Theoretische Teilchenphysik 1

Lecture: Prof. Dr. M. M. Mühlleitner
Exercises: Prof. Dr. M. M. Mühlleitner, P. Basler, M. Krause

Exercise sheet 6

Release: 21 May 2018
Submission: 28 May 2018
Tutorials: 30 May 2018
Lecture website: https://www.itp.kit.edu/courses/ss2018/ttp1

Exercise 15: Spinor algebra
 $$
(1+2+3+2+3=11 \text { points })
$$

We want to examine the underlying algebra of fermionic structures. We consider the spinors

$$
u(\vec{p}, s)=\sqrt{p_{0}+m}\binom{\varphi_{s}}{\frac{\vec{\sigma} \cdot \vec{p}}{p_{0}+m} \varphi_{s}} \quad v(\vec{p}, s)=\sqrt{p_{0}+m}\binom{\frac{\vec{\sigma} \cdot \vec{p}}{p_{0}+m} \varphi_{s}}{\varphi_{s}}
$$

where $s \in\left\{-\frac{1}{2}, \frac{1}{2}\right\}, \vec{\sigma}$ was given in exercise 1 and

$$
\varphi_{ \pm 1 / 2}=\binom{1}{0}, \quad \varphi_{\mp 1 / 2}=\binom{0}{1}, \quad p_{0}=\sqrt{m^{2}+\vec{p}^{2}}
$$

where the upper sign applies for u and the lower sign for v.
(a) Prove that

$$
(\vec{\sigma} \cdot \vec{p})(\vec{\sigma} \cdot \vec{p})=\vec{p}^{2} 1_{2 \times 2} .
$$

(b) By using the explicit Dirac representation of the Dirac matrices (cf. exercise 1), prove that the spinors u and v are solutions to the Dirac equations

$$
\begin{aligned}
& (\not p-m) u(\vec{p})=0, \\
& (\not p+m) v(\vec{p})=0 .
\end{aligned}
$$

(c) Prove the following orthogonality relations for the spinors u and v :

$$
\begin{aligned}
& u^{\dagger}(\vec{p}, s) u\left(\vec{p}, s^{\prime}\right)=2 p_{0} \delta_{s s^{\prime}}, \quad v^{\dagger}(\vec{p}, s) v\left(\vec{p}, s^{\prime}\right)=2 p_{0} \delta_{s s^{\prime}} \\
& u^{\dagger}(\vec{p}, s) v\left(-\vec{p}, s^{\prime}\right)=0, \\
& v^{\dagger}(\vec{p}, s) u\left(-\vec{p}, s^{\prime}\right)=0 \\
& \bar{u}(\vec{p}, s) u\left(\vec{p}, s^{\prime}\right)=2 m \delta_{s s^{\prime}} \bar{v}(\vec{p}, s) v\left(\vec{p}, s^{\prime}\right)=-2 m \delta_{s s^{\prime}} \\
& \bar{u}(\vec{p}, s) v\left(\vec{p}, s^{\prime}\right)=0, \quad \bar{v}(\vec{p}, s) u\left(\vec{p}, s^{\prime}\right)=0
\end{aligned}
$$

where $\bar{u}=u^{\dagger} \gamma^{0}$ and $\bar{v}=v^{\dagger} \gamma^{0}$.
Hint: Use γ^{0} in the explicit Dirac representation.
(d) Prove the following completeness relations of the spinors u and v,

$$
\begin{aligned}
& \sum_{s=-1 / 2}^{+1 / 2} u_{\alpha}(\vec{p}, s) \bar{u}_{\beta}(\vec{p}, s)=(\not p+m)_{\alpha \beta} \\
& \sum_{s=-1 / 2}^{+1 / 2} v_{\alpha}(\vec{p}, s) \bar{v}_{\beta}(\vec{p}, s)=(\not p-m)_{\alpha \beta}
\end{aligned}
$$

