How to model WIMP interactions ${\scriptstyle 000000000000}$

How to detect a WIMP anyway?

Conclusions

An introduction to direct dark matter detection

Markus Eichhorn

24th of June 2019

How to model WIMP interactions

How to detect a WIMP anyway?

Conclusions 00

DM interactions

DM must interact via gravity, but maybe there are further interactions.

Common models are

How to detect a WIMP anyway? 000000000

Conclusions 00

DM interactions

DM must interact via gravity, but maybe there are further interactions.

Common models are

Higgs exchange (Higgs portal models)

How to detect a WIMP anyway? 000000000

Conclusions 00

DM interactions

DM must interact via gravity, but maybe there are further interactions.

Common models are

- Higgs exchange (Higgs portal models)
- Z exchange

Conclusions 00

DM interactions

DM must interact via gravity, but maybe there are further interactions.

Common models are

- Higgs exchange (Higgs portal models)
- Z exchange

In this talk we focus on

Conclusions 00

DM interactions

DM must interact via gravity, but maybe there are further interactions.

Common models are

- Higgs exchange (Higgs portal models)
- Z exchange

In this talk we focus on

• WIMP DM with mass ranges $\mathcal{O}(\text{GeV})$

Conclusions 00

DM interactions

DM must interact via gravity, but maybe there are further interactions.

Common models are

- Higgs exchange (Higgs portal models)
- Z exchange

In this talk we focus on

• WIMP DM with mass ranges $\mathcal{O}(\text{GeV})$

fermionic DM

Conclusions 00

DM interactions

DM must interact via gravity, but maybe there are further interactions.

Common models are

- Higgs exchange (Higgs portal models)
- Z exchange

In this talk we focus on

- WIMP DM with mass ranges $\mathcal{O}(\text{GeV})$
- fermionic DM
- WIMP: Dirac fermion DM (no Majorana Fermion)

How to model WIMP interactions 000000000000

How to detect a WIMP anyway?

Conclusions

Astrophysical assumptions

Conclusions 00

Astrophysical assumptions

- a galactic DM halo with a Maxwell-Boltzmann velocity distribution f(v)
- ▶ escape velocity of $v_{\rm esc} \sim 500 \, {\rm km \over \rm s}$ is maximal velocity for particle DM

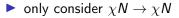
Conclusions 00

Astrophysical assumptions

- a galactic DM halo with a Maxwell-Boltzmann velocity distribution f(v)
- ▶ escape velocity of $v_{\rm esc} \sim 500 \, \frac{\rm km}{\rm s}$ is maximal velocity for particle DM
- non relativistic motion of WIMPs

Conclusions 00

Astrophysical assumptions


- a galactic DM halo with a Maxwell-Boltzmann velocity distribution f(v)
- ▶ escape velocity of $v_{\rm esc} \sim 500 \, \frac{\rm km}{\rm s}$ is maximal velocity for particle DM
- non relativistic motion of WIMPs

How to model WIMP interactions 000000000000

How to detect a WIMP anyway?

Conclusions

Assumptions for the scattering

How to model WIMP interactions ${\scriptstyle 000000000000}$

How to detect a WIMP anyway?

Conclusions

Assumptions for the scattering

- ▶ only consider $\chi N \rightarrow \chi N$
- ▶ no excitation χ' of WIMP particle

Conclusions

Assumptions for the scattering

- ▶ only consider $\chi N \rightarrow \chi N$
- no excitation χ' of WIMP particle
- ▶ also no excitation N' of the nucleus \Rightarrow small or vanishing momentum transfer in the elastic scattering process $\mathcal{O}(MeV)$

Conclusions

Kinematics of elastic scattering I before scattering

In laboratory frame we have $oldsymbol{p}_{\chi}=m_{\chi}oldsymbol{v}_{\chi}$ and $oldsymbol{p}_{\mathrm{N}}=0$

Conclusions

Kinematics of elastic scattering I before scattering

In laboratory frame we have ${m p}_\chi=m_\chi {m v}_\chi$ and ${m p}_{
m N}=0$ In CMS we have instead

$$ilde{oldsymbol{
ho}}_{\chi}=oldsymbol{
ho}_{\chi}-rac{m_{\chi}^2}{M}oldsymbol{v}_{\chi}=rac{m_{\chi}m_{
m N}}{M}oldsymbol{v}_{\chi}$$

$$ilde{oldsymbol{
ho}}_{
m N}=-rac{m_\chi m_{
m N}}{M}oldsymbol{
ho}_\chi=- ilde{oldsymbol{
ho}}_\chi$$

Conclusions

Kinematics of elastic scattering I before scattering

In laboratory frame we have ${m p}_\chi=m_\chi {m v}_\chi$ and ${m p}_{
m N}=0$ In CMS we have instead

