 1
4g

2
1

(
v2
d − v2

u

)
+m2

τ̃R

 (4.78)

Thus, in our approximation there is no left-right mixing and the mass eigenstates correspond to gauge
eigenstates. The e�ects from �rst generations Yukawas and from �avour mixing are usually only a small
perturbation. If one works in the fully general setup, a 6× 6 matrix needs to be considered:

−LL̃ = (ẽ∗Lµ̃
∗
Lτ̃
∗
Lẽ
∗
Rµ̃
∗
Rτ̃
∗
R)M2

L



ẽL

µ̃L

τ̃L

ẽR

µ̃R

τ̃R


(4.79)

with

M2
L =

 1
2v

2
dY
†
e Ye + 1

8

(
− g2

2 + g2
1

)
1
(
− v2

u + v2
d

)
+m2

l
1√
2

(
vdT

†
e − vuµY †e

)
1√
2

(
vdTe − vuYeµ∗

)
1
2v

2
dYeY

†
e + 1

4g
2
11
(
− v2

d + v2
u

)
+m2

e

 (4.80)

In this case, a 6× 6 matrix is needed to diagonalise the mass matrix. The eigenstates are called ẽi with
i = 1, . . . 6. The ordering is

mẽ1 < mẽ2 < · · · < mẽ6 (4.81)

4.3.1.2 Squarks

The mass matrices for Squarks can be derived in exactly the same way by replacing the corresponding
parameters. A bit care is just necessary for the terms proportional to g2

1 . The Lagrangian with �avour
violation is written as

−LQ̃ = (d̃∗Ls̃
∗
Lb̃
∗
Ld̃
∗
Rs̃
∗
Rb̃
∗
R)M2

D



d̃L

s̃L

b̃L

d̃R

s̃R

b̃R


+ (ũ∗Lc̃

∗
Lt̃
∗
Lũ
∗
Rc̃
∗
Rt̃
∗
R)M2

U



ũL

c̃L

t̃L

ũR

c̃R

t̃R


(4.82)
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with

M2
D =

 − 1
24

(
3g2

2 + g2
1

)
1
(
− v2

u + v2
d

)
+ 1

2

(
2m2

q + v2
dY
†
d Yd

)
1√
2

(
vdT

†
d − vuµY

†
d

)
1√
2

(
vdTd − vuYdµ∗

)
1
12g

2
11
(
− v2

d + v2
u

)
+ 1

2

(
2m2

d + v2
dYdY

†
d

) 
(4.83)

M2
U =

 − 1
24

(
− 3g2

2 + g2
1

)
1
(
− v2

u + v2
d

)
+ 1

2

(
2m2

q + v2
uY
†
uYu

)
1√
2

(
− vdµY †u + vuT

†
u

)
1√
2

(
− vdYuµ∗ + vuTu

)
1
2

(
2m2

u + v2
uYuY

†
u

)
+ 1

6g
2
11
(
− v2

u + v2
d

) 
(4.84)

From diagonalising these matrices, one obtains twice six mass eigenstates d̃i, ũi with i = 1, . . . 6. The
relation between mass and gauge eigenstates is given by unitary 6× 6 matrices called ZD and ZU .

The full 6 × 6 mass matrices are usually needed when considering �avour observables. In other cases,
�avour mixing as well as the mixing of the �rst two generations can often be neglected. Thus, only the
two stops and sbottom mix to two mass eigenstates each

−LQ̃3
= (b̃∗Lb̃

∗
R)M2

b̃

(
b̃L

b̃R

)
+ (t̃∗Lt̃

∗
R)M2

t̃

(
t̃L

t̃R

)
(4.85)

with

M2
b̃

=

 − 1
24

(
3g2

2 + g2
1

)(
− v2

u + v2
d

)
+ 1

2

(
2m2

b̃L
+ v2

d|Yb|2
)

1√
2

(
vdT

∗
b − vuµY ∗b

)
1√
2

(
vdTb − vuYbµ∗

)
1
12g

2
1

(
− v2

d + v2
u

)
+ 1

2

(
2m2

b̃R
+ v2

d|Yb|2
) 

