Theoretische Teilchenphysik 1

Lecture: Prof. Dr. M. M. Mühlleitner

Exercises: Prof. Dr. M. M. Mühlleitner, P. Basler, M. Krause

Exercise sheet 11

Release: 25 June 2018
Submission: 02 July 2018
Tutorials: 04 July 2018
Lecture website: https://www.itp.kit.edu/courses/ss2018/ttp1

Exercise 25: Integration in D dimensions (\mathbf{P})
 $$
(2+5+3=10 \text { points })
$$

Many processes beyond the tree level involve integrals which formally diverge. In order to regularize these divergences, we can use dimensional regularization. The idea is simple: we perform the integration in $D=4-2 \varepsilon$ instead of 4 dimensions. The term ε serves as the regulator and exposes the divergence when taking the limit $\varepsilon \rightarrow 0$. In this exercise, we want to compute some ingredients needed for a computation of a one-loop integral.
(a) Show that the area of a unit sphere in D dimensions is given by

$$
\int d \Omega_{D}=\frac{2 \pi^{D / 2}}{\Gamma(D / 2)}
$$

where $\Gamma(x)$ denotes the Euler gamma function. Consider the following special values, $D \in\{1,2,3\}$, and check the consistency of your results.
(b) The Euler gamma function $\Gamma(x)$ has simple poles at the non-positive integers. By analytically continuing the recursion relation $\Gamma(x+1)=x \Gamma(x)$ for all values (apart from the non-positive integers), show that the expansions of $\Gamma(x)$ near the poles $x=\varepsilon \approx 0$ and $x=\varepsilon-1 \approx-1$ (with ε being small) are given by

$$
\begin{aligned}
\Gamma(\varepsilon) & =\frac{1}{\varepsilon}-\gamma_{\mathrm{E}}+\frac{1}{2}\left[\gamma_{\mathrm{E}}^{2}+\zeta(2)\right] \varepsilon+\mathcal{O}\left(\varepsilon^{2}\right) \quad(\text { for } \varepsilon \rightarrow 0), \\
\Gamma(\varepsilon-1) & =-\frac{1}{\varepsilon}+\gamma_{\mathrm{E}}-1+\left[\gamma_{\mathrm{E}}-1-\frac{\gamma_{\mathrm{E}}^{2}}{2}-\frac{\zeta(2)}{2}\right] \varepsilon+\mathcal{O}\left(\varepsilon^{2}\right) \quad(\text { for } \varepsilon \rightarrow 0),
\end{aligned}
$$

where γ_{E} is the Euler-Mascheroni constant and $\zeta(x)$ is the Euler-Riemann ζ function. Hint: There are several ways to perform this proof. One way is to rewrite the recursion relation in such a way that the digamma function $\psi(x) \equiv \frac{\Gamma^{\prime}(x)}{\Gamma(x)}=\frac{1}{\Gamma(x)} \frac{\partial}{\partial x} \Gamma(x)$ and the trigamma function $\psi_{1}(x)=\frac{\partial}{\partial x} \psi(x)$ explicitly appear in the recursion relation and to use their special values $\psi(1)=-\gamma_{\mathrm{E}}$ and $\psi_{1}(1)=\zeta(2)$ and the recurrence
formulas $\psi(x+1)=\psi(x)+1 / x$ and $\psi_{1}(x+1)=\psi_{1}(x)-1 / x^{2}$. Another way is to use a specific representation of the gamma function, e.g. a representation over an infinite sum, and to expand this representation near the poles. If you decide for such a way, you have to proof the validity of the representation that you choose.
(c) Show that