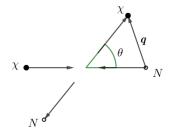
$$ilde{oldsymbol{
ho}}_{\chi}=oldsymbol{
ho}_{\chi}-rac{m_{\chi}^2}{M}oldsymbol{v}_{\chi}=rac{m_{\chi}m_{
m N}}{M}oldsymbol{v}_{\chi}$$

$$ilde{oldsymbol{
ho}}_{
m N}=-rac{m_\chi m_{
m N}}{M}oldsymbol{v}_\chi=- ilde{oldsymbol{
ho}}_\chi$$

$$\Rightarrow \tilde{\mathbf{p}}_{\chi} = \mu \mathbf{v}_{\chi}$$

Conclusions

Kinematics of elastic scattering II after scattering

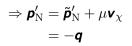

We consider elastic scattering, so $|\tilde{\pmb{p}}_{\chi}| = |\tilde{\pmb{p}}_{\chi}'|$

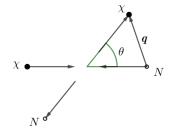
Conclusions

Kinematics of elastic scattering II after scattering

We consider elastic scattering, so $|\tilde{\boldsymbol{p}}_{\chi}| = |\tilde{\boldsymbol{p}}_{\chi}'|$ But we also have the momentum transfer $\boldsymbol{q} = \tilde{\boldsymbol{p}}_{\chi}' - \tilde{\boldsymbol{p}}_{\chi}$, and thus

$$ilde{oldsymbol{p}}_{\chi}^{\prime}=oldsymbol{q}+\muoldsymbol{v}_{\chi}=- ilde{oldsymbol{p}}_{\mathrm{N}}^{\prime}$$




Conclusions

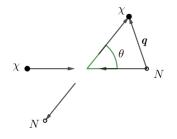
Kinematics of elastic scattering II after scattering

We consider elastic scattering, so $|\tilde{\boldsymbol{p}}_{\chi}| = |\tilde{\boldsymbol{p}}_{\chi}'|$ But we also have the momentum transfer $\boldsymbol{q} = \tilde{\boldsymbol{p}}_{\chi}' - \tilde{\boldsymbol{p}}_{\chi}$, and thus

$$ilde{oldsymbol{p}}_{\chi}^{\prime}=oldsymbol{q}+\muoldsymbol{v}_{\chi}=- ilde{oldsymbol{p}}_{\mathrm{N}}^{\prime}$$

Conclusions

Kinematics of elastic scattering II after scattering


We consider elastic scattering, so $|\tilde{\boldsymbol{p}}_{\chi}| = |\tilde{\boldsymbol{p}}_{\chi}'|$ But we also have the momentum transfer $\boldsymbol{q} = \tilde{\boldsymbol{p}}_{\chi}' - \tilde{\boldsymbol{p}}_{\chi}$, and thus

$$ilde{oldsymbol{p}}_{\chi}^{\prime}=oldsymbol{q}+\muoldsymbol{v}_{\chi}=- ilde{oldsymbol{p}}_{\mathrm{N}}^{\prime}$$

$$\Rightarrow \mathbf{p}'_{\mathrm{N}} = \widetilde{\mathbf{p}}'_{\mathrm{N}} + \mu \mathbf{v}_{\chi}$$

= $-\mathbf{q}$

where q^2 evaluates to

$$oldsymbol{q}^2 = ilde{oldsymbol{p}}_{\chi}^{\prime 2} - 2 ilde{oldsymbol{p}}_{\chi}^{\prime} ilde{oldsymbol{p}}_{\chi} + ilde{oldsymbol{p}}_{\chi}^2 \ = 2(\mu oldsymbol{v}_{\chi})^2 (1 - \cos heta)$$

How to model WIMP interactions

How to detect a WIMP anyway?

Conclusions

The recoil energy

The only momentum the nucleus carries is the momentum transfer ${\pmb q}$ thus

$$egin{split} \mathcal{E}_{\mathrm{R}} &= rac{oldsymbol{q}^2}{2m_{\mathrm{N}}} \ &= rac{\mu^2oldsymbol{v}_\chi^2}{m_{\mathrm{N}}}(1-\cos heta) \end{split}$$

How to model WIMP interactions

How to detect a WIMP anyway?

Conclusions

The recoil energy

The only momentum the nucleus carries is the momentum transfer ${\pmb q}$ thus

$$egin{aligned} \mathcal{E}_{\mathrm{R}} &= rac{oldsymbol{q}^2}{2m_{\mathrm{N}}} \ &= rac{\mu^2oldsymbol{v}_\chi^2}{m_{\mathrm{N}}}(1-\cos heta) \end{aligned}$$

Reminder

$$rac{1}{\mu}=rac{1}{m_{
m N}}+rac{1}{m_{\chi}}$$

How to model WIMP interactions

How to detect a WIMP anyway?