(4.86)

M2
t̃ =

 − 1
24

(
− 3g2

2 + g2
1

)(
− v2

u + v2
d

)
+ 1

2

(
2m2

t̃L
+ v2

u|Yt|2
)

1√
2

(
− vdµY ∗t + vuT

∗
t

)
1√
2

(
− vdYtµ∗ + vuTt

)
1
2

(
2m2

t̃R
+ v2

u|Yt|2
)

+ 1
6g

2
1

(
− v2

u + v2
d

) 
(4.87)

These mass matrices are then diagonalised by two orthogonal matrices which depend only on the angles
Θt̃ respectively Θb̃.

The importance of these mixing angles are for instance visible from the couplings of the (SM-like) Higgs
to the stop mass eigenstates which are

vht̃1 t̃1 = i(vu cosαY 2
t +
√

2 cos Θt̃ sin Θt̃(µ sinαYt + cosαTt)) +O(e2) (4.88)

We skipped here all terms sub-dominant proportional to e2, and the angle α is the rotation angle in the
Higgs sector which we will discuss in detail later. We can see from this expression that the second term
becomes only very large if there is a large mixing in the stop sector.
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4.3.2 Chargino and Neutralino Sector

We turn now to the electroweakino sector which is formed by the electroweak gauginos and the Higgsinos.
The relevant terms in the Lagrangian to understand the mixing are

−Lχ̃ =M1B̃B̃ +M2W̃
aW̃ a︸ ︷︷ ︸

soft-terms

+ µH̃dH̃u︸ ︷︷ ︸
superpotential

+c.c.

+
1

2

√
2g1B̃(H̃dH

∗
d − H̃uH

∗
u) +

1

2

√
2g2σ

a
ijW̃

a(H̃i
dH

j
d + H̃i

uH
j
u)︸ ︷︷ ︸

gaugino-fermion-scalar interactions

(4.89)

=M1B̃B̃ +M2(W̃ 1W̃ 1 + W̃ 2W̃ 2 + W̃ 3W̃ 3) + µ(H̃0
dH̃

0
u − H̃−d H̃

+
u ) + c.c.

+
1

2

√
2g1B̃(H̃0

dH
0∗
d + H̃−d H

−∗
d ) +

1

2

√
2g2

[
W̃ 1 () + W̃ 2 () + W̃ 3 ()

]
(4.90)

W̃ 1 and W̃ 2 get rotated similar to the W -boson to get electric eigenstates:

W̃± =
1√
2

(
W̃ 1 ± iW̃ 2

)
(4.91)

After inserting the Higgs VEVs, we �nally have

−Lχ̃ =M1B̃B̃ +M2(W̃+W̃− + W̃ 3W̃ 3) + µ(H̃0
dH̃

0
u − H̃−d H̃

+
u ) + c.c.

+
1

2
g1B̃H̃

0
dvd +

1

2
g2

(
H̃0
dW̃

3vd + H̃0
uW̃

3vu + H̃−d W̃
+vd + vuH̃

+
u W̃

−
)

(4.92)

We want to write our Lagrangian in the form

−Lχ̃ =
1

2
(B̃W̃ 3H̃0

dH̃
0
u)Mχ̃0


B̃

W̃ 3

H̃0
d

H̃0
u

+ (W̃+H̃+
u )Mχ̃±

(
W̃−

H̃−d

)
(4.93)

We see an important di�erence between the neutral and charged sector:

• In the neutral sector, the mass matrix is symmetric. We will need one matrix to diagonalise it.
Therefore, the four gauge eigenstates B̃W̃ 3H̃0

dH̃
0
u will mix to four Majorana fermions. We call them

neutralinos χ̃0
1, . . . χ̃

0
4.

• In the charged sector, the mass matrix is not symmetric. We will need two matrices to diagonalise
it. Therefore, the four W̃+H̃ ,

uW̃
−

H̃−d will mix to two Dirac fermions. We call them charginos χ̃±1 , χ̃
±
2 .

