

DM Collider Searches

Introduction

Jonas Müller | 8.7.2019

INSTITUT FÜR THEORETISCHE PHYSIK (ITP)

KIT - The Research University in the Helmholtz Association

Outline

Motivation/Expectation

2 Approaches

Motivation/Expectation

Approaches

Top-Down

Bottom-Up

Jonas Müller - DM Collider Searches

2 Approaches

Motivation/Expectation

Approaches

Top-Down

- If DM is a fundamental new particle and interacts with SM particles
 - Production in collider is possible
 - Decay chains into DM particles are possible

Motivation/Expectation

Approaches

What can we expect?

Suppose we have

•
$$\dot{\mathcal{L}} = 5 \cdot 10^{33} cm^{-2} s^{-1}$$

- $m_{\chi} = 100 \text{ GeV}$ and $\sigma_{LHC} = G_F^2 m_{\chi}^2$
- Isotropic production in an distante R = 10cm
- $\rho_{DM} = 0.3 \text{ GeV}/cm^3$ and $v_{DM} = 220 km/s$

$$egin{aligned} \Phi_{LHC} &= 4\pi R^2 \dot{\mathcal{L}} \sigma_{LHC} \sim 10^4 \textit{cm}^2/\textit{s} \ \Phi_{halo} &= rac{
ho_{DM}}{m_\chi} \pi R^2 v_{DM} \sim 10^9 \textit{cm}^2/\textit{s} \end{aligned}$$

 \Rightarrow The expected flux in the LHC collider is much smaller than the halo flux!

Motivation/Expectation

Approaches

Top-Down

Bottom-Up

Motivation/Expectation

Approaches

Top-Down

Bottom-Up

Jonas Müller - DM Collider Searches

General Approaches

Extend the Standard Model

- top-down approach
- bottom-up approach

top-down Approach

Motivation/Expectation

Approaches

Top-Down

bottom-up Approach - EFT

bottom-up Approach - Simplified Models

2 Approaches

Motivation/Expectation

Approaches

Top-Down

Top-Down Approach - SUSY

Approaches

Top-Down Approach - SUSY

SUPERSYMMETRY

Motivation/Expectation

Approaches

Top-Down

10/37

Neutralino is a mixing state of the gauge and Higgs boson superpartners

$$\begin{pmatrix} \tilde{\chi}_1^0 \\ \tilde{\chi}_2^0 \\ \tilde{\chi}_3^0 \\ \tilde{\chi}_4^0 \end{pmatrix} = N \cdot \begin{pmatrix} \tilde{W}^0 \\ \tilde{B}^0 \\ \tilde{H}_a^0 \\ \tilde{H}_b^0 \end{pmatrix}$$

the lightest neutralino $\tilde{\chi}_1^0$ is the stable DM candidate!

LEP - Searches

Z-Pole Measurement

• $\sqrt{s} \sim m_Z$

- Measurement of the total width $\Delta\Gamma_Z$
- Looking for events with high missing transverse momentum/energy
- Allows for an upper bound of ΔΓ_{inv}

 \Rightarrow Bound on $\Delta\Gamma_{inv}$ translates on an lower bound on $m_{\chi}!$

$$\tilde{f} \rightarrow f + \tilde{\chi}_1^0$$

ĸ	Acti	wati	ioni	EV	noot	nti	on
5	101	vau	011/	L^	peu	au	UII

Jonas Müller – DM Collider Searches

8.7.2019

Bottom-Up 13/37 **LEP-Results**

$$\tilde{f} \to f + \tilde{\chi}_1^0$$

Motivation/Expectation

Approaches

Top-Down

LHC - Searches

- More Energy, but more problems!
- General Idea of the searches:
 - Take your favorite model (e.g. MSSM,NMSSM...)
 - Calculate the production crosssection, branching ratios...
 - Generate an event simulation based on the model (and for the detector!)
 - Generate an event simulation with SM only (background)
 - Apply smart parameter cuts to maximise S/B
 - Hope for a detectable signal!
- Typical DM signatures:
 - High ∉_T
 - Mono-X signatures
- The art of the parameter cuts
 - Boosted Decision Trees (BDTs)
 - Deep Learning (DL)

Example Search Process

Approaches

BDT/DL

Approaches

Top-Down

Bottom-Up

What is used to select events?

- Event Topologies (0-jet,1-jet,...)
- *p_T* cuts
- Invariant mass distributions

Motivation/Expectation

BDT/DL

Exclusion Limits for lightest neutralino and slepton masses

Exclusion Summary-ATLAS

ATLAS Preliminary

 $\sqrt{s} = 13 \text{ TeV}$ B-4----

ATLAS SUSY Searches* - 95% CL Lower Limits

Ма		20	19
		lo di	
	- M	od	- I.

