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Exercise 9: Application of the Noether theorem (P) (1+1+2 = 4 points)

(a) Show that the Lagrangian of two real scalar fields ϕ1,2

L =
1

2
(∂µϕ1) (∂µϕ1) +

1

2
(∂µϕ2) (∂µϕ2)−

m2

2

(
ϕ2
1 + ϕ2

2

)
− λ

4

(
ϕ2
1 + ϕ2

2

)2
is invariant under the transformation (ϑ = const ∈ R)

xµ → x′µ = xµ

ϕ1 → ϕ′1 = ϕ1 cosϑ+ ϕ2 sinϑ

ϕ2 → ϕ′2 = −ϕ1 sinϑ+ ϕ2 cosϑ

(b) Calculate the Noether current density and the Noether charge.

(c) Calculate the Energy-momentum-tensor T µν through application of the transforma-
tion

xµ → x′µ = xµ + εµ ,

ϕ1,2 → ϕ′1,2 = ϕ1,2 .



Exercise 10: Complex scalar field (1+2+3+2 = 8 points)

We consider the Lagrangian of a complex scalar field ϕ, given by

L = (∂µϕ)∗ (∂µϕ)−m2ϕ∗ϕ .

It is a common practice in particle physics to express a complex field by two real fields

ϕ(~x) =
1√
2

(ϕ1(~x) + iϕ2(~x)) , ϕ(~x)∗ =
1√
2

(ϕ1(~x)− iϕ2(~x)) .

(a) Express L through ϕ1 and ϕ2. Why do we need the factor 1√
2
?

(b) The Fourier transformation of the real fields ϕi is given by

ϕi(~x) =

∫
dk̃
[
ai(k) exp(−ikx) + a†i (k) exp(ikx)

]
where dk̃ = d3~k

(2π)32ωk
and ai, a

†
i satisfy the commutation relations defined in the

lecture. With this we can define

a(k) =
1√
2

(a1(k) + ia2(k)) , b(k) =
1√
2

(a1(k)− ia2(k))

as well as a† and b†. Express ϕ(~x) and ϕ∗(~x) through a, a†, b, b†. Interpret these new
operators physically.

(c) Derive the commutators of a, a†, b, b† through ai and a†i .

(d) The Lagrangian, expressed through the fields ϕ1 and ϕ2, is invariant under the
same transformation as in exercise 9 (a). Calculate the Noether charge Q for this
transformation and express it through ai as well as a and b. Interpret the results.

Exercise 11: Calculation of the Feynman propagator (P) (1.5+2+2+1.5+1 = 8 points)

The Feynman propagator in position space is given by

i∆F (r) =

∫
d4k

1

(2π)4
i

k2 −m2 + iε
e−ik·r ,

where ε > 0 is small, m > 0 is the mass of a particle and k and r are four-vectors. As you
will discuss in the lecture soon, the propagator, mathematically a special type of Green’s
function, represents the probability amplitude of a particle to propagate from one space-
time point to another, separated by the four-vector r. In this exercise, we will evaluate the
propagator explicitly.



(a) By performing the integration of the time component k0 of the four-vector k, show
that the propagator takes the form

i∆F (r) =

∫
d3~k

1

2ωk(2π)3
ei
~k·~re−i|r0|ωk ,

where ωk =
√
~k2 +m2 − iε and r0 denotes the time component of r.

Hint: Find the complex poles of the integrand and shift the integral to the complex
plane. Choose the contours of integration according to the poles you find and use
the residue theorem to evaluate the integral.

(b) Assume that the distance r is timelike, i.e. r2 > 0. Evaluate the propagator and
express it through the Bessel function of the third kind (also called Hankel function)

H
(1)
1 (a) =

−2ia

π

∫ ∞−iε
1−iε

dte−iat
√
t2 − 1 , (a > 0) .

Hint: Choose a reference frame for the timelike vector r such that the integration
becomes simpler.

(c) Assume that the distance r is spacelike, i.e. r2 < 0. Evaluate the propagator and
express it through the modified Hankel function

K
(1)
1 (a) =

1

2i

∫ ∞
−∞

dt
teiat√

t2 + 1− iε
, (a > 0) .

Hint: Choose a reference frame for the timelike vector r such that the integration
becomes simpler.

(d) Assume that the distance r is lightlike, i.e. r2 = 0. Evaluate the propagator in this
case.
Hint: You will find that the integral diverges in the regime of high |~k|, i.e. in the so-

called ultraviolet regime. Simplify the integration by assuming |~k| � m and express
the divergence through the delta distribution.

(e) Combine your results from the previous parts and show that the Feynman propa-
gator takes the form

i∆F (r) = Θ(r2)
im

8π
√
r2
H

(1)
1 (m

√
r2) + Θ(−r2) m

4π2
√
−r2

K1(m
√
−r2) +

−i
4π
δ(r2) .

Discuss the behaviour of the Feynman propagator for large spacetime distances in
the case of spacelike and timelike r, separately. Interpret this result physically.
Hint: You can use without proof that for large arguments, the Hankel functions
behave like H

(1)
1 (a) ∼ eia and K

(1)
1 (a) ∼ H

(1)
1 (ia).