$$
\begin{aligned}
& \int \frac{d^{D} l_{\mathrm{E}}}{(2 \pi)^{D}} \frac{1}{\left(l_{\mathrm{E}}^{2}+\Delta\right)^{n}}=\frac{1}{(4 \pi)^{D / 2}} \frac{\Gamma\left(n-\frac{D}{2}\right)}{\Gamma(n)}\left(\frac{1}{\Delta}\right)^{n-\frac{D}{2}} \\
& \int \frac{d^{D} l_{\mathrm{E}}}{(2 \pi)^{D}} \frac{l_{\mathrm{E}}^{2}}{\left(l_{\mathrm{E}}^{2}+\Delta\right)^{n}}=\frac{1}{(4 \pi)^{D / 2}} \frac{D}{2} \frac{\Gamma\left(n-1-\frac{D}{2}\right)}{\Gamma(n)}\left(\frac{1}{\Delta}\right)^{n-1-\frac{D}{2}}
\end{aligned}
$$

where $n \in \mathbb{N} \backslash\{0\}, l_{\mathrm{E}}$ denotes a Euclidean four-vector, i.e. $l_{\mathrm{E}}^{2}=l_{0}^{2}+l_{1}^{2}+l_{2}^{2}+\ldots$, and $\Delta>0$.
Hint: Integrate in D-dimensional spherical coordinates and use the result from part (a). Additionally, use the definition of the Euler beta function

$$
B(\alpha, \beta) \equiv \int_{0}^{1} d x x^{\alpha-1}(1-x)^{\beta-1}=\frac{\Gamma(\alpha) \Gamma(\beta)}{\Gamma(\alpha+\beta)}
$$

Exercise 26: The one-loop one-point integral $A_{0}(\mathbf{P}) \quad(1+2+1+1=5$ points $)$
In this exercise, we consider the simplest one-loop Feynman diagram, the tadpole diagram, shown in the figure below, in the framework of dimensional regularization.

We consider φ^{3} theory for a scalar field φ with non-negative mass m. The trilinear selfcoupling of the scalar field is given as $\lambda_{\varphi \varphi \varphi}=i g$ and the propagator of the massive scalar field with momentum p is simply $\frac{i}{p^{2}-m^{2}}$.
(a) Show that the amplitude of the one-loop tadpole diagram in $D=4-2 \varepsilon$ dimensions is given by

$$
i \mathcal{A}=-g\left(\mu^{2}\right)^{(4-D) / 2} \int \frac{d^{D} l}{(2 \pi)^{D}} \frac{1}{l^{2}-m^{2}+i \epsilon}
$$

where μ has the dimension of mass and $\epsilon \rightarrow 0^{+}$shifts the root of the denominator into the complex plane.

Remark: Please note the difference between the dimension regulator ε and the shift of the contour ϵ !
(b) The one-loop one-point integral A_{0} in D dimensions is defined as

$$
A_{0}\left(m^{2}\right) \equiv(2 \pi \mu)^{4-D} \int \frac{d^{D} l}{i \pi^{2}} \frac{1}{l^{2}-m^{2}+i \epsilon} .
$$

Show that in $D=4-2 \varepsilon$ dimensions, up to $\mathcal{O}(\varepsilon)$, the integral gives the following result:

$$
A_{0}\left(m^{2}\right)=\frac{m^{2}}{\varepsilon}+m^{2}\left[1-\ln \left(\frac{m^{2}}{Q^{2}}\right)\right]+m^{2}\left[\frac{\zeta(2)}{2}+\frac{1}{2} \ln \left(\frac{m^{2}}{Q^{2}}\right)^{2}-\ln \left(\frac{m^{2}}{Q^{2}}\right)+1\right] \varepsilon
$$

where $Q^{2} \equiv 4 \pi \mu^{2} e^{-\gamma_{\mathrm{E}}}$ is the so-called regularization scale.
Hint: Perform a Wick rotation, i.e. rotate the timelike component l_{0} of the fourvector l onto the imaginary axis in order to rotate l into Euclidean space. Then, use the results from exercise 25 .
(c) Calculate the massless limit, i.e. $m^{2} \rightarrow 0$, of your results from part (b).
(d) Express the amplitude from part (a) through the integral A_{0} and show that the full amplitude of the one-loop tadpole diagram, up to $\mathcal{O}\left(\varepsilon^{0}\right)$, is given by

$$
i \mathcal{A}=-\frac{i g}{16 \pi^{2}}\left\{\frac{m^{2}}{\varepsilon}+m^{2}\left(1-\ln \left(\frac{m^{2}}{Q^{2}}\right)\right)\right\}
$$