	Model	Signature	∫£ di [ſb'	1 Mass limit		Reference
	$\tilde{q}\tilde{q}, \tilde{q} \rightarrow q \tilde{t}_{1}^{D}$	0 e. µ 2-6 jets P mono-jet 1-3 jets P	57 tm 36.1		0.9 1.55 m(t ²)<100 GeV 0.71 mijm(t ²)=5 GeV	1712.02332 1711.03301
archei	$\tilde{g}\tilde{g},\;\tilde{g}{\rightarrow} q \tilde{g} \tilde{f}^0_1$	0 e, µ 2-6 jets I	57 36.1	2	2.0 m(t ²)<200 GeV Forbidden 0.95-1.6 m(t ²)=500 GeV	1712.02332 1712.02332
ie Sei	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow q \tilde{g}(\ell \ell) \tilde{k}_{1}^{0}$	3 e.μ 4 jets ee.μμ 2 jets į	36.1 7 35.1	8	1.85 m(ℓ ₁ ²)<500 GeV 1.2 m(ℓ)m(ℓ ₁ ²)=50 GeV	1706.03731 1805.11381
octural	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow qqWZ\tilde{t}_{1}^{0}$	0 ε,μ 7-11 jets <u>/</u> 3 ε,μ 4 jets	57 36.1 36.1	2	1.8 m(t_1) <400 GeV 0.96 m(t_1)-200 GeV	1708.02794 1706.03731
-	$gg, g \rightarrow n \overline{t}_1^0$	0-1 <i>e.μ</i> 3 <i>b</i> I 3 <i>e.μ</i> 4jets	27 79.8 7 36.1	2 2	2.25 m(t_1)+200 GeV 1.25 m(t_1)+300 GeV	ATLAS-CONF-2018-041 1706.00731
	$\tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \rightarrow 6 \tilde{\xi}_1^0 / t \tilde{\xi}_1^\pm$	Multiple Multiple Multiple	36.1 36.1 35.1	δ ₁ Forbidden δ ₁ Forbidden δ ₁ Forbidden	0.9 m(t ²)-300 GeV, BR(1k ²)-1 0.58-0.82 m(t ²)-300 GeV, BR(1k ²)-1 0.7 m(t ²)-300 GeV, BR(1k ²)-1	1708.09266.1711.03301 1708.06266 1706.03731
arks	$b_1b_1, b_1 \rightarrow b\ell_2^0 \rightarrow bb\ell_1^0$	0 e, µ 6 b E	57 ^{min} 139	δ ₁ Forbidden δ ₁ 0.23-0.44	0.23-1.35 Δm(t ² ₁ , t ² ₁)=130 GeV, m(t ² ₁)=100 GeV Δm(t ² ₂ , t ² ₁)=130 GeV, m(t ² ₁)=10 GeV	SUSY2018-31 SUSY2018-31
pp of	$\tilde{t}_1\tilde{t}_1, \tilde{t}_1 \rightarrow Wh\tilde{t}_1^0$ or $t\tilde{t}_1^0$	0-2 e, µ 0-2 jets/1-2 b I	97 36.1	T ₁	1.0 m(t ⁰ ₁)=1 GeV	1505.08616, 1709.04183, 1711.11520
d b	i ₁ i ₁ , Well-Tempered LSP i ₁ i ₁ , i ₁ → i ₁ i ₂ i ₂ → i ² i ₁ → i ₁ i ₂ → i ₂ i ₂ → i ² i ₁ → i ₂ i ₂ → i ₂ → i ₂ i ₂ → i ₂ i ₂ → i ₂ → i ₂ → i ₂ i ₂ → i ₂ i ₂ → i ₂ → i ₂ i ₂ i ₁ i ₂ i	Multiple	35.1 cmin 35.4	7, 2.	0.48-0.84 m(l ²)=150GeV, m(l ²)=15 GeV, i ₁ = i ₁	1709.04183, 1711.11520
3.r	$\tilde{i}_1\tilde{i}_1, \tilde{i}_1 \rightarrow c\tilde{k}_1^D / \tilde{i}\tilde{i}_1, \tilde{i} \rightarrow c\tilde{k}_1^D$	0 e, µ 2 c I	77 00.1	2	0.85 m(i)=0.6eV	1805.01649
		0 c.v. mono-iet /		ζ ₁ 0.46 ζ. 0.43	m(i, i) m(i ²)=50 GeV	1805.01649
	$\tilde{t}_2\tilde{t}_2, \tilde{t}_2 \rightarrow \tilde{t}_1 + h$	1-2 e.µ 4.b I	57 ^{to} 36.1	h	0.32-0.85 m((²))=0 GeV. m(²))=180 GeV	1706.03886
	$\hat{x}_1^* \hat{x}_2^0$ via WZ	$2 \cdot 3 \epsilon, \mu$ I $\epsilon \epsilon, \rho \mu \ge 1$ I	96.1 7 36.1	$\frac{\hat{x}_{1}^{b}\hat{x}_{2}^{b}}{\hat{x}_{1}^{b}\hat{x}_{2}^{b}} = 0.17$	0.6 m(t ²)=0 m(t ²)=10 GeV	1403.5294, 1806.02293 1712.08119
	$\hat{\chi}_1^{\pm}\hat{\chi}_1^{\mp}$ via WW	2 e, µ 1	57 ^{mint} 139	x [*] ₁ 0.42	$m(\hat{v}_1^0) = 0$	ATLAS-CONF-2019-008
