Theoretische Teilchenphysik 1

Lecture: Prof. Dr. M. M. Mühlleitner

Exercises: Prof. Dr. M. M. Mühlleitner, P. Basler, M. Krause

Exercise sheet 1

Release: 16 April 2018
Submission: 23 April 2018
Tutorials: 25 April 2018
Lecture website: https://www.itp.kit.edu/courses/ss2018/ttp1

Exercise 1: Gamma matrix representations (P) $\quad(2+2+1+2+2+1=10$ points $)$
We consider the Dirac matrices $\gamma^{\mu}(\mu=0, \ldots, 3)$ in the Weyl representation

$$
\gamma_{\chi}^{\mu}=\left(\left(\begin{array}{cc}
0 & 1_{2 \times 2} \\
1_{2 \times 2} & 0
\end{array}\right),\left(\begin{array}{cc}
0 & \vec{\sigma} \\
-\vec{\sigma} & 0
\end{array}\right)\right)
$$

as well as in the Dirac representation

$$
\gamma_{D}^{\mu}=\left(\left(\begin{array}{cc}
1_{2 \times 2} & 0 \\
0 & -1_{2 \times 2}
\end{array}\right),\left(\begin{array}{cc}
0 & \vec{\sigma} \\
-\vec{\sigma} & 0
\end{array}\right)\right)
$$

where $1_{2 \times 2}$ is the 2×2 unit matrix and $\vec{\sigma}=\left(\sigma_{1}, \sigma_{2}, \sigma_{3}\right)$ with $\sigma_{i}(i=1,2,3)$ represent the Pauli matrices.
(a) Show that both representations obey the Clifford algebra $\left\{\gamma^{\mu}, \gamma^{\nu}\right\}=2 g^{\mu \nu}$ by inserting the explicit representations separately into the anti-commutation relations.
(b) The Weyl and Dirac representations are connected by a unitary transformation U such that

$$
\gamma_{\chi}^{\mu}=U^{\dagger} \gamma_{D}^{\mu} U
$$

holds. Up to an arbitrary phase, determine the unitary 4×4 matrix U explicitly.
(c) A fifth Dirac matrix, γ^{5}, can be defined by $\gamma_{5}:=i \gamma^{0} \gamma^{1} \gamma^{2} \gamma^{3}$. Show that the explicit forms of γ_{D}^{5} and γ_{χ}^{5} for both the Dirac and the Weyl representation, respectively, are given by

$$
\gamma_{D}^{5}=\left(\begin{array}{cc}
0 & 1_{2 \times 2} \\
1_{2 \times 2} & 0
\end{array}\right) \quad, \quad \gamma_{\chi}^{5}=\left(\begin{array}{cc}
-1_{2 \times 2} & 0 \\
0 & 1_{2 \times 2}
\end{array}\right) .
$$

(d) Show that $\left\{\gamma^{5}, \gamma^{\mu}\right\}=0$ holds for both the Dirac and Weyl representation separately by inserting the Dirac matrices explicitly in these representations.
(e) We now define chirality projectors ω_{\mp} by

$$
\omega_{\mp}:=\frac{1_{4 \times 4} \mp \gamma^{5}}{2},
$$

where ω_{-}is the left-chiral projector and ω_{+}is the right-chiral projector. By using the explicit representation of γ^{5} in the Weyl basis only, show that the ω_{\mp} obey the following projector properties:

$$
\omega_{\mp}^{2}=\omega_{\mp}, \quad \omega_{-} \omega_{+}=\omega_{+} \omega_{-}=0
$$

(f) We now define a bispinor $\Psi:=\left(\psi_{L}, \psi_{R}\right)$ in the Weyl basis, where ψ_{L} and ψ_{R} are leftand right-chiral spinors, respectively. Calculate the following bispinors by inserting the explicit representation of γ^{5} in the Weyl basis:

$$
\Psi_{L}:=\omega_{-} \Psi, \quad \Psi_{R}:=\omega_{+} \Psi
$$

Interpret the result and explain why the Weyl basis is often called chiral basis.

Exercise 2: Dirac algebra in 4 dimensions (P)

$$
(4+6=10 \text { points })
$$

Independent of any representation, the Dirac matrices γ^{μ} and γ^{5} in 4 space-time dimensions obey the Clifford algebra $\left\{\gamma^{\mu}, \gamma^{\nu}\right\}=2 g^{\mu \nu}$ as well as $\left\{\gamma^{5}, \gamma^{\mu}\right\}=0$. The γ^{μ} can always be chosen to be unitary so that $\left(\gamma^{\mu}\right)^{\dagger}=\left(\gamma^{\mu}\right)^{-1}$ holds.
(a) Proof the following Dirac algebra relations by using the unitarity and anti-commutation relations of the Dirac matrices, only (i.e. do not use the explicit representations of the Dirac matrices from Exercise 1):

$$
\begin{aligned}
\left(\gamma^{\mu}\right)^{\dagger} & =\gamma^{0} \gamma^{\mu} \gamma^{0}, \\
\gamma^{5} \gamma^{5} & =1_{4 \times 4}, \\
\gamma_{\mu} \gamma^{\mu} & =4 \cdot 1_{4 \times 4}, \\
\gamma_{\mu} \gamma^{\alpha} \gamma^{\mu} & =-2 \gamma^{\alpha}, \\
\gamma_{\mu} \gamma^{\alpha} \gamma^{\beta} \gamma^{\mu} & =4 g^{\alpha \beta} .
\end{aligned}
$$

(b) Proof the following trace identities by using the anti-commutation relations of the Dirac matrices and the general properties of a matrix trace, only:

$$
\begin{aligned}
\operatorname{tr}\left(\gamma^{\mu}\right) & =0, \\
\operatorname{tr}\left(\gamma^{5}\right) & =0, \\
\operatorname{tr}\left(\gamma^{\mu} \gamma^{\nu} \gamma^{5}\right) & =0, \\
\operatorname{tr}\left(\gamma^{\mu} \gamma^{\nu} \gamma^{\rho}\right) & =0, \\
\operatorname{tr}\left(\gamma^{\mu} \gamma^{\nu}\right) & =4 g^{\mu \nu}, \\
\operatorname{tr}\left(\gamma^{\mu} \gamma^{\nu} \gamma^{\rho} \gamma^{\sigma}\right) & =4\left(g^{\mu \nu} g^{\rho \sigma}-g^{\mu \rho} g^{\nu \sigma}+g^{\mu \sigma} g^{\nu \rho}\right) .
\end{aligned}
$$