4.3.2.1 Neutralinos

The mass matrix of the neutralinos is given by

Mχ̃0 =


M1 0 − 1

2g1vd
1
2g1vu

0 M2
1
2g2vd − 1

2g2vu

− 1
2g1vd

1
2g2vd 0 −µ

1
2g1vu − 1

2g2vu −µ 0

 (4.94)
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This matrix is diagonalised by an unitary matrix N :

N∗Mχ̃0N† =


mχ̃0

1
0 0 0

0 mχ̃0
2

0 0

0 0 mχ̃0
3

0

0 0 0 mχ̃0
4

 (4.95)

The ordering of the mass is that

|mχ̃0
1
| < |mχ̃0

2
| < |mχ̃0

3
| < |mχ̃0

4
| (4.96)

holds. Note, that masses can become negative. One shouldn't confuse this with a tachyon because the
sign is not physical: it can be absorbed in the rotation matrix N by multiplying the corresponding line
with ′i'. N rotates the four Weyl fermions to new states labelled λ0

i . The relation between the gauge and
mass eigenstates is

B̃ =
∑
j

N∗j1λ
0
j (4.97)

W̃ 0 =
∑
j

N∗j2λ
0
j (4.98)

H̃0
d =

∑
j

N∗j3λ
0
j (4.99)

H̃0
u =

∑
j

N∗j4λ
0
j (4.100)

From λ0
i we can build four Majorana fermions

χ̃0
i =

(
λ0
i

λ0∗
i

)
(4.101)

The neutralino play a very important role in SUSY models because the lightest neutralino is often the
dark matter candidate. Depending on the hierarchy in the Lagrangian parameters, the nature of the
lightest neutralino is di�erent:

a) M1 < M2,µ: Bino dark matter

b) M2 < M1,µ: Wino dark matter

c) µ < M1, M2: Higgsino dark matter

Although one has in all three cases neutralino dark matter, the properties of the dark matter particle can
be quite di�erent. This becomes already obvious when checking the neutralino�Z vertex. This vertex is
important for the annihilation channel χ̃0

1χ̃
0
1 → ZZ:
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χ̃0
1

χ̃0
1

Z

Z

The expression for the neutralino Z-vertex in four component notation is:

cχ̃0
1χ̃

0
1Z

= − i
2

(g1 sin ΘW + g2 cos ΘW )(N∗13N13 −N∗14N14)γµ

(
PL

−PR

)
(4.102)

Thus, only a Higgsino LSP can annihilate in these �nal states. Bino and Wino LSPs need other
channels which are usually less e�cient. Therefore, it's much easier to obtain the correct relic
density for a Higgsino LSP.

We will discuss this in more detail later.

4.3.2.2 Charginos

In the charged sector, we have the following mass matrix

Mχ̃± =

(
M2

1√
2
g2vu

1√
2
g2vd µ

)
(4.103)

This matrix is obviously not symmetric in general, therefore one needs to rotation matrices U and V to
diagonalise it

U∗Mχ̃±V
† =

(
mχ̃±1

0

0 mχ̃±2

)
(4.104)

We assume again that the eigenstates are ordered by their mass

|mχ̃±1
| < |mχ̃±2

| (4.105)

The two matrices U and V can be obtained with a so called singular value decomposition of the matrix
Mχ̃± . However, in practice it is often easier to consider the squared matrices and use the relations:

U∗Mχ̃±M
†
χ̃±U

† =

m2
χ̃±1

0

0 m2
χ̃±2

 (4.106)

V ∗M†χ̃±Mχ̃±V
† =

m2
χ̃±1

0

0 m2
χ̃±2

 (4.107)
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The matrices U and V rotate the positive and negative charged �elds separately:(
λ+

1

λ+
2

)
= V

(
W̃+

H̃+
u

)
(4.108)(

λ−1

λ−2

)
= U

(
W̃−

H̃−d

)
(4.109)

(4.110)

The Dirac fermions are built from the two Weyl fermion via

χ̃±i =

(
λ+
i

(λ−i )∗

)
(4.111)

4.4 Higgs Physics

We turn now to the Higgs sector of the MSSM. The part of the Lagrangian which �xes the masses of the
Higgs reads in terms of gauge eigenstates