	$\hat{x}_1^* \hat{x}_2^0$ via Wh	0-1 e, µ 2 b l	7 36.1	$\ddot{x}_{1}^{a} \beta \ddot{x}_{2}^{b}$	0.68 m(t [*] ₁)=0	1812.09432
≥ to	$\chi_1^+\chi_1^- \operatorname{via} \ell_L/p$ $\chi_2^+\chi_1^- \chi_2^0 \chi^+ \text{and } \chi_1^0 \text{and } \chi_2^0$	21, μ 1	(mko 36.1	X1 01/09	1.0 m(/,i)=0.5(m(f_1)=m(f_1)) 0.75 m(f_1)=0.5(m(f_1)=m(f_1))	ATLAS CONF 2019 008 1709 07975
5	$x_1x_1/x_2, x_1 \rightarrow \tau_1v(\tau v), x_2 \rightarrow \tau_1\tau(vv)$	21	-7 30.1	x1/x2 x1/x2 0.22	$m(\tilde{t}_1)m(\tilde{t}_1)m(\tilde{t}_1)m(\tilde{t}_1)m(\tilde{t}_1)m(\tilde{t}_1)m(\tilde{t}_1)$ $m(\tilde{t}_1)m(\tilde{t}_1)m(\tilde{t}_1)m(\tilde{t}_1)m(\tilde{t}_1)m(\tilde{t}_1)m(\tilde{t}_1)$	1708.07070
	$\tilde{t}_{1,R}\tilde{t}_{1,R}, \tilde{t} \rightarrow \ell \tilde{t}_1^0$	2 e,μ 0 jets I 2 e,μ ≥ 1 I	139 57 36.1	7 7 0.18	0.7 m($\tilde{t}^{+}_{1} =0$ m($\tilde{t})$ -m($\tilde{t}^{+}_{1} =5$ GeV	ATLAS-CONF-2019-008 1712.08119
	$\bar{H}\bar{H}, \bar{H} \rightarrow h\bar{G}/Z\bar{G}$	$0 e, \mu \ge 3 b$ I $4 e, \mu$ 0 jets I	57 ^{4m} 36.1 57 ^{44m} 36.1	B 0.13-0.23 B 0.3	0.29-0.85 $BR(\tilde{t}_{1}^{0} \rightarrow k\tilde{G})=1$ $BR(\tilde{t}_{1}^{0} \rightarrow Z\tilde{G})=1$	1806.04030 1804.09802
lived	$\operatorname{Direct} \hat{x}_1^* \hat{x}_1^- \operatorname{prod.}, \operatorname{long-lived} \hat{x}_1^+$	Disapp. trk 1 jet /	57 ^{min} 36.1	x ¹ x ¹ ₁ 0.15	Pure Wito Pure Higgsino	1712.02118 ATL-PHYS-PUB-2017-019
pit	Stable ¿ R-hadron	Multiple	36.1	8	2.0	1902.01636,1808.04095
20	Metastable \tilde{g} R-hadron, $\tilde{g} \rightarrow qq \tilde{\chi}_1^0$	Muttiple	36.1	g [r(g) =10 ms, 0.2 ms]	2.05 2.4 m(f_1)=103 GeV	1710.04901,1508.04095
	LFV $pp \rightarrow \tilde{v}_{\tau} + X, \tilde{v}_{\tau} \rightarrow e\mu/e\tau/\mu\tau$	ep,et,ot	3.2	5,	1.9 J ₁₁ =0.11, J ₁₂₃₃₃₀₃₀₀ =0.07	1607.08079
	$\hat{\chi}_{1}^{\pm}\hat{\chi}_{1}^{\mp}/\hat{\chi}_{2}^{0} \rightarrow WW/ZUUUrv$	4 e,μ 0 jets I	Synton 36.1	$\hat{\chi}_{1}^{*}[\hat{\chi}_{2}^{0} = [\lambda_{33} \neq 0, \lambda_{13} \neq 0]$	0.62 1.33 m(t ²)=100 GeV	1604.00902
	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow qg\tilde{\eta}_{1}^{0}, \tilde{\chi}_{1}^{0} \rightarrow qgq$	4-5 large- <i>R</i> jets	36.1	2 [m(£]]=200 GeV, 1100 GeV]	1.3 1.9 Large J ₁₁₂	1804.00568
J.C.	W Y	Multiple	30.1	3 U" -2nd to 21	1.0 H(r)-200 Get, 505 He	AT AS CONF 2018-003
-	$n, r \rightarrow m_1, x_1 \rightarrow m_2$ $\tilde{h}\tilde{h}_1, \tilde{h}_1 \rightarrow b_2$	2 jets + 2 b	36.7	h [es. b) 0.42	0.61	1710.07171
	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow q t$	2 ε.μ 2 b 1 μ DV	36.1 136	$\vec{t}_1 = [10\cdot10< \vec{x}_{20} < 10\cdot0, 30\cdot10< \vec{x}_{20} < 30\cdot0]$	0.4+1.45 BR[i ₁ →b ₇ /h ₀)>29% 1.0 1.6 BR[i ₁ →b ₇ /h ₀)>20%	1710.06544 ATLAS CONF-2019-006
*Only pher	a selection of the available mas omena is shown. Many of the li	s limits on new states o mits are based on	or 1	0-1	1 Mass scale [TeV]	

