Theoretische Teilchenphysik 1

Lecture: Prof. Dr. M. M. Mühlleitner

Exercises: Prof. Dr. M. M. Mühlleitner, P. Basler, M. Krause

Exercise sheet 9

Release: 11 June 2018
Submission: 18 June 2018
Tutorials: 20 June 2018
Lecture website: https://www.itp.kit.edu/courses/ss2018/ttp1

Exercise 22: Vacuum fluctuations (P) $\quad(2+6+2=10$ points $)$
We consider a quantized real Klein-Gordon field $\varphi(\vec{x})$. At time $t=0$, the field is averaged over a sphere of radius R and volume V :

$$
\varphi_{R}=\frac{1}{V} \int_{V} d^{3} x \varphi(\vec{x})
$$

(a) Show that the vacuum expectation value (vev) of φ_{R} vanishes, i.e. show that

$$
\langle 0| \varphi_{R}|0\rangle=0 .
$$

(b) Calculate the quantity

$$
\langle 0| \varphi_{R}^{2}|0\rangle
$$

and argue that it is non-vanishing.
Hint: For the Bessel function

$$
J_{3 / 2}(x)=\sqrt{\frac{2}{\pi x}}\left(\frac{\sin x}{x}-\cos x\right)
$$

and its integral

$$
I(a) \equiv \int_{0}^{\infty} d y \frac{1}{y \sqrt{a^{2}+y^{2}}}\left[J_{3 / 2}(y)\right]^{2} \quad(a \in \mathbb{R})
$$

you can use that for $a=0$, the integral gives

$$
I(0)=\frac{1}{2 \pi} .
$$

(c) Consider now the case of a massless field, i.e. $m=0$. Does the radius of the sphere R has to be enlarged or diminished to enlarge the fluctuations? Provide a physical interpretation of your results.
Remark: Due to the fact that the vev of φ_{R} vanishes, but the vev of φ_{R}^{2} is non-zero, the field itself cannot be constant in the vacuum. It fluctuates within the sphere of radius R.

Exercise 23: Two-particle phase space (P)

$$
(3+7=10 \text { points })
$$

For the calculation of decay rates and cross sections, we need to integrate over the phase space of the particles in the final state. For a generic process with two particles with momenta p_{1} and p_{2} and masses m_{1} and m_{2} in the final state, this phase space integral is given by

$$
\int d \Phi_{2}=\int \frac{d^{3} p_{1}}{(2 \pi)^{3} 2 E_{1}} \int \frac{d^{3} p_{2}}{(2 \pi)^{3} 2 E_{2}}(2 \pi)^{4} \delta^{(4)}\left(q-p_{1}-p_{2}\right)
$$

where q is the total four-momentum of all incoming particles. This integral is performed over the absolute squared of the matrix element as well as over some additional Heaviside step functions Θ to implement the proper momentum cuts for the particles in the final state.
(a) Show that in the center-of-mass frame of the two final-state particles, the absolute value of the incoming three-momenta is given by

$$
\left|\vec{p}_{1}\right|=\left|\vec{p}_{2}\right|=\frac{\lambda\left(q^{2}, m_{1}^{2}, m_{2}^{2}\right)}{2 \sqrt{q^{2}}}
$$

where λ is the Källén function given by

$$
\lambda\left(a^{2}, b^{2}, c^{2}\right) \equiv \sqrt{a^{4}+b^{4}+c^{4}-2 a^{2} b^{2}-2 a^{2} c^{2}-2 b^{2} c^{2}} .
$$

(b) Show that in the center-of-mass frame of the two final-state particles, the phase space integral can be written as

$$
\int d \Phi_{2}=\int d \Omega \frac{1}{32 \pi^{2} q^{2}} \lambda\left(q^{2}, m_{1}^{2}, m_{2}^{2}\right) \Theta\left(q_{0}\right) \Theta\left(q^{2}-\left(m_{1}^{2}+m_{2}^{2}\right)^{2}\right)
$$

where $d \Omega \equiv d\left(\cos \vartheta_{1}\right) d \varphi_{1}$ is the integration over the solid angle of particle 1 in the center-of-mass frame.
Hint: Prove and use the relation

$$
\frac{d^{3} p}{2 E}=d^{4} p \Theta\left(p_{0}\right) \delta\left(p^{2}-m^{2}\right)
$$