where α and β are indices in spin space.
Remark: These relations, also called spin sums, are very useful for practical calculations of fermionic scattering processes later on.
(e) Prove the Gordon identities for the spinor u,

$$
\begin{aligned}
0 & =\bar{u}(p)\left[(p-q)^{\mu}+i \sigma^{\mu \nu}(p+q)_{\nu}\right] u(q) \\
\bar{u}(p) \gamma^{\mu} u(q) & =\frac{1}{2 m} \bar{u}(p)\left[(p+q)^{\mu}+i \sigma^{\mu \nu}(p-q)_{\nu}\right] u(q), \\
\bar{u}(p) \gamma^{\mu} \gamma^{5} u(q) & =\frac{1}{2 m} \bar{u}(p)\left[(p-q)^{\mu} \gamma^{5}+i \sigma^{\mu \nu}(p+q)_{\nu} \gamma^{5}\right] u(q),
\end{aligned}
$$

where $\sigma^{\mu \nu}=\frac{i}{2}\left[\gamma^{\mu}, \gamma^{\nu}\right]$, purely algebraically, i.e. without using the explicit representation of u given above.
Hint: Use the Dirac equations.

Exercise 16: Quantization of the fermionic field $\quad(3+3+3=9$ points $)$

We can now describe a fermionic field $\psi(x)$ as

$$
\psi(x)=\sum_{s=-1 / 2}^{+1 / 2} \psi_{s}(x)=\int \mathrm{d} \tilde{k} \sum_{s=-1 / 2}^{+1 / 2}\left[a_{s}(\vec{k}) u(\vec{k}, s) e^{-i k \cdot x}+b_{s}^{\dagger}(\vec{k}) v(\vec{k}, s) e^{i k \cdot x}\right]
$$

(a) The Lagrangian of a free fermionic field is invariant under a $U(1)$ transformation $\psi(x) \rightarrow e^{i \alpha(x)} \psi(x)$. The Noether charge Q associated to this symmetry is given by

$$
Q=\int \mathrm{d}^{3} \mathrm{x} \bar{\psi} \gamma^{0} \psi
$$

Express Q through the operators $a, a^{\dagger}, b, b^{\dagger}$ and interpret the results.
(b) By using the anti-commutators of $a, a^{\dagger}, b, b^{\dagger}$, calculate the anti-commutator $\left\{\psi_{r}(\vec{x}, t), \psi_{s}^{\dagger}(\vec{y}, t)\right\}$. What is the physical meaning of the fields ψ^{\dagger} and ψ ?

We now consider a coupling of fermions to a photon field. Through the minimal coupling by means of the covariant derivative $\not D=\not \partial+i q A A$, the Dirac equation becomes

$$
(i \not D-m) \psi=0 .
$$

(c) Prove that in the non-relativistic limit, i.e. for $|\vec{p}| \ll m$, this equation transforms to the Pauli equation given by

$$
i \partial_{t} \rho=\left[\left(\frac{\vec{\pi}^{2}}{2 m}+q \varphi\right)-\vec{\mu} \cdot \vec{B}\right] \rho
$$

with the magnetic moment being $\vec{\mu}=g \frac{q}{2 m} \vec{S}$, where $g=2$ is the gyromagnetic factor, $\vec{B}=\vec{\nabla} \times \vec{A}$ is the magnetic field, $\vec{\pi}=\vec{p}-q \vec{A}$ is the canonical momentum and $\vec{S}=\frac{\vec{\sigma}}{2}$ is the spin operator.
Hint: Use the ansatz $\psi=e^{-i p \cdot x}\binom{\rho}{\chi}$ for the spinor to split the Dirac equation into two equations for the up-type and down-type spinor ρ and χ, respectively. In the non-relativistic limit, argue why χ is heavily suppressed compared to ρ, which allows you to use $\left(i \partial_{t}-q \varphi\right) \chi \approx 0$ in the system of the two equations.