Motivation/Expectation

Approaches

Top-Down

Bottom-Up

21/37

Exclusion Summary-ATLAS

A M	TLAS SUSY Sear arch 2019 Model	rches*	- 95% Signatur	6 Cl	_ Lo [*] 	wer Limits	lass limit				ATLAS Preliminary $\sqrt{s} = 13 \text{ TeV}$ Reference
10	$\hat{q}\hat{q}, \hat{q} \rightarrow q \hat{t}_{1}^{0}$	0 e, μ mono-jet	2-6 jets 1-3 jets	E_T^{min} E_T^{min}	36.1 36.1	₽ [2x, 6x Degen.] ₽ [1x, 6x Degen.]	0.43	0.9	1.55	$\begin{array}{c} m(\tilde{x}_{\perp}^0){<}100~GeV\\ m(\tilde{x}_{\perp}^0){=}5~GeV \end{array}$	1712.02332 1711.03301
arche	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow q \tilde{q} \tilde{t}_1^0$	$0 \ e, \mu$	2-6 jets	E_T^{\min}	36.1	R R		Forbidden	2.0 0.95-1.6	m(\tilde{k}_{1}^{0})<200 GeV m(\tilde{k}_{1}^{0})=900 GeV	1712.02332 1712.02332
e Se	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow q\tilde{q}(\ell\ell)\tilde{k}_{1}^{0}$	3 e, μ ee, μμ	4 jets 2 jets	E_T^{miso}	36.1 36.1	2 2			1.85	m(ℓ ⁰ ₁)<800 GeV m(ℓ)-m(ℓ ⁰ ₁)=50 GeV	1706.03731 1805.11381
clush	$gg, g {\rightarrow} qq WZ \tilde{t}_1^0$	0 e.µ 3 e.µ	7-11 jots 4 jets	E_T^{miss}	36.1 36.1	it it		0.98	1.0	m(\tilde{t}_1^0) <400 GeV m(\tilde{t})=200 GeV	1708.02794 1706.03731
ų.	$\hat{g}\hat{g}, \hat{g} {\rightarrow} a \hat{t} \hat{t}_1^0$	0-1 e.μ 3 e.μ	3 b 4 jets	$E_7^{\rm miss}$	79.8 36.1	2 2			1.25	25 m(\hat{r}_1^0)<200 GeV m(\hat{r}_1^0)=300 GeV	ATLAS-CONF-2018-041 1706.03731
	$b_1b_1, b_1{\rightarrow} \delta \ell_1^0/\iota \ell_1^+$		Multiple Multiple Multiple		36.1 36.1 36.1	kı Forbidde kı kı	n Forbidden Forbidden	0.9 0.58-0.82 0.7	m)	$\begin{split} m(\tilde{t}^0_1) {=} 300 \ GeV, \ BR(k\tilde{t}^0_1) {=} 1 \\ m(\tilde{t}^0_1) {=} 300 \ GeV, \ BR(k\tilde{t}^0_1) {=} BR(\tilde{t}^0_1) {=} 0.5 \\ \tilde{t}^0_1) {=} 200 \ GeV, \ m(\tilde{t}^0_1) {=} 300 \ GeV, \ BR(\tilde{t}^0_1) {=} 1 \end{split}$	1766.09266, 1711.03301 1738.09266 1736.03731
unks	$b_1 \bar{b}_1, \bar{b}_1 \rightarrow b \bar{\ell}_2^0 \rightarrow b b \bar{\ell}_1^0$	$0 \ e, \mu$	6 6	E_T^{miss}	139	h Forbidden	0.23-0.48	0	.23-1.35	$\Delta m(\tilde{t}_{2}^{0}, \tilde{t}_{1}^{0}) = 130 \text{ GeV}, m(\tilde{t}_{1}^{0}) = 100 \text{ GeV}$ $\Delta m(\tilde{t}_{2}^{0}, \tilde{t}_{1}^{0}) = 130 \text{ GeV}, m(\tilde{t}_{1}^{0}) = 0 \text{ GeV}$	SUSV2018-31 SUSV2018-31