−LH = |µ|2[(|H0
u|2 + |H+

u |2) + (|H0
d |2 + |H−d |

2)]︸ ︷︷ ︸
F-terms

+ [Bµ (H+
u H

−
d −H

0
uH

0
d) + c.c.] +m2

Hu(|H0
u|2 + |H+

u |2) +m2
Hd

(|H0
d |2 + |H−d |

2)︸ ︷︷ ︸
Soft terms

+
1

8
(g2 + g′2)(|H0

u|2 + |H+
u |2 − |H0

d |2 − |H−d |
2)2 +

1

2
g2|H+

u H
0∗
d +H0

uH
−∗
d |

2︸ ︷︷ ︸
D−terms

(4.112)

The only potentially complex parameters are Bµ and µ. However, possible phases can be rotates away
by a re-de�nition of the Higgs �elds. Therefore, there is no CP violation at tree-level in the MSSM Higgs
sector.
After EWSB, the neutral Higgs �elds decompose as

H0
i =

1√
2

(φi + iσi + vi) i = d, u (4.113)

with tanβ = vu
vd
, v =

√
v2
d + v2

u = 246 GeV. There are three di�erent parts of the Higgs sector

• CP even: φd, φu mix to two eigenstates h1, h2

• CP odd: σd, σu mix to two eigenstates G, A

• charged: H+
u , H

−
d mix to two eigenstates G±, H±

This categorisation only holds if one assumes that CP is not broken. While at tree-level any CP phase in
the Higgs sector can be rotated away, one can have CP violation via loop corrections from all the other
phases from soft-SUSY breaking. In that case h1, h2 and G, A would further mix. However, we will
always work with the assumption that CP is not violated.
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4.4.1 CP odd sector

We start with the CP odd sector. We write the Lagrangian as

LA = (σdσu)m2
A

(
σd

σu

)
(4.114)

with

m2
A =

 1
8

(
g2

1 + g2
2

)(
− v2

u + v2
d

)
+m2

Hd
+ |µ|2 <

(
Bµ

)
<
(
Bµ

)
− 1

8

(
g2

1 + g2
2

)(
− v2

u + v2
d

)
+m2

Hu
+ |µ|2

 (4.115)

This matrix can be further simpli�ed by using the so called tadpole equations: these are the conditions
that one sits at the bottom from the potential:

∂V

∂vi
≡ 0 (4.116)

These equations read in our case

∂V

∂vd
= −vuBµ +

1

8

(
g2

1 + g2
2

)
vd

(
v2
d − v2

u

)
+ vd

(
m2
Hd

+ |µ|2
)

(4.117)

∂V

∂vu
= −vdBµ +

1

8

(
g2

1 + g2
2

)
vu

(
v2
u − v2

d

)
+ vu

(
m2
Hu + |µ|2

)
(4.118)

We can use these equations to eliminate two parameters from the potential. Common choice are to solve
the equations either with respect to µ, Bµ or m2

Hd
, m2

Hu
. For the moment, we use the second option and

�nd

m2
Hd

=
1

vd

(
vuBµ −

1

8

(
g2

1 + g2
2

)
vd

(
v2
d − v2

u

)
− vd|µ|2

)
(4.119)

m2
Hu =

1

vu

(
vdBµ −

1

8

(
g2

1 + g2
2

)
vu

(
v2
u − v2

d

)
− vu|µ|2

)
(4.120)

When we insert this in m2
A, the matrix becomes rather simple:

m2
A =

(
vu
vd
Bµ Bµ

Bµ
vd
vu
Bµ

)
(4.121)

=Bµ

(
tanβ 1

1 1/ tanβ

)
(4.122)

The eigenvalues of this matrix are

m2
G =0 (4.123)

m2
A =

1 + tanβ2

tanβ
Bµ (4.124)

The state with zero mass is the Goldstone of the Z-boson because we have performed the calculation in
Landau gauge. Also the matrix which brings the CP odd gauge to the mass eigenstates is completely
�xed in terms of tanβ:(

G

A

)
=

(
− cosβ sinβ

sinβ cosβ

)(
σd

σu

)
(4.125)
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4.4.2 CP even sector

