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Exercise 15: Spinor algebra (P) (1+2+3+2+3 = 11 points)

We want to examine the underlying algebra of fermionic structures. We consider the spinors
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% 5}, 0 was given in exercise 1 and
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where the upper sign applies for u and the lower sign for v.

(a) Prove that
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b) By using the explicit Dirac representation of the Dirac matrices (cf. exercise 1
y g )
prove that the spinors u and v are solutions to the Dirac equations

(p —m)u(p) =0,
(p +m)v(p) =0.
(c¢) Prove the following orthogonality relations for the spinors v and v:
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where 7 = u'° and v = v14°.
Hint: Use 7° in the explicit Dirac representation.



(d) Prove the following completeness relations of the spinors u and v,
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where o and [ are indices in spin space.
Remark: These relations, also called spin sums, are very useful for practical calcu-
lations of fermionic scattering processes later on.

(e) Prove the Gordon identities for the spinor w,
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where 0" = %[’y“, v"], purely algebraically, i.e. without using the explicit represen-
tation of u given above.
Hint: Use the Dirac equations.

Exercise 16: Quantization of the fermionic field (P) (3+8+3 = 9 points)

We can now describe a fermionic field ¢ (x) as

(a) The Lagrangian of a free fermionic field is invariant under a U(1) transformation
Y(z) — e@q)(z). The Noether charge @ associated to this symmetry is given by

Q= / a9

Express  through the operators a, a’, b, b' and interpret the results.

(b) By using the anti-commutators of a, a', b, bT, calculate the anti-commutator {1, (%, t), wg(gj, t)},
where o and /3 are spinor indices. What is the physical meaning of the fields ¥ and
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We now consider a coupling of fermions to a photon field. Through the minimal coupling
by means of the covariant derivative J) = @ + igA, the Dirac equation becomes

(i) —m)y =0.

(c) Prove that in the non-relativistic limit, i.e. for |p] < m, this equation transforms to
the Pauli equation given by
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with the magnetic moment being i = g%g , where g = 2 is the gyromagnetic factor,

B =V x Ais the magnetic field, 7 = p— q/T is the canonical momentum and S = %
is the spin operator.

Hint: Use the ansatz 1) = e~ ()p( ) for the spinor to split the Dirac equation into

two equations for the up-type and down-type spinor p and Y, respectively. In the
non-relativistic limit, argue why y is heavily suppressed compared to p, which allows
you to use (i0; — qp)x =~ 0 in the system of the two equations.