Remark: As you can see, the full amplitude diverges for $\varepsilon \rightarrow 0$, but due to dimensional regularization, the divergence could be isolated and regulated. As for many other diagrams, this so-called $U V$ divergence now has to be treated with a renormalization procedure to give finite results. You will discuss renormalization in more detail in TTP 2.

Exercise 27: The one-loop two-point integral $B_{0}(\mathbf{P}) \quad(1+1+2+1=5$ points $)$
Analogous to exercise 26, we again consider φ^{3} theory with the Feynman rules as before. Now, we consider the following self-energy diagram with incoming momentum p :

(a) Assume that the two internal scalar particles have two different masses m_{1} and m_{2}, but the trilinear coupling constant is still $\lambda_{\varphi \varphi \varphi}$ from exercise 26 . Show that in dimensional regularization with $D=4-2 \varepsilon$, the amplitude of this process is then given by

$$
i \mathcal{A}=g^{2}\left(\mu^{2}\right)^{(4-D) / 2} \int \frac{d^{D} l}{(2 \pi)^{D}} \frac{1}{\left[l^{2}-m_{1}^{2}+i \epsilon\right]\left[(l+p)^{2}-m_{2}^{2}+i \epsilon\right]}
$$

where again $\epsilon \rightarrow 0^{+}$is introduced to push the contour of the integral into the complex plane.
(b) By introducing a Feynman parameter u, show that the product of two denominators A and B can be written as

$$
\frac{1}{A B}=\int_{0}^{1} \frac{d u}{[u A+(1-u) B]^{2}}
$$

(c) The one-loop two-point integral B_{0} in D dimensions is defined as

$$
B_{0}\left(p^{2} ; m_{1}^{2}, m_{2}^{2}\right) \equiv(2 \pi \mu)^{4-D} \int \frac{d^{D} l}{i \pi^{2}} \frac{1}{\left[l^{2}-m^{2}+i \epsilon\right]\left[(l+p)^{2}-m^{2}+i \epsilon\right]}
$$

Show that up to $\mathcal{O}\left(\varepsilon^{0}\right)$, the integral can be cast into the form

$$
B_{0}\left(p^{2} ; m_{1}^{2}, m_{2}^{2}\right)=\frac{1}{\varepsilon}-\int_{0}^{1} d u\left[\ln \left(\frac{\Delta_{u}}{Q^{2}}\right)\right]
$$

where Δ_{u} is defined as

$$
\Delta_{u} \equiv u^{2} p^{2}-u\left(p^{2}+m_{1}^{2}-m_{2}^{2}\right)+m_{1}^{2}-i \epsilon
$$

Hint: Use the result from part (b) to rewrite the denominators. Perform a Wick rotation to switch the four-vector l to a Euclidean metric and then again use the results from exercise 25. Since ϵ is small, you can neglect products $u \epsilon$ so that ϵ appears only once in the rewritten denominator.
Remark: The two-point integral B_{0} has an analytic solution in closed form. The derivation of this solution is beyond the scope of this exercise, but the explicit result up to $\mathcal{O}\left(\varepsilon^{0}\right)$ is given in the appendix of the lecture script.
(d) Express your result from part (a) through the integral B_{0} and show that the amplitude is then given by

$$
i \mathcal{A}=\frac{i g^{2}}{16 \pi^{2}} B_{0}\left(p^{2} ; m_{1}^{2}, m_{2}^{2}\right)
$$