We turn now to the CP even sector. As usual, we want to write

−LH =
1

2
(φdφu)M2

H

(
φd

φu

)
(4.126)

and �nd for the scalar mass matrix

M2
H =

 1
8

(
g2

1 + g2
2

)(
3v2
d − v2

u

)
+m2

Hd
+ |µ|2 − 1

4

(
g2

1 + g2
2

)
vdvu −Bµ

− 1
4

(
g2

1 + g2
2

)
vdvu −Bµ − 1

8

(
g2

1 + g2
2

)(
− 3v2

u + v2
d

)
+m2

Hu
+ |µ|2

 (4.127)

After replacing m2
Hd

and m2
Hu

by the solutions of the tadpole equations, and trading Bµ for M2
A, the

matrix reads

M2
H =

 4M2
A tan β2+(g21+g22)v2

4(tan β2+1) − tan β((g21+g22)v2+4M2
A)

4(tan β2+1)

− tan β((g21+g22)v2+4M2
A)

4(tan β2+1)

(g21+g22) tan β2v2+4M2
A

4(tan β2+1)

 (4.128)

We can further simplify the matrix by using M2
Z = 1

4 (g2
1 + g2

2)v2

M2
H =

(
M2
A tan β2+M2

Z

tan β2+1 − (M2
A+M2

Z) tan β
tan β2+1

− (M2
A+M2

Z) tan β
tan β2+1

M2
Z tan β2+M2

A

tan β2+1

)
(4.129)

The eigenvalues of this matrix are

m2
h1,2

=
1

2

(
M2
A +M2

Z ∓
√

(M2
A −MZ)2 + 4M2

ZM
2
A sin2 2β

)
(4.130)

In the so called decoupling limit, M2
A �M2

Z the eigenvalues become

m2
h = M2

Z cos2 2β (4.131)

m2
H = M2

A (4.132)

The tree-level mass of the light CP even Higgs is bounded in the MSSM by

mh < MZ cos 2β (4.133)

Thus, this model would be ruled out immediately if it is not possible to increase the Higgs mass. Therefore,
we need to check the loop corrections.

4.4.2.1 Higgs couplings

The scalar mass and the gauge eigenstates are related by(
h

H

)
=

(
− sinα cosα

cosα sinα

)(
φd

φu

)
(4.134)
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At tree-level, the following relations between α and β exist:

sin 2α

sin 2β
= −

(
m2
H +m2

h

m2
H −m2

h

)
,

tan 2α

tan 2β
=

(
M2
A +MZ

M2
A −MZ

)
, (4.135)

Thus, for MA � mh,MZ both angles are related by α = β − 1
2π.

The mass matrices SM fermions are given by

Md =
1√
2
Ydvd (4.136)

Mu =
1√
2
Yuvu (4.137)

Ml =
1√
2
Ylvd (4.138)

In the limit of vanishing �avour mixing, we get
md

ms

mb

 =
1√
2
vd


Yd

Ys

Yb



mu

mc

mt

 =
1√
2
vu


Yu

Yc

Yt



me

mµ

mτ

 =
1√
2
vd


Ye

Yµ

Yτ

 (4.139)

We can now check how the Higgs couplings are modi�ed compared to the SM.

a) Couplings to fermions: under the assumption that only third generation Yukawa couplings are
non-negligible, the Lagrangian for the gauge eigenstates is

L =YtqLtRHu + YbqLbRHd + Yτ leRHd + c.c. (4.140)

=YttLtRH
0
u + YbbLbRH

0
d + YτeLeRH

0
d + · · ·+ c.c. (4.141)

=

√
2mt

vu
tLtRH

0
u +

√
2mb

vd
bLbRH

0
d +

√
2mτ

vd
eLeRH

0
d + · · ·+ c.c. (4.142)

=

√
2mt

v sinβ
tLtRH

0
u +

√
2mb

v cosβ
bLbRH

0
d +

√
2mτ

v cosβ
eLeRH

0
d + · · ·+ c.c. (4.143)