Conclusions

The recoil energy

The only momentum the nucleus carries is the momentum transfer ${\pmb q}$ thus

$$egin{aligned} \mathcal{E}_{\mathrm{R}} &= rac{oldsymbol{q}^2}{2m_{\mathrm{N}}} \ &= rac{\mu^2oldsymbol{v}_\chi^2}{m_{\mathrm{N}}}(1-\cos heta) \end{aligned}$$

Reminder

$$rac{1}{\mu}=rac{1}{m_{
m N}}+rac{1}{m_{\chi}}$$

▶ if $m_{\chi} \gg m_{\rm N}$ then $\mu \approx m_{\rm N}$ ▶ if $m_{\chi} \approx m_{\rm N}$ then $\mu \approx \frac{m_{\rm N}}{2}$

How to model WIMP interactions

How to detect a WIMP anyway?

Conclusions

Consequences for the detectability

If we consider $E_{
m R}^{
m th}$ such that only $E_{
m R} > E_{
m R}^{
m th}$ is detectable.

Conclusions 00

Consequences for the detectability

If we consider $E_{\rm R}^{\rm th}$ such that only $E_{\rm R} > E_{\rm R}^{\rm th}$ is detectable. The minimal velocity for a scattering angle $\theta = 180^{\circ}$ is given by

$$v_{
m min} = \sqrt{rac{m_{
m N} E_{
m R}^{
m th}}{2 \mu^2}}$$

Conclusions 00

Consequences for the detectability

If we consider $E_{\rm R}^{\rm th}$ such that only $E_{\rm R} > E_{\rm R}^{\rm th}$ is detectable. The minimal velocity for a scattering angle $\theta = 180^{\circ}$ is given by

$$v_{
m min} = \sqrt{rac{m_{
m N} E_{
m R}^{
m th}}{2 \mu^2}}$$

Since there is a maximal velocity, v_{min} needs to be low. Two options

Conclusions

Consequences for the detectability

If we consider $E_{\rm R}^{\rm th}$ such that only $E_{\rm R} > E_{\rm R}^{\rm th}$ is detectable. The minimal velocity for a scattering angle $\theta = 180^{\circ}$ is given by

$$v_{
m min} = \sqrt{rac{m_{
m N} E_{
m R}^{
m th}}{2 \mu^2}}$$

Since there is a maximal velocity, v_{\min} needs to be low. Two options

 \blacktriangleright lower threshold $E_{\rm R}^{\rm th}$

Conclusions

Consequences for the detectability

If we consider $E_{\rm R}^{\rm th}$ such that only $E_{\rm R} > E_{\rm R}^{\rm th}$ is detectable. The minimal velocity for a scattering angle $\theta = 180^{\circ}$ is given by

$$v_{
m min} = \sqrt{rac{m_{
m N} E_{
m R}^{
m th}}{2 \mu^2}}$$

Since there is a maximal velocity, v_{\min} needs to be low. Two options

- \blacktriangleright lower threshold $E_{\rm R}^{\rm th}$
- ► achieve $m_{\rm N} \approx m_{\chi}$

How to model WIMP interactions

How to detect a WIMP anyway?

Conclusions

Recoil spectrum

The recoil spectrum reads

$$\frac{\mathrm{d}R}{\mathrm{d}E_{\mathrm{R}}} = N_{\mathrm{T}}n_{\chi}\left\langle v_{\chi}\frac{\mathrm{d}\sigma}{\mathrm{d}E_{\mathrm{R}}}\right\rangle$$

How to model WIMP interactions

How to detect a WIMP anyway?

Conclusions

Recoil spectrum

The recoil spectrum reads

$$\frac{\mathrm{d}R}{\mathrm{d}E_{\mathrm{R}}} = N_{\mathrm{T}}n_{\chi}\left\langle v_{\chi}\frac{\mathrm{d}\sigma}{\mathrm{d}E_{\mathrm{R}}}\right\rangle$$

where

 \triangleright N_T the number of target nuclei

How to model WIMP interactions

How to detect a WIMP anyway?

Conclusions

Recoil spectrum

The recoil spectrum reads

$$\frac{\mathrm{d}R}{\mathrm{d}E_{\mathrm{R}}} = N_{\mathrm{T}}n_{\chi}\left\langle v_{\chi}\frac{\mathrm{d}\sigma}{\mathrm{d}E_{\mathrm{R}}}\right\rangle$$

- \blacktriangleright $N_{\rm T}$ the number of target nuclei
- n_{χ} the number density of WIMPs

How to model WIMP interactions

How to detect a WIMP anyway?