gen. sq.	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow Wb \tilde{t}_1^0 \text{ or } s \tilde{t}_1^0$ $\tilde{t}_1 \tilde{t}_1, \text{ Well-Tempered LSP}$ $\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow \tilde{t}_1 bv, \tilde{t}_1 \rightarrow \tau \tilde{G}$	0-2 e.μ 1 r + 1 e.μ.	0-2 jets/1-2 Multiple r 2 jets/1 6	$b E_T^{min}$ E_T^{min}	36.1 36.1 36.1	h h h		0.48-0.84	m)	$m(\tilde{t}_{1}^{0})=1 \text{ GeV}, m(\tilde{t}_{1}^{0})=m(\tilde{t}_{1}^{0})=5 \text{ GeV}, \tilde{t}_{1} \approx \tilde{t}_{2}$ $m(\tilde{t}_{1})=800 \text{ GeV}.$	1506.06616, 1709.04183, 1711.11520 1709.04183, 1711.11520 1803.10178
9.9	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow e \tilde{k}_1^0 / \bar{e} \tilde{e}, \tilde{e} \rightarrow e \tilde{k}_1^0$	0 e.μ 0 e.μ	2 c mono-jet	E_7^{min} E_7^{min}	36.1 36.1	ž Ž ₁ Ž ₁	0.46 0.43	0.85		$m(\tilde{t}_{1}^{0})=0 \text{ GeV}$ $m(\tilde{t}_{1}, 2) \cdot m(\tilde{t}_{1}^{0})=50 \text{ GeV}$ $m(\tilde{t}_{1}, 2) \cdot m(\tilde{t}_{1}^{0})=5 \text{ GeV}$	1805.01649 1805.01649 1711.03301
	$\tilde{t}_2 \tilde{t}_2, \tilde{t}_2 \rightarrow \tilde{t}_1 + h$	$1\text{-}2~e,\mu$	4 b	$E_T^{\rm miss}$	36.1	l2		0.32-0.88		$m(\hat{t}_1^0)=0$ GeV, $m(\hat{t}_1)-m(\hat{t}_1^0)=190$ GeV	1706.03986
	$\hat{\chi}_1^\pm \hat{\chi}_2^0$ via WZ	2-3 e, µ ee, µµ	21	E_T^{min} E_T^{min}	36.1 36.1	$\hat{\chi}_{1}^{+}/\hat{\chi}_{1}^{+}$ $\hat{\chi}_{1}^{+}/\hat{\chi}_{1}^{+}$ 0.17		0.6		m(t ²)=0 m(t ²)=n(t ²)=10 GeV	1403.5294, 1806.02293 1712.05119
	$\hat{x}_1^*\hat{x}_1^*$ via WW	$2 e, \mu$		E_T^{min}	139	\hat{X}_{1}^{k}	0.42			m(t ²)=0	ATLAS-CONF-2019-008
	X1X2 via Wh	0-1 e.µ	2.6	Erria	36.1	$\hat{\chi}_{1}^{*} \hat{\chi}_{1}^{*}$		0.68		n(î';)+0	1812.09432
EW	$\begin{array}{l} \hat{x}_1 \hat{x}_1 \ \text{via} \ \hat{t}_2 / \nu \\ \hat{x}_1^* \hat{x}_1^\top / \hat{x}_2^0 , \hat{x}_1^+ {\rightarrow} \hat{\tau}_1 \nu (r \hat{v}), \hat{x}_2^0 {\rightarrow} \hat{\tau}_1 r (\nu \hat{v}) \end{array}$	27		E_7^{min}	36.1	$\frac{\dot{x}_{1}}{\dot{x}_{1}^{*}/\dot{x}_{1}^{*}}$ $\frac{\dot{x}_{1}^{*}/\dot{x}_{1}^{*}}{\dot{x}_{1}^{*}/\dot{x}_{1}^{*}}$ 0.22		0.76	m(t [*] _1)-n	$m(t, r)=0.5[m(t_1)+m(t_1)]$ $m(\tilde{t}_1^0)=0, m(t, r)=0.5[m(\tilde{t}_1^0)+m(\tilde{t}_1^0)]$ $n(\tilde{t}_1^0)=100$ GeV, $m(t, r)=0.5[m(\tilde{t}_1^0)+m(\tilde{t}_1^0)]$	1708.07875 1708.07875
