Theoretische Teilchenphysik 1

Lecture: Prof. Dr. M. M. Mühlleitner
Exercises: Prof. Dr. M. M. Mühlleitner, P. Basler, M. Krause
Exercise sheet 2
Release: 23 April 2018
Submission: 30 April 2018
Tutorials: 02 May 2018
Lecture website: https://www.itp.kit.edu/courses/ss2018/ttp1

Exercise 3: $\operatorname{SU}(N)$ representation (P) $\quad(3+1+2+1=7$ points $)$
The generators T^{a} of the fundamental representation of the $\mathrm{SU}(N)$ are given by

$$
T_{i j}^{a}, \quad a=1, \ldots, N^{2}-1, \quad i, j=1, \ldots, N
$$

They are Hermitian, $T^{a \dagger}=T^{a}$, traceless, $\operatorname{Tr}\left(T^{a}\right)=0$, and normalized through

$$
\operatorname{Tr}\left(T^{a} T^{b}\right)=\frac{1}{2} \delta^{a b} .
$$

They satisfy the commutation and anti-commutation relation

$$
\begin{align*}
{\left[T^{a}, T^{b}\right] } & =i f_{a b c} T^{c} \tag{1}\\
\left\{T^{a}, T^{b}\right\} & =\frac{1}{N} \delta^{a b} \mathbb{1}_{N \times N}+d_{a b c} T^{c} \tag{2}
\end{align*}
$$

which defines the total antisymmetric structure constants $f_{a b c}$ and the total symmetric symbols $d_{a b c}$ of the $\mathrm{SU}(N)$. The commutation relation, Eq. (1), is satisfied for all $\mathrm{SU}(N)$ representations, whereas Eq. (2) only holds for the fundamental representation.
Every complex $N \times N$ matrix M can be decomposed into a linear combination of these $N^{2}-1$ generators, with coefficients c_{0}, c_{a}, as follows:

$$
\begin{equation*}
M=c_{0} \mathbb{1}_{N \times N}+\sum_{a=1}^{N^{2}-1} c_{a} T^{a} \tag{3}
\end{equation*}
$$

(a) Show that the Fierz identity of the $\operatorname{SU}(N)$,

$$
\begin{equation*}
T_{i j}^{a} T_{k l}^{a} \equiv \sum_{a=1}^{N^{2}-1} T_{i j}^{a} T_{k l}^{a}=\frac{1}{2} \delta_{i l} \delta_{j k}-\frac{1}{2 N} \delta_{i j} \delta_{k l}, \tag{4}
\end{equation*}
$$

is a result of combining the completeness relation, eq. (3), with the tracelessness of T^{a}.
(b) Show that, independent of any specific representation of $\operatorname{SU}(N)$, that

$$
C_{2}=T^{a} T^{a} \equiv \sum_{a=1}^{N^{2}-1} T^{a} T^{a}
$$

is a Casimir invariant, i.e. that $\left[C_{2}, T^{a}\right]=0$ holds for all generators T^{a}.
(c) By using the hermiticity of the generators, show that $f_{a b c}$ and $d_{a b c}$ are real.
(d) Calculate the value of C_{2} in the fundamental representation.

Exercise 4: Lorentz group

$$
(3+4=7 \text { Points })
$$

(a) By using the generators

$$
L_{\mu \nu}=i\left(x_{\mu} \partial_{\nu}-x_{\nu} \partial_{\mu}\right),
$$

determine the Lie algebra of the $\mathrm{SO}(3,1)$, i.e. prove that the $L_{\mu \nu}$ satisfy

$$
\left[L_{\mu \nu}, L_{\rho \sigma}\right]=i\left(g_{\nu \rho} L_{\mu \sigma}-g_{\mu \rho} L_{\nu \sigma}-g_{\nu \sigma} L_{\mu \rho}+g_{\mu \sigma} L_{\nu \rho}\right) .
$$

(b) The generators $M_{\mu \nu}=-M_{\nu \mu}$ satisfy the same Lie algebra given as the commutator in (a). By using the $M_{\mu \nu}$, the generators K^{i} of Lorentz boosts and the generators J^{i} of rotations are given by

$$
K^{i}=M^{0 i} \quad \text { and } \quad J^{i}=\frac{1}{2} \epsilon^{i j k} M_{j k}
$$

with $\epsilon^{i j k}$ being the Levi-Civita tensor (with $\epsilon^{123} \equiv+1$). Prove that the algebra of these generators is given by

$$
\begin{aligned}
{\left[K^{i}, K^{j}\right] } & =-i \epsilon^{i j k} J^{k}, \\
{\left[J^{i}, K^{j}\right] } & =i \epsilon^{i j k} K^{k}, \\
{\left[J^{i}, J^{j}\right] } & =i \epsilon^{i j k} J^{k},
\end{aligned}
$$

and explain the physical meaning of each of these results.

Exercise 5: Lorentz boosts (P)

For this exercise assume that the boost operator K^{2} is given by

$$
K^{2}=K_{y}=-i\left(t \frac{\partial}{\partial y}+y \frac{\partial}{\partial t}\right)
$$

(a) Calculate the effects of K_{y} and $\left(K_{y}\right)^{2}$ on the four-vector $x^{\mu}=(t, x, y, z)^{T}$.
(b) Determine the finite Lorentz transformation

$$
x^{\mu \prime}=\exp \left(i \nu K_{y}\right) x^{\mu},
$$

where ν is the rapidity, by using the results from part (a).
With the boost parameters $\beta=\frac{v}{c}$ and $\gamma=\frac{1}{\sqrt{1-\beta^{2}}}$, the boost can be written as

$$
x^{\mu \prime}=\left(\begin{array}{cccc}
\gamma & 0 & \gamma \beta & 0 \\
0 & 1 & 0 & 0 \\
\gamma \beta & 0 & \gamma & 0 \\
0 & 0 & 0 & 1
\end{array}\right) x^{\mu}
$$

(c) Compare this alternative form of the boost with your result from (b). Show that the rapidity is given by

$$
\nu=\frac{1}{2} \ln \frac{1+\beta}{1-\beta} .
$$