=

√
2mt

v sinβ
tLtRh cosα+

√
2mb

v cosβ
bLbRh sinα+

√
2mτ

v cosβ
eLeRh sinα+ · · ·+ c.c. (4.144)

=

√
2mt

v
tLtRh︸ ︷︷ ︸

cSM
tth

cosα

sinβ
+

√
2mb

v
bLbRh︸ ︷︷ ︸

cSMbbh

sinα

cosβ
+

√
2mτ

v
eLeRh︸ ︷︷ ︸

cSMττh

sinα

cosβ
+ · · ·+ c.c. (4.145)

Similarly, one can derive the changes in the couplings compared to the SM for the other scalars.
The results are

u d l

h cosα
sin β - sinα

cos β - sinα
cos β

H sinα
sin β

cosα
cos β

cosα
cos β

A 1
tan β tanβ tanβ
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b) Couplings to Vectors: we can repeat the exercise and consider the couplings to vector bosons

L =
1

2
g2

1BµB
µ(|Hd|2 − |Hu|2) +

1

2
g2

2σ
a
ijW

a
µW

µ,a(Hi
dH

j∗
d −H

i
uH

j∗
u ) (4.146)

= . . . (4.147)

=
1

2
v(g2 cos ΘW + g1 sin ΘW )2hZµZ

µ︸ ︷︷ ︸
cSM
hZZ

sin(α− β) +
1

2
vg2

2hW
−
µ W

+µ︸ ︷︷ ︸
cSMhWW

sin(α− β) (4.148)

The overall changes in the Higgs-gauge boson couplings are

Z W

h sin(α− β) sin(α− β)

H cos(α− β) cos(α− β)

In the decoupling limit, we �nd

sin(β − α) → 1 (4.149)

cos(β − α) → 0 (4.150)

− sinα

cosβ
= sin(β − α)− tanβ cos(β − α) → 1 (4.151)

cosα

cosβ
= cos(β − α) + tanβ sin(β − α) → tanβ (4.152)

cosα

cosβ
= sin(β − α) + cotβ cos(β − α) → 1 (4.153)

sinα

sinβ
= cos(β − α)− cotβ sin(β − α) → 1/ tanβ (4.154)

So, h has nearly the same couplings to SM fermions and gauge bosons as the Higgs boson of the SM with-
out supersymmetry would have. Even if these tree-level relations get modi�ed by radiative corrections,
the light Higgs in the MSSM is very often SM-like, i.e. its couplings are nearly indistinguishable from
the SM. This is very important because several couplings of the Higgs boson with a mass of 125 GeV to
other particles have already been measured at the LHC. The overall result is that they are close to the
SM expectations:

µγγ =1.17+0.28
−0.26

µZZ∗ =1.46+0.40
−0.34

µWW∗ =1.18+0.24
−0.21

µττ =1.44+0.42
−0.37

µbb =0.63+0.39
−0.37

µall =1.18+0.15
−0.14

with

µXX =
Coupling(hXX)experiment

Coupling(hXX)SM
(4.155)
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4.4.2.2 Radiative Corrections to the Light Higgs mass

We have seen that the Higgs mass at tree-level has an upper limit of MZ . Therefore, it's important to
check if the radiative corrections are su�cient to push the mass to the desired value of 125 GeV. The
calculation of the loop corrected Higgs mass involves two steps:

a) 'Shifting the vacuum': there are corrections to the tadpole equations from diagrams of the form

φi

This causes shifts δti to the tree-level conditions Ti = ∂V
∂φi

Ti + δti = 0 (4.156)

Thus, the parameters which are obtained from the tadpole equations change their values once going
to the loop level.

b) 'Self-energies': once one is working at the loop-corrected minimum of the potential, the second
step is to calculate the loop-corrected self-energies via diagrams of the form

φi φj

In general, the self-energy corrections are not diagonal. Therefore, it is convenient to work with
external gauge eigenstates but mass eigenstates in the loop. Thus, one obtains the one-loop correc-
tions to the mass matrix. The loop corrected masses are then the eigenvalues of the loop-corrected
mass matrix M loop calculated as

M loop
ij = M2

ij + δij
δti
vi

+ Πij(p
2) (4.157)

Here, we have assumed that the tadpole equatoin are solved for the soft-breaking masses: those
appear always on the diagonal of the mass matrices and their change from the loop corrected
tadpole is given by δti

vi
. Π(p2) is the self-energy matrix which depends on the external momenta.