	$\tilde{\ell}_{L,R}\tilde{\ell}_{L,R},\tilde{\ell}{\rightarrow}\ell\tilde{\chi}_1^0$	2 e, µ 2 e, µ	0 jets ≥ 1	E_T^{miss} E_T^{miss}	139 36.1	7 7 0.18		0.7		m(ž ⁰)=0 m(ž)-m(ž ⁰)=5 GeV	ATLAS-CONF-2019-008 1712.08119
	ĤĤ, Ĥ→hĜ/ZĜ	0 e, μ 4 e, μ	≥ 3 b 0 jets	$E_T^{\rm min} \\ E_T^{\rm min}$	36.1 36.1	H 0.13-0.23 H 0.	3	0.29-0.88		$BR(\hat{t}_1^0 \rightarrow hG) = 1$ $BR(\hat{t}_1^0 \rightarrow ZG) = 1$	1806.04030 1804.03602
lived cles	$\operatorname{Direct} \widehat{x}_1^* \widehat{x}_1^- \operatorname{prod}_{\sim} \operatorname{long-lived} \widehat{x}_1^+$	Disapp. trk	i 1 jet	E_T^{miss}	36.1	$\frac{\hat{k}^{4}}{\hat{k}_{1}^{4}} = 0.15$	0.46			Pure Wino Pure Higgsino	1712.02118 ATL-PHYS-PUB-2017-019
Long-	Stable ∦ R-hadron Metastable # R-hadron, #→wa ⁰		Multiple Multiple		38.1 38.1	≩ ≩ [r(ĝ) =10 ns, 0.2 ns]			2.0	2.4 m(v_1)=100 GeV	1902.01638.1808.04095 1710.04901.1808.04095
	LEV $pp \rightarrow P_{a} + X, P_{a} \rightarrow eu/et/ut$	ener ar			3.2	B.			1.9	X., +0.11, Augustum=0.07	1607.08079
	$\hat{\chi}_1^{\pm} \hat{\chi}_1^{\pm} / \hat{\chi}_2^0 \rightarrow WW/Z\ell\ell\ell\ell \nu\nu$	4 e. µ	0 jets	E_T^{min}	36.1	$\hat{X}_{1}^{\pm}/\hat{X}_{2}^{\pm} = [\hat{X}_{00} \neq 0, \hat{X}_{121} \neq 0]$		0.82	1.33	m(\$ ⁰)=100 GeV	1804.03602
~	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow qq\tilde{q}_{1}^{0}, \tilde{\chi}_{1}^{0} \rightarrow qqq$		4-5 large-R ja	ets	36.1	E [m(X ⁰)=200 GeV, 1100 GeV] E [X ⁰ = 2e,4, 2e,5]			1.3 1.9	Large A [*] ₁₁₂	1004.03568
de			Multiple		30.1	B (F =20.4 to.2)		1.0	2.0	m(r) (=200 GeV, bino-like	AT AS COMP 2018-003
-	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow bx$		2 jots + 2 /		36.7	71 [qq. bx]	0.42	0.61		ways 11/4/2010 CaleV, Disch-deal	1710.07171
	$\tilde{t}_1\tilde{t}_1, \tilde{t}_1 \rightarrow q\ell$	2 e,μ 1 μ	2 b DV		38.1 136	$\vec{t}_1 = \vec{t}_1 = [1e-10 < d_{100}^2 < 1e-8, 3e-10 < d_{100}^2]$	24 <30-9]	1.0	0.4-1.45 1.6	$\begin{array}{c} {\sf BR}(\hat{r}_{1} {\rightarrow} b_{\ell}/\hat{r}_{3} {\rm d}) {\rm >} 20\% \\ {\sf BR}(\hat{r}_{1} {\rightarrow} {\rm sgr}) {=} 100\%, \ {\rm cos} {\rm d} {\rm =} 1 \end{array}$	1710.05544 ATLAS-CONF-2019-006
Calu			new state			0-1			1	Mass scale [TeV]	

