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Exercise 29: Furry’s theorem (P) (4 + 2 = 6 bonus points)

We consider the following tadpole diagrams of a vector boson V :
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The generic Feynman rules for the couplings of the vector boson with the fermions Fi,
scalars Si and (other) vector bosons Vi,µ are given by

λ(Vµ, F1, F2) = c−γµω− + c+γµω+ ,

λ(Vµ, S(p1), S(p2) = cS(p1 − p2)µ ,
λ(V1,µ(p1), V2,ν(p2), V3,ρ(p3)) = cV [gµν(p2 − p1)ρ + gνρ(p3 − p2)µ + gρµ(p1 − p3)ν ] ,

where cS, cV and c∓ are coupling constants and for all momentum-dependent Feynman
rules, the momenta pi are all flowing into the vertex by convention.

(a) Calculate all tadpole diagrams shown in the Feynman diagrams above and show
that each of these diagrams vanishes separately.
Hint: Use a symmetry argument to show that the one-loop integrals must vanish.

(b) If we consider QED where the vector boson is the photon, V = γ, our result from (a)
is a special case of Furry’s theorem which states that Feynman diagrams consisting
of an odd number of external photons must vanish. Prove Furry’s theorem by using
a symmetry argument in the Lagrangian of QED.
Hint: in QED, the electromagnetic current jµ is odd under charge conjugation C,
i.e. CjµC† = −jµ, while the vacuum is invariant, C |0〉 = |0〉.



Exercise 30: The two-point integral B0, continued (7 + 7 = 14 bonus points)

In exercise 27(c), you have shown that the one-loop two-point integral B0 can be written
as
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where the regularization scale was given by Q2 = 4πµ2e−γE and
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As it was mentioned in exercise 27, the remaining integration over the logarithm can be
performed and a solution of the integral in closed form can be derived. In this exercise, we
want to perform this final integration and find the analytic solution of the integral.

(a) Show that the analytic solution of the B0 integral up to O(ε0) is given by
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where the roots x1/2 are given by
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Remark: Note that depending on the kinematic configuration of the integral, i.e.
depending on the values of p2, m2

1 and m2
2, the argument of the logarithm can become

negative. In these cases, the shift ε→ 0+ of the integration contour gives a unique
prescription which side of the branch cut of the logarithm you have to choose, so
that the imaginary part of B0 is uniquely defined.
Hint: The logarithm in the integral has a branch cut along the negative real axis.
With this convention, you can write the logarithm of a product of two complex
numbers a, b ∈ C as

ln(ab) = ln a+ ln b+ η(a, b) ,

η(a, b) ≡ 2πi [Θ (−Im(a)) Θ (−Im(b)) Θ (Im(ab))−Θ (Im(a)) Θ (Im(b)) Θ (−Im(ab))] .

As an important consequence, you can use the following relations without a proof:

ln(ab) = ln a+ ln b , (if Im(a) and Im(b) have different sign) ,

ln
(a
b

)
= ln a− ln b , (if Im(a) and Im(b) have the same sign) .



(b) For some special kinematic configurations, the solution of the integral simplifies
significantly. Prove the following results for some of these special kinematic confi-
gurations:
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Hint: Use the appropriate Taylor expansion in x1/2.