This demands usually an iterative procedure to get that the eigenvalues mi match the external
momenta (on-shell condition). However, we consider here the simpli�ed case p2 = 0 at the one-loop
level.
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Since we have outlined the demanded procedure to obtain loop corrected masses, we can check which
diagrams are needed to be calculated at the one-loop level in the MSSM. These are

d̃, ũ, l̃, ν̃, h,H±, A

φi

d, u, l, ν, χ̃0, χ̃±

φi

Z,W±

φi

φi φj

d̃, ũ, l̃, ν̃, h,H±, A

φi φj

Z,W±

φi φj

d̃, ũ, l̃, ν̃, h,H±, A

φi φj

Z,W±

φi φj

Z,W±

A,H±

φi φj

d, u, l, ν, χ̃0, χ̃±

Note, we have suppressed here the ghost diagrams which could be related to the vector boson contributions
in Landau gauge. One can imagine, that calculation all of these diagrams becomes quite a piece of work.
Therefore, we pick out those contributions which are the dominant ones. These are the diagrams with
(s)tops: t̃1, t̃2

φi

t

φi
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φi φj

t̃1, t̃2

φi φj

t̃1, t̃2

φi φj

t

One could now start and calculating all of these Feynman diagrams. However, since we are only interested
in the p2 = 0 approximation, a simpler approach exists: one can calculate the one-loop e�ective potential
given by

∆V (1) =
1

16π2

1

4

all �elds∑
i

riCi(−1)2si(2si + 1)m4
i

(
log

m2
i

Q2
− 3

2

)
(4.158)

Here, si is the spin of the particle, Ci the colour factor and ri = 1 for real bosons or Majorana particles,
otherwise 2.
From which the necessary quantities are derived via

δti =
∂∆V

∂vi
(4.159)

Πij =
∂2∆V

∂vi∂vj
(4.160)

a) top contributions:
Since the top mass is given by mt = 1√

2
Ytvu, we �nd

∆(t)V = −3

2

1

16π2

Y 4
t v

4
u

2

(
Y 2
t v

2
u

2Q2
− 3

2

)
(4.161)

and therefore

δ(t)tu =− 3

32π2
Y 4
t

(
−1 + log

m2
t

Q2

)
(4.162)

Π(t)
uu =

3

32π2
v2
uY

4
t

(
1− log

m2
t

8Q2

)
(4.163)

→ δ(t)

vu
−Π(t)

uu =
3

32π2
Y 4
t (−2 log

m2
t

4Q2
) (4.164)

b) stop contributions:
Including only the contributions ' Y 2

t , the two stop masses squared are given by m2
t̃1,2

= m2
t̃L,R

+
1
2Y

2
t v

2
u. And therefore

∆(t̃)V =
3

4

1

16π2

(
(m2

t̃L
+

1

2
Y 2
t v

2
u)2

(
log

m2
t̃L

+ 1
2Y

2
t v

2
u

Q2
− 3

2

)
+ (m2

t̃R
+

1

2
Y 2
t v

2
u)2

(
log

m2
t̃R

+ 1
2Y

2
t v

2
u

Q2
− 3

2

))
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(4.165)

We get

δ(t̃)tu =
3

64π2
Y 2
t v

2
u

[
− 2(m2

t̃R
+m2

t̃L
+ v2

uY
2
t ) + (2m2

t̃L
+ v2

uY
2
t ) log

m2
t̃L

+ 1
2v

2
uY

2
t

Q2

+ (2m2
t̃R

+ v2
uY

2
t ) log

m2
t̃R

+ 1
2v

2
uY

2
t

Q2

]
(4.166)

Π(t̃)
uu =

3

64π2
Y 2
t v

2
u

[
− 2(m2

t̃R
+m2

t̃L
+ v2

uY
2
t ) + (2m2

t̃L
+ 3v2

uY
2
t ) log

m2
t̃L

+ 1
2v

2
uY

2
t

Q2

+ (2m2
t̃R

+ 3v2
uY

2
t ) log

m2
t̃R

+ 1
2v

2
uY

2
t

Q2

]
(4.167)