Motivation/Expectation

Approaches

Top-Down

2 Approaches

Motivation/Expectation

Approaches

Top-Down

Bottom-Up

Jonas Müller - DM Collider Searches

8.7.2019

23/37

Bottom-Up Approach - EFT

General Idea

• We want to extend the SM with minimal additional assumptions:

- Additional fundamental DM particles \rightarrow fermionic/scalar
- \mathbb{Z}_2 symmetry to ensure stability of the DM candidate
- DM interaction with the SM particles (e.g. with quarks)

$$\mathcal{L} = \mathcal{L}_{SM} + \underbrace{i\overline{\chi}\gamma_{\mu}\partial^{\mu}\chi - m_{\chi}\overline{\chi}\chi}_{DM-\text{kinetic terms}} + \underbrace{\sum_{q}\sum_{i,j}\frac{G_{qij}}{\sqrt{2}}\left[\overline{\chi}\Gamma_{i}^{\chi}\chi\right]\left[\overline{q}\Gamma_{q}^{j}q\right]}_{DM-SM \text{ interaction}}$$

$$\mathcal{L}_{int.} = \sum_{i} C_{i} \mathcal{O}_{i}$$

Approaches

Top-Down

Bottom-Up

Lowest Dimensional Operators

Label	Operator	Usual coefficient	Dimension
0 _{M1}	ΧXq̄q	$m_q/2M_*^3$	6
0 _{M2}	$\bar{\chi}i\gamma_5\chi\bar{q}q$	$m_q/2M_*^3$	6
\mathcal{O}_{M3}	$\bar{\chi}\chi\bar{q}i\gamma_5q$	$m_q/2M_*^3$	6
\mathcal{O}_{M4}	$\bar{\chi}i\gamma_5\chi\bar{q}i\gamma_5q$	$m_q/2M_*^3$	6
\mathcal{O}_{M5}	$\bar{\chi}\gamma^{\mu}\gamma_{5}\chi\bar{q}\gamma_{\mu}q$	$1/2M_{*}^{2}$	6
\mathcal{O}_{M6}	$\bar{\chi}\gamma^{\mu}\gamma_5\chi\bar{q}\gamma_{\mu}\gamma_5q$	$1/2M_{*}^{2}$	6
0 _{M7}	$ar{\chi}\chi G_{\mu u}G^{\mu u}$	$\alpha_S/8M_*^3$	7
0 _{M8}	$ar{\chi}\gamma_5\chi G_{\mu u}G^{\mu u}$	$i\alpha_S/8M_*^3$	7
0 _{M9}	$ar{\chi}\chi G_{\mu u} ilde{G}^{\mu u}$	$lpha_S/8M_*^3$	7
$\mathcal{O}_{\rm M10}$	$\bar{\chi}\gamma_5\chi G_{\mu u}\tilde{G}^{\mu u}$	$i\alpha_S/8M_*^3$	7

Table 2: Operators for Majorana DM.

Motivation/Expectation	Approaches	Top-Down		Bottom-Up
Jonas Müller – DM Collider Searches			8.7.2019	25/37

Lowest Dimensional Operators

Label	Operator	Usual coefficient	Dimension
0 _{C1}	$\phi^*\phiar q q$	m_q/M_*^2	5
0 _{C2}	$\phi^*\phiar q i\gamma_5 q$	m_q/M_*^2	5
0 _{C3}	$\phi^* i\overleftrightarrow{\partial_\mu} \phi \bar q \gamma^\mu q$	$1/M_{*}^{2}$	6
0 _{C4}	$\phi^* i \overleftrightarrow{\partial_\mu} \phi \bar{q} \gamma^\mu \gamma_5 q$	$1/M_{*}^{2}$	6
0 _{C5}	$\phi^*\phi G_{\mu u}G^{\mu u}$	$\alpha_S/4M_*^2$	6
O _{C6}	$\phi^*\phi G_{\mu u} ilde{G}^{\mu u}$	$lpha_S/4M_*^2$	6

Table 3: Operators for Complex Scalar DM.

Lowest Dimensional Operators

Label	Operator	Usual coefficient	Dimension
\mathcal{O}_{R1}	$\phi^2 \bar{q} q$	$m_q/2M_*^2$	5
\mathcal{O}_{R2}	$\phi^2 \bar{q} i \gamma_5 q$	$m_q/2M_*^2$	5
0 _{R3}	$\phi^2 G_{\mu u}G^{\mu u}$	$\alpha_S/8M_*^2$	6
$\mathcal{O}_{\mathrm{R4}}$	$\phi^2 G_{\mu u} \tilde{G}^{\mu u}$	$\alpha_S/8M_*^2$	6

Table 4: Operators for Real Scalar DM.

Let's keep things easy

Assuming fermionic DM and only vector-like DM-quark interactions

$$\Rightarrow \mathcal{O}_5 = \frac{1}{M_*} (\overline{\chi} \gamma_\mu \chi) (\overline{q} \gamma^\mu q)$$

• Pro: Only two open parameters: m_{χ}, M_*

Motivation/Expectation

Approaches

Top-Down

Bottom-Up

28/37

Mono-X Searches

- Looking for events with high missing tranverse energy (DM-particles are lost in the detection)
- Mono-X events have one particle/jet with high transverse momentum "without" anything to recoil against

irreducible background

 $\overline{q}q \rightarrow Z \rightarrow \overline{\nu}\nu$

Atlas Note-2014

Sensitivity to WIMP Dark Matter in the Final States Containing Jets and Missing Transverse Momentum

- Atlas mono-jet search to pair production of WIMP DM
- √*s* = 14TeV
- Sensitivity projection
- Monte Carlo of the background (left) and signal (right):

Motivation/Expectation

Approache

Top-Down

Bottom-Up

Sensitivity of the Atlas Analysis

- 95% CL lower limit on the suppression scale M_{*}
- Assumed 5% systematic unvertainty on the SM background
- EFT approach is assumed to be valid

Validity of the EFT

What is the range of validity of the effective theory?