Conclusions

Recoil spectrum

The recoil spectrum reads

$$\frac{\mathrm{d}R}{\mathrm{d}E_{\mathrm{R}}} = N_{\mathrm{T}}n_{\chi}\left\langle v_{\chi}\frac{\mathrm{d}\sigma}{\mathrm{d}E_{\mathrm{R}}}\right\rangle$$

- \blacktriangleright $N_{\rm T}$ the number of target nuclei
- n_{χ} the number density of WIMPs
- Given by the local DM density and its mass $n_{\chi} = \frac{\rho_{\rm DM}}{m_{\chi}}$ with $\rho_{\rm DM} \approx 0.3 \frac{\rm GeV}{\rm cm^3}$

How to model WIMP interactions

How to detect a WIMP anyway?

Conclusions

Recoil spectrum

The recoil spectrum reads

$$\frac{\mathrm{d}R}{\mathrm{d}E_{\mathrm{R}}} = N_{\mathrm{T}}n_{\chi}\left\langle v_{\chi}\frac{\mathrm{d}\sigma}{\mathrm{d}E_{\mathrm{R}}}\right\rangle$$

- \blacktriangleright $N_{\rm T}$ the number of target nuclei
- n_{χ} the number density of WIMPs
- Given by the local DM density and its mass $n_{\chi} = \frac{\rho_{\rm DM}}{m_{\chi}}$ with $\rho_{\rm DM} \approx 0.3 \frac{\rm GeV}{\rm cm^3}$
- v_{χ} the velocity of the incoming WIMP

How to model WIMP interactions

How to detect a WIMP anyway?

Conclusions

Recoil spectrum

The recoil spectrum reads

$$\frac{\mathrm{d}R}{\mathrm{d}E_{\mathrm{R}}} = N_{\mathrm{T}}n_{\chi}\left\langle v_{\chi}\frac{\mathrm{d}\sigma}{\mathrm{d}E_{\mathrm{R}}}\right\rangle$$

- N_T the number of target nuclei
- n_{χ} the number density of WIMPs
- Given by the local DM density and its mass $n_{\chi} = \frac{\rho_{\rm DM}}{m_{\chi}}$ with $\rho_{\rm DM} \approx 0.3 \frac{\rm GeV}{\rm cm^3}$
- v_{χ} the velocity of the incoming WIMP
- $\frac{d\sigma}{dE_R}$ the differential cross section

How to model WIMP interactions 000000000000

How to detect a WIMP anyway?

Conclusions

Recoil spectrum

The recoil spectrum reads

$$\frac{\mathrm{d}R}{\mathrm{d}E_{\mathrm{R}}} = N_{\mathrm{T}}n_{\chi}\left\langle v_{\chi}\frac{\mathrm{d}\sigma}{\mathrm{d}E_{\mathrm{R}}}\right\rangle$$

where

- N_T the number of target nuclei
- n_{χ} the number density of WIMPs
- Given by the local DM density and its mass $n_{\chi} = \frac{\rho_{\rm DM}}{m_{\chi}}$ with $\rho_{\rm DM} \approx 0.3 \frac{\rm GeV}{\rm cm^3}$
- v_{χ} the velocity of the incoming WIMP
- $\frac{d\sigma}{dE_R}$ the differential cross section
- $\langle \cdot \rangle$ denotes the average over velocities

How to model WIMP interactions 000000000000

How to detect a WIMP anyway?

Conclusions

Final form of recoil spectrum

We find for a fixed velocity v

$$\mathrm{d}E_{\mathrm{R}} = \mathrm{d}\cos\theta \; \frac{\mu^2}{m_{\mathrm{N}}} v^2$$

How to model WIMP interactions

How to detect a WIMP anyway?

Conclusions

Final form of recoil spectrum

We find for a fixed velocity v

$$\mathrm{d}E_{\mathrm{R}} = \mathrm{d}\cos\theta \; \frac{\mu^2}{m_{\mathrm{N}}} v^2$$

So we find

$$\frac{\mathrm{d}R}{\mathrm{d}E_{\mathrm{R}}} = N_{\mathrm{T}} \frac{\rho_{\mathrm{DM}} m_{\mathrm{N}}}{m_{\chi} \mu^2} \int_{v_{\mathrm{min}}}^{v_{\mathrm{esc}}} \mathrm{d}^3 v \ \frac{\mathrm{f}(v)}{v} \frac{\mathrm{d}\sigma}{\mathrm{d}\cos\theta}$$

How to model WIMP interactions

How to detect a WIMP anyway?

Conclusions

Final form of recoil spectrum

We find for a fixed velocity v

$$\mathrm{d}E_\mathrm{R} = \mathrm{d}\cos\theta\;\frac{\mu^2}{m_\mathrm{N}}v^2$$

So we find

$$\frac{\mathrm{d}R}{\mathrm{d}E_{\mathrm{R}}} = N_{\mathrm{T}} \frac{\rho_{\mathrm{DM}} m_{\mathrm{N}}}{m_{\chi} \mu^2} \int_{v_{\mathrm{min}}}^{v_{\mathrm{esc}}} \mathrm{d}^3 v \, \frac{\mathrm{f}(v)}{v} \frac{\mathrm{d}\sigma}{\mathrm{d}\cos\theta}$$

where f(v) is a halo model dependent velocity propability function

How to model WIMP interactions

How to detect a WIMP anyway?

