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Exercise 25: Integration in D dimensions (P) (2+5+3 = 10 points)

Many processes beyond the tree level involve integrals which formally diverge. In order
to regularize these divergences, we can use dimensional regularization. The idea is simple:
we perform the integration in D = 4 − 2ε instead of 4 dimensions. The term ε serves as
the regulator and exposes the divergence when taking the limit ε→ 0. In this exercise, we
want to compute some ingredients needed for a computation of a one-loop integral.

(a) Show that the area of a unit sphere in D dimensions is given by∫
dΩD =

2πD/2

Γ(D/2)
,

where Γ(x) denotes the Euler gamma function. Consider the following special values,
D ∈ {1, 2, 3}, and check the consistency of your results.

(b) The Euler gamma function Γ(x) has simple poles at the non-positive integers. By
analytically continuing the recursion relation Γ(x+ 1) = xΓ(x) for all values (apart
from the non-positive integers), show that the expansions of Γ(x) near the poles
x = ε ≈ 0 and x = ε− 1 ≈ −1 (with ε being small) are given by

Γ(ε) =
1

ε
− γE +

1

2

[
γ2

E + ζ(2)
]
ε+O(ε2) (for ε→ 0) ,

Γ(ε− 1) = −1

ε
+ γE − 1 +

[
γE − 1− γ2

E

2
− ζ(2)

2

]
ε+O(ε2) (for ε→ 0) ,

where γE is the Euler-Mascheroni constant and ζ(x) is the Euler-Riemann ζ function.
Hint: There are several ways to perform this proof. One way is to rewrite the recur-

sion relation in such a way that the digamma function ψ(x) ≡ Γ
′
(x)

Γ(x)
= 1

Γ(x)
∂
∂x

Γ(x)

and the trigamma function ψ1(x) = ∂
∂x
ψ(x) explicitly appear in the recursion relati-

on and to use their special values ψ(1) = −γE and ψ1(1) = ζ(2) and the recurrence



formulas ψ(x + 1) = ψ(x) + 1/x and ψ1(x + 1) = ψ1(x) − 1/x2. Another way is to
use a specific representation of the gamma function, e.g. a representation over an
infinite sum, and to expand this representation near the poles. If you decide for such
a way, you have to proof the validity of the representation that you choose.

(c) Show that ∫
dDlE
(2π)D

1

(l2E + ∆)n
=

1

(4π)D/2
Γ
(
n− D

2

)
Γ(n)

(
1

∆

)n−D
2

,∫
dDlE
(2π)D

l2E
(l2E + ∆)n

=
1

(4π)D/2
D

2

Γ
(
n− 1− D

2

)
Γ(n)

(
1

∆

)n−1−D
2

,

where n ∈ N\{0}, lE denotes a Euclidean four-vector, i.e. l2E = l20 + l21 + l22 + ... , and
∆ > 0.
Hint: Integrate in D-dimensional spherical coordinates and use the result from part
(a). Additionally, use the definition of the Euler beta function

B(α, β) ≡
∫ 1

0

dx xα−1(1− x)β−1 =
Γ(α)Γ(β)

Γ(α + β)
.

Exercise 26: The one-loop one-point integral A0 (P) (1+2+1+1 = 5 points)

In this exercise, we consider the simplest one-loop Feynman diagram, the tadpole diagram,
shown in the figure below, in the framework of dimensional regularization.

We consider ϕ3 theory for a scalar field ϕ with non-negative mass m. The trilinear self-
coupling of the scalar field is given as λϕϕϕ = ig and the propagator of the massive scalar
field with momentum p is simply i

p2−m2 .

(a) Show that the amplitude of the one-loop tadpole diagram in D = 4−2ε dimensions
is given by

iA = −g(µ2)(4−D)/2

∫
dDl

(2π)D
1

l2 −m2 + iε
.

where µ has the dimension of mass and ε → 0+ shifts the root of the denominator
into the complex plane.



Remark: Please note the difference between the dimension regulator ε and the shift
of the contour ε!

(b) The one-loop one-point integral A0 in D dimensions is defined as

A0(m2) ≡ (2πµ)4−D
∫
dDl

iπ2

1

l2 −m2 + iε
.

Show that in D = 4 − 2ε dimensions, up to O(ε), the integral gives the following
result:

A0(m2) =
m2

ε
+m2

[
1− ln

(
m2

Q2

)]
+m2

[
ζ(2)

2
+

1

2
ln

(
m2

Q2

)2

− ln

(
m2

Q2

)
+ 1

]
ε ,

where Q2 ≡ 4πµ2e−γE is the so-called regularization scale.
Hint: Perform a Wick rotation, i.e. rotate the timelike component l0 of the four-
vector l onto the imaginary axis in order to rotate l into Euclidean space. Then, use
the results from exercise 25.

(c) Calculate the massless limit, i.e. m2 → 0, of your results from part (b).

(d) Express the amplitude from part (a) through the integral A0 and show that the full
amplitude of the one-loop tadpole diagram, up to O(ε0), is given by

iA = − ig

16π2

{
m2

ε
+m2

(
1− ln

(
m2

Q2

))}
Remark: As you can see, the full amplitude diverges for ε→ 0, but due to dimensio-
nal regularization, the divergence could be isolated and regulated. As for many other
diagrams, this so-called UV divergence now has to be treated with a renormalization
procedure to give finite results. You will discuss renormalization in more detail in
TTP 2.

Exercise 27: The one-loop two-point integral B0 (P) (1+1+2+1 = 5 points)

Analogous to exercise 26, we again consider ϕ3 theory with the Feynman rules as before.
Now, we consider the following self-energy diagram with incoming momentum p:



(a) Assume that the two internal scalar particles have two different masses m1 and
m2, but the trilinear coupling constant is still λϕϕϕ from exercise 26. Show that in
dimensional regularization with D = 4 − 2ε, the amplitude of this process is then
given by

iA = g2(µ2)(4−D)/2

∫
dDl

(2π)D
1

[l2 −m2
1 + iε] [(l + p)2 −m2

2 + iε]
,

where again ε → 0+ is introduced to push the contour of the integral into the
complex plane.

(b) By introducing a Feynman parameter u, show that the product of two denominators
A and B can be written as

1

AB
=

∫ 1

0

du

[uA+ (1− u)B]2
.

(c) The one-loop two-point integral B0 in D dimensions is defined as

B0(p2;m2
1,m

2
2) ≡ (2πµ)4−D

∫
dDl

iπ2

1

[l2 −m2 + iε] [(l + p)2 −m2 + iε]
.

Show that up to O(ε0), the integral can be cast into the form

B0(p2;m2
1,m

2
2) =

1

ε
−
∫ 1

0

du

[
ln

(
∆u

Q2

)]
,

where ∆u is defined as

∆u ≡ u2p2 − u(p2 +m2
1 −m2

2) +m2
1 − iε .

Hint: Use the result from part (b) to rewrite the denominators. Perform a Wick
rotation to switch the four-vector l to a Euclidean metric and then again use the
results from exercise 25. Since ε is small, you can neglect products uε so that ε
appears only once in the rewritten denominator.
Remark: The two-point integral B0 has an analytic solution in closed form. The
derivation of this solution is beyond the scope of this exercise, but the explicit result
up to O(ε0) is given in the appendix of the lecture script.

(d) Express your result from part (a) through the integral B0 and show that the ampli-
tude is then given by

iA =
ig2

16π2
B0(p2;m2

1,m
2
2) .