The suppression scale M_{*} can be mapped to the "UV" theory with a mediator of a mass M_{med} and two couplings g_{SM}, g_{\chi} describing the coupling of the mediator to DM and SM

$$\frac{g_{SM}g_{\chi}}{Q^{2} - M_{med}^{2}} = -\frac{g_{SM}g_{\chi}}{M_{med}^{2}} \left(1 + \frac{Q^{2}}{M_{med}^{2}} + \mathcal{O}\left(\frac{Q^{4}}{M_{med}^{4}}\right)\right) \approx -\frac{1}{M_{*}^{2}}$$
$$\Rightarrow M_{*} \sim M_{med}/\sqrt{g_{SM}g_{\chi}}$$

Pair-annihilation requires

$$M_{med} > 2m_\chi$$

Perturbativity requires

 $g_{SM}g_\chi \lesssim (4\pi)^2$

Validity for

$$m_\chi \lesssim 2\pi M_*$$
 and $Q^2 \ll M_{med}$

Approaches

Top-Down

Jonas Müller - DM Collider Searches

8.7.2019

32/37

Bottom-Up Approach - Simplified Model

Motivation/Expectation

Approaches

Top-Down

Bottom-Up

Jonas Müller - DM Collider Searches

Simplified Models

- Extend the SM with additional minimal field content
 - DM: majorana/dirac fermions, real/complex scalars
 - Mediator: Scalar, Pseudoscalar, Vector ...
- Write down your favorit effective Lagrangian (renormalizable!)
 - 0s0 model: Mediator spin ightarrow 0 ; DM spin ightarrow 0

$$\mathcal{L}_{0s0} = \underbrace{\frac{1}{2} \left(\partial_{\mu}\phi\right)^{2} - \frac{1}{2}m_{\phi}^{2}\phi^{2}}_{\textit{Kinetic terms}} - \underbrace{\frac{\lambda_{\phi}}{4}\phi^{2}H^{\dagger}H}_{\textit{Higgs portal}}$$

• 0s1/2 model: Mediator spin \rightarrow 0 ; DM spin \rightarrow 1/2

$$\mathcal{L}_{0_{\mathcal{S}}Srac{1}{2}} = rac{1}{2} \left(\partial_{\mu}S
ight)^2 - rac{m_{\mathcal{S}}^2}{2}S^2 + \overline{\chi}(i\partial \!\!\!/ - m_{\chi})\chi - g_{\chi}S\overline{\chi}\chi - g_{SM}S\sum_{f}rac{y_f}{\sqrt{2}}\overline{f}h$$

• Vector Mediator: Mediator spin \rightarrow 1; DM spin \rightarrow 1/2

$$\mathcal{L}_{\textit{vec}} \supset rac{1}{2} \textit{M}_{\textit{med}}^2 \textit{V}_{\mu} \textit{V}^{\mu} - \textit{g}_{\textit{DM}} \textit{V}_{\mu} \overline{\chi} \gamma^{\mu} \chi - \sum_{q} \textit{g}_{\textit{SM}}^q \textit{V}_{\mu} \overline{q} \gamma^{\mu} q$$

Start calculating...

Motivation/Expectation

Approaches

Top-Down

Bottom-Up

Jonas Müller - DM Collider Searches

34/37

Simplified Model Results

Motivation/Expectation

Approaches

Top-Down

Bottom-Up

35/37

Conclusion

- DM collider searches are *challenging* (small fluxes, small production rates,...)
- Two general approaches for model building/searches
 - Top-down
 - + Particle Content is known
 - +/- Direct limits on model parameters
 - Each model needs a detailed and involved analysis
 - Bottom up
 - + Model-independent searches and limits!
 - Huge amount of free parameters in the EFT operators (most of the time only a subset of operators)
 - + Simplified models can handle single problems without (*unnecessary*) huge amount of workload
 - At the most shows only the direction; not the end of the story!

Thank you for your attention!

R,	Λ	~	+1.	10	lin	nl	Ev	00	~1	2	6i.,	h	
1	n	U	u	va	uυ	11/	L^	he	5	a	u	211	

Conclusion

- DM collider searches are *challenging* (small fluxes, small production rates,...)
- Two general approaches for model building/searches
 - Top-down
 - + Particle Content is known
 - +/- Direct limits on model parameters
 - Each model needs a detailed and involved analysis
 - Bottom up
 - + Model-independent searches and limits!
 - Huge amount of free parameters in the EFT operators (most of the time only a subset of operators)
 - + Simplified models can handle single problems without (*unnecessary*) huge amount of workload
 - At the most shows only the direction; not the end of the story!

Thank you for your attention!

ĸ.	Anti	is contribution		in the second		101	0.00
I/	nou	ivau	011/	CX	pec	ાત્વા	1011

Title Picture

https://www.symmetrymagazine.org/article/december-2013/ four-things-you-might-not-know-about-dark-matter

SUSY searches:

- ArXiv: hep-ex/9809031 (OPAL search)
- ArXiv:1709.05406v2 (LEP search)
- Simplified/EFT:
 - ArXiv: 1603.08002v2
 - ATL-PHYS-PUB-2014-007