Conclusions 00

Now onto finding the cross section

To find the cross section we need the squared matrix elements

 $\sigma \sim \overline{|\mathcal{M}|^2}$

How to model WIMP interactions ••••••••• How to detect a WIMP anyway?

Conclusions

Now onto finding the cross section

To find the cross section we need the squared matrix elements

 $\sigma \sim \overline{|\mathcal{M}|^2}$

therefore we have to model the WIMP interaction with SM particles

Conclusions

Now onto finding the cross section

To find the cross section we need the squared matrix elements

 $\sigma \sim \overline{|\mathcal{M}|^2}$

therefore we have to model the WIMP interaction with SM particles

 \Rightarrow Need SM extentions

How to detect a WIMP anyway?

Conclusions

How to model WIMP interactions

How to detect a WIMP anyway?

Conclusions

What to bear in mind?

momentum transfer in MeV region

elastic scattering without exitation of nucleus or WIMP

Conclusions 00

What to bear in mind?

momentum transfer in MeV region

- elastic scattering without exitation of nucleus or WIMP
- consider effective field theories like Fermi's interaction

Conclusions

What to bear in mind?

\blacktriangleright momentum transfer in ${\rm MeV}$ region

- elastic scattering without exitation of nucleus or WIMP
- consider effective field theories like Fermi's interaction
- ▶ WIMPs are non relativistic, so consider non relativistic limit

Conclusions

- \blacktriangleright momentum transfer in ${\rm MeV}$ region
 - elastic scattering without exitation of nucleus or WIMP
 - consider effective field theories like Fermi's interaction
- ▶ WIMPs are non relativistic, so consider non relativistic limit
- fundamental interaction is on parton level

Conclusions

- \blacktriangleright momentum transfer in MeV region
 - elastic scattering without exitation of nucleus or WIMP
 - consider effective field theories like Fermi's interaction
- ▶ WIMPs are non relativistic, so consider non relativistic limit
- fundamental interaction is on parton level
 - model parton level

Conclusions 00

- \blacktriangleright momentum transfer in MeV region
 - elastic scattering without exitation of nucleus or WIMP
 - consider effective field theories like Fermi's interaction
- ▶ WIMPs are non relativistic, so consider non relativistic limit
- fundamental interaction is on parton level
 - model parton level
 - model nucleon level by evaluating $\langle N | \mathcal{O} | N \rangle$

Conclusions

- \blacktriangleright momentum transfer in MeV region
 - elastic scattering without exitation of nucleus or WIMP
 - consider effective field theories like Fermi's interaction
- ▶ WIMPs are non relativistic, so consider non relativistic limit
- fundamental interaction is on parton level
 - model parton level
 - model nucleon level by evaluating $\langle N | \mathcal{O} | N \rangle$
 - model nucleus level

How to detect a WIMP anyway?

Conclusions

Effective field theory operators (EFT)

Many operators are possible

Conclusions

Effective field theory operators (EFT)

Many operators are possible

contact interaction with quark

$$\mathcal{O}_{\mathrm{D1}} = \bar{\chi}\chi\bar{q}q \quad c_{\mathrm{D1}}^{\mathrm{q}} = \frac{m_{\mathrm{q}}}{M_{*}^{3}}$$

How to model WIMP interactions

How to detect a WIMP anyway?

Conclusions

Effective field theory operators (EFT)

Many operators are possible

contact interaction with quark

$$\mathcal{O}_{\mathrm{D1}} = \bar{\chi}\chi\bar{q}q \quad c_{\mathrm{D1}}^{\mathrm{q}} = \frac{m_{\mathrm{q}}}{M_{\star}^{\mathrm{q}}}$$

contact interaction with gluon

$$\mathcal{O}_{\mathrm{D11}} = \bar{\chi} \chi \mathcal{G}_{\mu\nu} \mathcal{G}^{\mu\nu} \quad \mathcal{C}_{\mathrm{D11}}^{\mathrm{g}} = \frac{\alpha_{\mathrm{S}}}{4M_{*}^{3}}$$

How to model WIMP interactions

How to detect a WIMP anyway?

Conclusions

Effective field theory operators (EFT)

Many operators are possible

contact interaction with quark

$$\mathcal{O}_{\mathrm{D1}} = \bar{\chi}\chi\bar{q}q \quad c_{\mathrm{D1}}^{\mathrm{q}} = \frac{m_{\mathrm{q}}}{M_{*}^{3}}$$

contact interaction with gluon

$$\mathcal{O}_{\mathrm{D11}} = \bar{\chi} \chi \mathcal{G}_{\mu\nu} \mathcal{G}^{\mu\nu} \quad \mathcal{c}_{\mathrm{D11}}^{\mathrm{g}} = \frac{\alpha_{\mathrm{S}}}{4M_{*}^{3}}$$

axial interaction with quarks

$$\mathcal{O}_{\mathrm{D8}} = \bar{\chi} \gamma^{\mu} \gamma_5 \chi \bar{q} \gamma_{\mu} \gamma_5 q \quad c_{\mathrm{D8}}^{\mathrm{q}} = \frac{1}{M_*^2}$$

How to detect a WIMP anyway?