→ δ(t̃)

vu
−Π(t̃)

uu =− 3

32π2
v2
uY

4
t

(
log

m2
t̃R

+ 1
2v

2
uY

2
t

Q2
+ log

m2
t̃L

+ 1
2v

2
uY

2
t

Q2

)
(4.168)

The sum of both contributions is

δtu
vu
−Πuu = − 3

32π2
v2
uY

4
t

(
−2 log

v2
uY

2
t

Q2
+ log

m2
t̃R

+ 1
2v

2
uY

2
t

Q2
+ log

m2
t̃L

+ 1
2v

2
uY

2
t

Q2

)
(4.169)

We see that in the limit of unbroken SUSY, m2
t̃L,R
→ 0 the contributions would cancel exactly. This is

the famous solution to the the hierarchy problem. Even with broken SUSY, there is only a logarithmic
dependence but not a quadratic one.

4.4.3 The Gluino

The gluino doesn't mix with the other MSSM �elds after EWSB and SUSY breaking because it is a colour
octet. Therefore, it is a rather 'simple' compared to the other mass eigenstates which involve rotation
matrices. The mass of the gluino is given by

Mg̃ = |M3| (4.170)

Since the gluino is strongly interacting, it is one of the most important �eld when searching for SUSY at
Hadron colliders.

4.5 Fine-Tuning

We want to discuss here the so called '�ne-tuning' problem of the MSSM. One can understand this
problem by starting from the tadpole equations which we have derived above

∂V

∂vd
= −vuBµ +

1

8

(
g2

1 + g2
2

)
vd

(
v2
d − v2

u

)
+ vd

(
m2
Hd

+ |µ|2
)

(4.171)

∂V

∂vu
= −vdBµ +

1

8

(
g2

1 + g2
2

)
vu

(
v2
u − v2

d

)
+ vu

(
m2
Hu + |µ|2

)
(4.172)
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In the decoupling limit (Bµ ∼M2
A →∞) and for large tanβ, these relations simplify to

∂V

∂vd
= 0 (4.173)

∂V

∂vu
= v(m2

Hu + µ2 1

8
(g12 + g22)v2) (4.174)

which is often presented in the form

1

2
M2
Z = −µ2 −m2

Hu . (4.175)

This makes the origin of the (little) hierarchy problem within the MSSM apparent: the r.h.s. contains
terms which are naturally O(MSUSY), the SUSY breaking scale. Thus, in order to obtain the measured
value of MZ there must be a cancellation between these terms which demands a certain level of tuning.
There are di�erent measures to quantify the amount of �ne-tuning ∆FT . A widely used one is the
sensitivity measure

∆ ≡ maxAbs
[
∆p

]
, ∆p ≡

∂ ln v2

∂ ln p
=

p

v2

∂v2

∂p
. (4.176)

Here, p are the independent parameters of the model, and the quantity ∆−1 gives a measure of the
accuracy to which independent parameters must be tuned to get the correct electroweak breaking scale.
Applying this measure to eq. (4.175), one �nds

∂ ln v2

∂ ln pi
=
∂ lnM2

Z

ln pi
= 2

p2
i

M2
Z

(
−∂µ

2

∂p2
i

−
∂m2

hu

∂p2
i

)
(4.177)

Using p2 = {µ2,mH2
u
} the very naive estimate for the �ne-tuning is found to be

∆µ = − 2µ2

M2
Z

, ∆m2
hu

= −
2m2

hu

M2
Z

. (4.178)

Thus, a small FT needs moderately small |µ| and |m2
Hu
| at the low scale. Therefore, if these parameters

are pushed to larger values by instance from the negative collider searches, this renders SUSY a more
and more �ne-tuned model. This tuning is much lower than the one in the SM, but at some point the
MSSM might no longer a 'natural' extension of the SM. This has increased the interest in non-minimal
models in which the amount of tuning can be reduced compared to the MSSM.
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