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Exercise 17: Charge conjugation (P) (2+2+1+2 = 7 points)

The defining property of the charge conjugation matrix C is

C−1γµC = −(γµ)T (1)

for any representation of the Dirac matrices.

(a) Verify explicitly that in the Weyl representation, the matrix C = iγ0γ2 obeys Eq.
(1). Show that in this representation, the charge conjugation operator obeys C† =
CT = C−1 = −C.

(b) Show that for any arbitrary representation, i.e. only by using Eq. (1), that the
following equations hold:

C−1γ5C = (γ5)T ,

C−1σµνC = −(σµν)T ,

C−1(γµγ5)C = (γµγ5)T .

Hint: Use the following definition for γ5: γ5 ≡ iγ0γ1γ2γ3.

(c) The charge conjugation operator acting directly on the fermionic fields is given

by C. From its definition via Cψ(x)C† = Cψ
T

(x), it is connected with the charge
conjugation matrix C. By using this definition as well as (γ0)† = (γ0)T = γ0, show
that

Cψ(x)C† = −ψT(x)C−1 .



(d) Use the results of the previous parts to show that the fermionic bilinear covariants
transform in the following way under charge conjugation,

C :ψ(x)ψ(x): C† = :ψ(x)ψ(x): ≡ S(x) ,

C :ψ(x)γµψ(x): C† = −:ψ(x)γµψ(x): ≡ −V µ(x) ,

C :ψ(x)σµνψ(x): C† = −:ψ(x)σµνψ(x): ≡ −T µν(x) ,

C :ψ(x)γµγ5ψ(x): C† = :ψ(x)γµγ5ψ(x): ≡ Aµ(x) ,

C :ψ(x)γ5ψ(x): C† = :ψ(x)γ5ψ(x): ≡ P (x) ,

where the normal ordering, denoted by :O:, is only stated here to indicate that the
fermionic fields inside the bilinear covariants are quantized.
Hint: You can save some time if you first evaluate the generic bilinear transformation
C :ψ(x)Γψ(x): C† by generalizing your results from the previous parts to any matrix
Γ ∈ {14×4, γ

µ, σµν , γµγ5, γ5}.

Exercise 18: Causality, spin-statistics theorem for fermions (P) (2+2+2+3 = 9 points)

We want to repeat the analysis on causality and the spin-statistics theorem from exercise
12, but this time, we consider fermionic fields. For this, consider quantized fields

ψ+(x) ≡
∑
s

∫
dk̃ bs(~k)us(~k)eik·x , ψ−(x) ≡

∑
s

∫
dk̃ b†s(

~k)vs(~k)e−ik·x .

For the operators bs and b†s, we require the algebra[
bs(~k), bs′(~k

′
)
]
∓

=
[
b†s(
~k), b†s′(

~k
′
)
]
∓

= 0 ,[
bs(~k), b†s′(

~k′)
]
∓

= (2π)32ωkδ(~k − ~k
′
)δss′ ,

where as in exercise 12, the minus sign denotes the commutator, the plus sign denotes the
anti-commutator, and ∓ indicates that we leave this choice open. Causality requires that
for fermionic fields ψ with spinor indices α and β, we find

[ψα(x), ψβ(y)]∓ = 0
(
for (x− y)2 < 0

)
. (1)

(a) By using the charge conjugation matrix introduced in exercise 17, prove that

Cus(~k)T = vs(~k) ,

Cvs(~k)T = us(~k) .



Hint: Use the spinors and the charge conjugation matrix in explicit Weyl represen-
tation, given by

u+(0) =
√

2m


1
0
1
0

 , u−(0) =
√

2m


0
1
0
1

 , v+(0) =
√

2m


0
1
0
−1

 , v−(0) =
√

2m


−1
0
1
0

 .

It suffices to show that the above relations hold for ~k = 0. Due to the transformation
of γµ under charge conjugation, the relation then follows for all ~k.

(b) Show that the fields ψ+(x) and ψ−(x) do not obey Eq. (1).
Hint: Calculate Eq. (1) for spacelike intervals r2 ≡ (x−y)2 < 0 for all combinations
of ψ+(x) and ψ−(x). Use the result from part (a) to eliminate the spinor vs. You
can use the results from exercises 11 and 15(d).

(c) Show that [
ψ+
α (x), ψ−β (y)

]
∓ = −

[
ψ+
β (y), ψ−α (x)

]
∓

(
for (x− y)2 < 0

)
.

In order to restore causality, we define new fields

ψ(x) ≡ ψ+(x) + λψ−(x) , ψ†(x) ≡ ψ−(x) + λ∗ψ+(x) .

(d) Calculate Eq. (1) for all possible combinations of ψ(x) and ψ(x). What is the value
of λ if we require causality for both fields for spacelike distances? Do you have to
choose commutators or anticommutators to restore causality? Compare this result
for the fermionic field to the result from exercise 12 for the scalar field.

Exercise 19: Polarization of a massive vector boson (P) (1+1+1+1 = 4 points)

We consider a vector boson with mass M 6= 0 and polarization vectors εµλ(k), where kµ is
its four-vector and λ denotes the three physical degrees of freedom for the polarization of
the massive vector boson. The polarization vectors are normalized through the following
relations:

k · ελ(k) = 0 ,

ελ(k) · ε∗λ′(k) = −δλλ′ .
(1)

(a) Boost into the rest frame of the vector boson. By using the relations from Eq. (1),
determine the form of the three polarization vectors under the assumption that the
vector boson is linearly polarized in one longitudinal and two transversal modes.



(b) By using again the relations from Eq. (1) in the rest frame of the vector boson,
determine the form of the polarization vectors if we now consider the vector boson
to be longitudinally polarized in the z direction, but circularly polarized in the x−y
plane.

(c) By using Lorentz covariance, guess the form of the completeness relation Σλε
µ
λ(k)ε∗νλ (k)

of the massive vector boson and use Eq. (1) to determine the correct form of the
polarization sum as given in the lecture.
Hint: Which tensors and four-vector combinations are compatible with εµλ(k)ε∗νλ (k)
to preserve Lorentz covariance? Express the completeness relation as a linear com-
bination of these possible components and use Eq. (1) to determine the coefficients
of these components in the rest frame of the vector boson.

(d) Show that the circularly polarized vector boson from part (b) fulfills the comple-
teness relation from part (c) by inserting the polarization vectors explicitly for all
µ and ν. You can again work in the rest frame of the vector boson.