Conclusions

Some remarks

 \blacktriangleright M_* is the energy scale of the interaction

Conclusions

Some remarks

- M_* is the energy scale of the interaction
- general forms are

$$\begin{split} \bar{\chi} \Gamma \chi \bar{q} \Gamma' q \\ \bar{\chi} \Gamma \chi G_{\mu\nu} G^{\mu\nu} \quad \bar{\chi} \Gamma \chi G_{\mu\nu} \tilde{G}^{\mu\nu} \end{split}$$

Conclusions

Some remarks

- M_* is the energy scale of the interaction
- general forms are

$$\begin{split} \bar{\chi} \Gamma \chi \bar{q} \Gamma' q \\ \bar{\chi} \Gamma \chi G_{\mu\nu} G^{\mu\nu} \quad \bar{\chi} \Gamma \chi G_{\mu\nu} \tilde{G}^{\mu\nu} \end{split}$$

► $\Gamma, \Gamma' \in \{\gamma_{\mu}, i\gamma_5, \gamma_{\mu}\gamma_5, \sigma_{\mu\nu}\}$ is a fermion bilinear structure ► full list is given in [1603.08002]

Conclusions

Some remarks

- M_* is the energy scale of the interaction
- general forms are

$$\begin{split} \bar{\chi} \Gamma \chi \bar{q} \Gamma' q \\ \bar{\chi} \Gamma \chi G_{\mu\nu} G^{\mu\nu} \quad \bar{\chi} \Gamma \chi G_{\mu\nu} \tilde{G}^{\mu\nu} \end{split}$$

- ► $\Gamma, \Gamma' \in \{\gamma_{\mu}, i\gamma_5, \gamma_{\mu}\gamma_5, \sigma_{\mu\nu}\}$ is a fermion bilinear structure
- full list is given in [1603.08002]
- two more important operators are

$$\mathcal{O}_5 = ar{\chi} \gamma^\mu \chi ar{q} \gamma_\mu q$$

 $\mathcal{O}_7 = ar{\chi} \gamma^\mu \chi ar{q} \gamma_\mu \gamma_5 q$

How to detect a WIMP anyway?

Conclusions 00

How to go to the nucleon level

Sum over operators with same tensor structure,

How to model WIMP interactions

How to detect a WIMP anyway?

Conclusions 00

How to go to the nucleon level

Sum over operators with same tensor structure, example for \mathcal{O}_{D1} and \mathcal{O}_{D11}

Conclusions 00

How to go to the nucleon level

Sum over operators with same tensor structure, example for \mathcal{O}_{D1} and \mathcal{O}_{D11} Reminder

$$\mathcal{O}_{\mathrm{D1}} = \bar{\chi} \chi \bar{q} q \quad \mathcal{O}_{\mathrm{D11}} = \bar{\chi} \chi \mathcal{G}_{\mu\nu} \mathcal{G}^{\mu\nu}$$

Conclusions

How to go to the nucleon level

Sum over operators with same tensor structure, example for \mathcal{O}_{D1} and \mathcal{O}_{D11} Reminder

$$\mathcal{O}_{\mathrm{D}1} = \bar{\chi} \chi \bar{\boldsymbol{q}} \boldsymbol{q} \quad \mathcal{O}_{\mathrm{D}11} = \bar{\chi} \chi \boldsymbol{G}_{\mu\nu} \boldsymbol{G}^{\mu\nu}$$

We now consider

$$ilde{\mathcal{O}} := \sum_{\mathrm{q}} oldsymbol{c}_{\mathrm{D1}}^{\mathrm{q}} \mathcal{O}_{\mathrm{D1}}^{\mathrm{q}} + \sum_{\mathrm{g}} oldsymbol{c}_{\mathrm{D11}}^{\mathrm{g}} \mathcal{O}_{\mathrm{D11}}^{\mathrm{g}}$$

Conclusions 00

How to go to the nucleon level

Sum over operators with same tensor structure, example for \mathcal{O}_{D1} and \mathcal{O}_{D11} Reminder

$$\mathcal{O}_{\mathrm{D1}} = \bar{\chi} \chi \bar{q} q \quad \mathcal{O}_{\mathrm{D11}} = \bar{\chi} \chi \mathcal{G}_{\mu\nu} \mathcal{G}^{\mu\nu}$$

