KIT, ITP SS 2018

Theoretische Teilchenphysik 1

Lecture: Prof. Dr. M. M. Mühlleitner Exercises: Prof. Dr. M. M. Mühlleitner, P. Basler, M. Krause

Exercise sheet 1

Release: 16 April 2018 Submission: 23 April 2018 Tutorials: 25 April 2018

Lecture website: https://www.itp.kit.edu/courses/ss2018/ttp1

Exercise 1: Gamma matrix representations (P) (2+2+1+2+2+1 = 10 points)

We consider the Dirac matrices γ^{μ} ($\mu = 0, ..., 3$) in the Weyl representation

$$\gamma_{\chi}^{\mu} = \left(\begin{pmatrix} 0 & 1_{2 \times 2} \\ 1_{2 \times 2} & 0 \end{pmatrix}, \begin{pmatrix} 0 & \vec{\sigma} \\ -\vec{\sigma} & 0 \end{pmatrix} \right)$$

as well as in the Dirac representation

$$\gamma_D^{\mu} = \left(\begin{pmatrix} 1_{2 \times 2} & 0 \\ 0 & -1_{2 \times 2} \end{pmatrix}, \begin{pmatrix} 0 & \vec{\sigma} \\ -\vec{\sigma} & 0 \end{pmatrix} \right) ,$$

where $1_{2\times 2}$ is the 2×2 unit matrix and $\vec{\sigma} = (\sigma_1, \sigma_2, \sigma_3)$ with σ_i (i = 1, 2, 3) represent the Pauli matrices.

- (a) Show that both representations obey the Clifford algebra $\{\gamma^{\mu}, \gamma^{\nu}\} = 2g^{\mu\nu}$ by inserting the explicit representations separately into the anti-commutation relations.
- (b) The Weyl and Dirac representations are connected by a unitary transformation U such that

$$\gamma_{\chi}^{\mu} = U^{\dagger} \gamma_{D}^{\mu} U$$

holds. Up to an arbitrary phase, determine the unitary 4×4 matrix U explicitly.

(c) A fifth Dirac matrix, γ^5 , can be defined by $\gamma_5 := i\gamma^0\gamma^1\gamma^2\gamma^3$. Show that the explicit forms of γ_D^5 and γ_χ^5 for both the Dirac and the Weyl representation, respectively, are given by

$$\gamma_D^5 = \begin{pmatrix} 0 & 1_{2 \times 2} \\ 1_{2 \times 2} & 0 \end{pmatrix}, \qquad \gamma_\chi^5 = \begin{pmatrix} -1_{2 \times 2} & 0 \\ 0 & 1_{2 \times 2} \end{pmatrix}.$$

(d) Show that $\{\gamma^5, \gamma^{\mu}\} = 0$ holds for both the Dirac and Weyl representation separately by inserting the Dirac matrices explicitly in these representations.

(e) We now define chirality projectors ω_{\pm} by

$$\omega_{\mp} := \frac{1_{4\times 4} \mp \gamma^5}{2} ,$$

where ω_{-} is the left-chiral projector and ω_{+} is the right-chiral projector. By using the explicit representation of γ^{5} in the Weyl basis only, show that the ω_{\mp} obey the following projector properties:

$$\omega_{\pm}^2 = \omega_{\mp} , \qquad \omega_- \omega_+ = \omega_+ \omega_- = 0 .$$

(f) We now define a bispinor $\Psi := (\psi_L, \psi_R)$ in the Weyl basis, where ψ_L and ψ_R are leftand right-chiral spinors, respectively. Calculate the following bispinors by inserting the explicit representation of γ^5 in the Weyl basis:

$$\Psi_L := \omega_- \Psi \quad , \qquad \Psi_R := \omega_+ \Psi \ .$$

Interpret the result and explain why the Weyl basis is often called chiral basis.

Exercise 2: Dirac algebra in 4 dimensions (P) (4+6 = 10 points)

Independent of any representation, the Dirac matrices γ^{μ} and γ^{5} in 4 space-time dimensions obey the Clifford algebra $\{\gamma^{\mu}, \gamma^{\nu}\} = 2g^{\mu\nu}$ as well as $\{\gamma^{5}, \gamma^{\mu}\} = 0$. The γ^{μ} can always be chosen to be unitary so that $(\gamma^{\mu})^{\dagger} = (\gamma^{\mu})^{-1}$ holds.

(a) Prove the following Dirac algebra relations by using the unitarity and anti-commutation relations of the Dirac matrices, only (i.e. do not use the explicit representations of the Dirac matrices from Exercise 1):

$$(\gamma^{\mu})^{\dagger} = \gamma^{0} \gamma^{\mu} \gamma^{0} ,$$

$$\gamma^{5} \gamma^{5} = 1_{4 \times 4} ,$$

$$\gamma_{\mu} \gamma^{\mu} = 4 \cdot 1_{4 \times 4} ,$$

$$\gamma_{\mu} \gamma^{\alpha} \gamma^{\mu} = -2 \gamma^{\alpha} ,$$

$$\gamma_{\mu} \gamma^{\alpha} \gamma^{\beta} \gamma^{\mu} = 4 g^{\alpha \beta} .$$

(b) Prove the following trace identities by using the anti-commutation relations of the Dirac matrices and the general properties of a matrix trace, only:

$$\begin{split} \operatorname{tr}\left(\gamma^{\mu}\right) &= 0 \ , \\ \operatorname{tr}\left(\gamma^{5}\right) &= 0 \ , \\ \operatorname{tr}\left(\gamma^{\mu}\gamma^{\nu}\gamma^{5}\right) &= 0 \ , \\ \operatorname{tr}\left(\gamma^{\mu}\gamma^{\nu}\gamma^{\rho}\right) &= 0 \ , \\ \operatorname{tr}\left(\gamma^{\mu}\gamma^{\nu}\gamma^{\rho}\right) &= 4g^{\mu\nu} \ , \\ \operatorname{tr}\left(\gamma^{\mu}\gamma^{\nu}\gamma^{\rho}\gamma^{\sigma}\right) &= 4\left(g^{\mu\nu}g^{\rho\sigma} - g^{\mu\rho}g^{\nu\sigma} + g^{\mu\sigma}g^{\nu\rho}\right) \ . \end{split}$$