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Exercise 6: Problems of the classical Klein-Gordon equation (P) (1+1+1+1+1+1 = 6 points)

We consider two classical scalar fields Φ(x) and Φ∗(x) with Lagrangian density

LS = (∂µΦ(x)) (∂µΦ∗(x))−m2
SΦ(x)Φ∗(x) ,

where mS is a free parameter and Φ(x) and Φ∗(x) are formally considered to be independent
fields.

(a) By using the Euler-Lagrange equations, show that the equations of motion of the
fields are given by the Klein-Gordon equations(

� +m2
S

)
Φ(x) = 0 ,(

� +m2
S

)
Φ∗(x) = 0 ,

where � = ∂µ∂
µ is the d’Alembert operator.

(b) Make a plane wave ansatz Φ(x) ∝ eikµx
µ

with wave vector kµ = (ω,~k)T to solve the

Klein-Gordon equation for Φ. Find a relation between ω, ~k and mS.

(c) By inserting all solutions you found in (b) into the Schrödinger equation, find all
possible energy states of your solutions. Explain the physical relevance of each energy
state.

Quantum mechanically, the field Φ can be characterized by its four-current

jµ =

(
ρ
~j

)
=

i

2mS

[Φ∗ (∂µΦ)− (∂µΦ∗) Φ] .

In the non-relativistic limit, ρ is often interpreted as the probability density of the scalar
field, which necessitates ρ ≥ 0 for the density.



(d) Prove that the four-current jµ obeys a continuity equation, i.e. prove that

∂µj
µ = 0 .

(e) Calculate ρ and explain why, in contrast to the non-relativistic limit, the sign of ρ
is indefinite in the covariant definition of the four-current jµ.

(f) By considering all results you found in the previous parts, explain why the classical
Klein-Gordon equation cannot describe physical particle states consistently.

Exercise 7: Lagrangian of a massive vector field (P) (3+2+0.5+2.5+2 = 10 points)

The Lagrangian of a massive free vector field V µ(x) is given by

LV = −1

4
FµνF

µν +
m2
V

2
VµV

µ

where mV 6= 0 denotes the mass of the vector particle and F µν = ∂µV ν − ∂νV µ denotes
the field-strength tensor.

(a) Calculate the equations of motion for V µ, the so-called Proca equations.

(b) Using the equations of motion, prove that

∂µV
µ = 0

(c) Use the results from (a) and (b) to show that all components of V µ satisfy the
Klein-Gordon equation separately and explain the physical meaning of this result.

A new Lagrangian L = LV + LD is given by adding a Dirac term

LD = ψ(x)
(
i /D −mD

)
ψ(x) ,

where the covariant derivative Dµ = ∂µ + iqVµ yields a coupling between the spinor ψ and
the vectorfield Vµ.

(d) Consider ψ, ψ and Vµ as independent fields and calculate the new equations of
motion for all three of them, separately.

(e) The vector current jµ and axial vector current jµ5 can be defined as

jµ = ψγµψ jµ5 = ψγµγ5ψ.

Consider the special case of q = 0, i.e. the fermion decouples from the vector boson.
By using the equations of motion, prove that jµ is a conserved quantity, whereas
j5µ is not conserved in general. In which special case is jµ5 conserved, as well?



Exercise 8: Dimensional analysis (P) (0.5+0.5+1+1+1 = 4 points)

In natural units, i.e. with ~ = c = 1, we can express all fields, coupling constants and para-
meters of the Lagrangians in dimensions of mass (or equivalently, momentum or energy):

[mass] = [energy] = [momentum] = 1 ,

where the bracket [...] denotes the dimension and 1 denotes that all three quantities have
the same mass dimension.

(a) By using the formulae for the de Broglie wavelength and the energy of a photon,
derive the mass dimensions of the quantities length and time.

In natural units and in D − 1 space and 1 time dimensions, the action

S =

∫
dDxL =

∫
dtdD−1~xL

has no mass dimension, i.e. [S] = 0.

(b) From this, deduce the mass dimension of the Lagrangian density L in D space-time
dimensions.

(c) By using your result from (b), analyze the Lagrangians LS, LV and LD given in
exercises 6 and 7 and deduce the mass dimensions of the following fields quantities
defined in these Lagrangians:

[Φ] , [ψ] , [V µ] , [mS] , [mV ] , [mD] .

(d) Consider a new Lagrangian containing an additional coupling between the scalar
field Φ and the spinors ψ,

L̂ = LS +
λmn
m!n!

(
ψψ
)m

Φn ,

where m,n ≥ 0, and determine the mass dimension of the coupling constant λmn
by dimensional analysis.

(e) Using your previous results, consider the special case D = 4 of four physical space-
time dimensions. Give the mass dimensions of all quantities that you derived before
in this special case.

Remark: the dimensional analysis of this exercise is very useful for constructing and ana-
lyzing Lagrangians. Knowing the mass dimensions of L and of all fields allows for the
construction of Lagrangians with all possible combinations of fields, masses and coupling
constants.