We now consider

$$ilde{\mathcal{O}} := \sum_{\mathrm{q}} \textit{c}_{\mathrm{D1}}^{\mathrm{q}} \mathcal{O}_{\mathrm{D1}}^{\mathrm{q}} + \sum_{\mathrm{g}} \textit{c}_{\mathrm{D11}}^{\mathrm{g}} \mathcal{O}_{\mathrm{D11}}^{\mathrm{g}}$$

Quarks and gluons are all constituents of a nucleon

Conclusions

Going to the nucleon level

We now consider matrix elements like $\langle N | \tilde{\mathcal{O}}' | N \rangle$ where $N \in \{n, p\}$ and $\tilde{\mathcal{O}}' := \bar{\chi} \chi \mathcal{A}$

Conclusions

Going to the nucleon level

We now consider matrix elements like $\langle N | \tilde{\mathcal{O}}' | N \rangle$ where $N \in \{n, p\}$ and $\tilde{\mathcal{O}}' := \bar{\chi} \chi \mathcal{A}$ In our example we can have $\mathcal{A} = \bar{q}q$ or $\mathcal{A} = \mathcal{G}_{\mu\nu} \mathcal{G}^{\mu\nu}$ But χ is not

part of the nucleus, thus

$$\langle N|\bar{\chi}\chi\mathcal{A}|N\rangle = \bar{\chi}\chi\langle N|\mathcal{A}|N\rangle$$

Conclusions 00

Going to the nucleon level

We now consider matrix elements like $\langle N | \tilde{\mathcal{O}}' | N \rangle$ where $N \in \{n, p\}$ and $\tilde{\mathcal{O}}' := \bar{\chi} \chi \mathcal{A}$ In our example we can have $\mathcal{A} = \bar{q}q$ or $\mathcal{A} = G_{\mu\nu}G^{\mu\nu}$ But χ is not part of the nucleus, thus

$$\langle N | \bar{\chi} \chi \mathcal{A} | N \rangle = \bar{\chi} \chi \langle N | \mathcal{A} | N \rangle$$

We map the combinations of operators on parton level to an operator at nucleon level

$$\mathcal{O}_{\mathrm{D1}}^{\mathrm{N}} = C \bar{\chi} \chi \bar{N} N$$

How to detect a WIMP anyway?

Conclusions

What is C?

Conclusions 00

What is C?

The coefficient C is determined by

 \blacktriangleright previous coefficients $\textit{c}_{D1}^{\rm q}$ and $\textit{c}_{D11}^{\rm g}$

Conclusions

What is C?

- \blacktriangleright previous coefficients $\textit{c}_{D1}^{\rm q}$ and $\textit{c}_{D11}^{\rm g}$
- form factors

Conclusions

What is C?

- previous coefficients c_{D1}^{q} and c_{D11}^{g}
- form factors
 - main constituents are up, down quark and also strange as sea quark

Conclusions

What is C?

- previous coefficients c_{D1}^{q} and c_{D11}^{g}
- form factors
 - main constituents are up, down quark and also strange as sea quark
 - gluons play a secondary role while remaining sea quarks charm, top, bottom play a minor role

Conclusions

What is C?

The coefficient C is determined by

- previous coefficients $c_{\mathrm{D1}}^{\mathrm{q}}$ and $c_{\mathrm{D11}}^{\mathrm{g}}$
- form factors
 - main constituents are up, down quark and also strange as sea quark
 - gluons play a secondary role while remaining sea quarks charm, top, bottom play a minor role
- the full expression reads

$${\cal C} = \sum_{
m q=u,d,s} c_{
m D1}^{
m q} rac{m_{
m N}}{m_{
m q}} f_{
m q}^{
m (N)} + rac{2}{27} f_{
m G}^{
m (N)} \left(\sum_{
m q=c,b,t} c_{
m D1}^{
m q} rac{m_{
m N}}{m_{
m q}} - rac{1}{3\pi} c_{
m D11}^{
m g} m_{
m N}
ight)$$

How to detect a WIMP anyway?

Conclusions

Understanding the expression for C

$$C = \sum_{\text{q=u,d,s}} c_{\text{D1}}^{\text{q}} \frac{m_{\text{N}}}{m_{\text{q}}} f_{\text{q}}^{(\text{N})} + rac{2}{27} f_{\text{G}}^{(\text{N})} \left(\sum_{\text{q=c,b,t}} c_{\text{D1}}^{\text{q}} \frac{m_{\text{N}}}{m_{\text{q}}} - rac{1}{3\pi} c_{\text{D11}}^{\text{g}} m_{\text{N}}
ight)$$

How to model WIMP interactions

How to detect a WIMP anyway?

Conclusions

Understanding the expression for C

$$C = \sum_{q=u,d,s} c_{D1}^{q} \frac{m_{N}}{m_{q}} f_{q}^{(N)} + \frac{2}{27} f_{G}^{(N)} \left(\sum_{q=c,b,t} c_{D1}^{q} \frac{m_{N}}{m_{q}} - \frac{1}{3\pi} c_{D11}^{g} m_{N} \right)$$

▶ we want $c_{D1}^N \sim \frac{m_N}{M_*^2}$ but $c_{D1}^q \sim \frac{m_q}{M_*^2}$ hence the factors of $\frac{m_N}{m_q}$

How to model WIMP interactions

How to detect a WIMP anyway?

Conclusions

Understanding the expression for C

$$C = \sum_{q=u,d,s} c_{D1}^{q} \frac{m_{N}}{m_{q}} f_{q}^{(N)} + \frac{2}{27} f_{G}^{(N)} \left(\sum_{q=c,b,t} c_{D1}^{q} \frac{m_{N}}{m_{q}} - \frac{1}{3\pi} c_{D11}^{g} m_{N} \right)$$

▶ we want $c_{D1}^{N} \sim \frac{m_{N}}{M_{*}^{2}}$ but $c_{D1}^{q} \sim \frac{m_{q}}{M_{*}^{2}}$ hence the factors of $\frac{m_{N}}{m_{q}}$ ▶ gluon and heavy quarks are combined

How to model WIMP interactions

How to detect a WIMP anyway?

Conclusions

Understanding the expression for C

$$C = \sum_{q=u,d,s} c_{D1}^{q} \frac{m_{N}}{m_{q}} f_{q}^{(N)} + \frac{2}{27} f_{G}^{(N)} \left(\sum_{q=c,b,t} c_{D1}^{q} \frac{m_{N}}{m_{q}} - \frac{1}{3\pi} c_{D11}^{g} m_{N} \right)$$

we want c^N_{D1} ~ m^N_{M²} but c^q_{D1} ~ m^q<sub>M²</sup> hence the factors of m^N_{mq}
 gluon and heavy quarks are combined
 heavy quark higgs vertex does exist
</sub>

How to model WIMP interactions

How to detect a WIMP anyway?

Conclusions 00

Understanding the expression for C

$$C = \sum_{q=u,d,s} c_{D1}^{q} \frac{m_{N}}{m_{q}} f_{q}^{(N)} + \frac{2}{27} f_{G}^{(N)} \left(\sum_{q=c,b,t} c_{D1}^{q} \frac{m_{N}}{m_{q}} - \frac{1}{3\pi} c_{D11}^{g} m_{N} \right)$$

▶ we want $c_{D1}^{N} \sim \frac{m_N}{M_*^2}$ but $c_{D1}^{q} \sim \frac{m_q}{M_*^2}$ hence the factors of $\frac{m_N}{m_q}$

- gluon and heavy quarks are combined
 - heavy quark higgs vertex does exist
 - gluon does not couple directly to Higgs but via a quark loop, where the heavier quarks contribute more

How to model WIMP interactions

How to detect a WIMP anyway?

Conclusions

Understanding the expression for C

$$C = \sum_{q=u,d,s} c_{D1}^{q} \frac{m_{N}}{m_{q}} f_{q}^{(N)} + \frac{2}{27} f_{G}^{(N)} \left(\sum_{q=c,b,t} c_{D1}^{q} \frac{m_{N}}{m_{q}} - \frac{1}{3\pi} c_{D11}^{g} m_{N} \right)$$

▶ we want $c_{D1}^N \sim \frac{m_N}{M_*^2}$ but $c_{D1}^q \sim \frac{m_q}{M_*^2}$ hence the factors of $\frac{m_N}{m_q}$

- gluon and heavy quarks are combined
 - heavy quark higgs vertex does exist
 - gluon does not couple directly to Higgs but via a quark loop, where the heavier quarks contribute more
 - identify contribution of heavier quarks by gluon contribution.
 A detailed calculation yields the prefactors

How to detect a WIMP anyway?

Conclusions

General case

In general we consider

$$\mathcal{L}_{ ext{eff}} = \sum_{ ext{q},i} oldsymbol{c}_i^{ ext{q}} \mathcal{O}_i^{ ext{q}} + \sum_{ ext{g},i} oldsymbol{c}_i^{ ext{g}} \mathcal{O}_i^{ ext{g}}$$

How to detect a WIMP anyway?

Conclusions

General case

In general we consider

$$\mathcal{L}_{ ext{eff}} = \sum_{ ext{q},i} c^{ ext{q}}_i \mathcal{O}^{ ext{q}}_i + \sum_{ ext{g},i} c^{ ext{g}}_i \mathcal{O}^{ ext{g}}_i$$

This is then mapped to a the nucleon base

$$\mathcal{L}_{ ext{eff}}^{ ext{nucleon}} = \sum_{ ext{N},k} oldsymbol{c}_k^ ext{N} oldsymbol{\mathcal{O}}_k^ ext{N}$$

How to detect a WIMP anyway? 000000000

Conclusions

General case

In general we consider

$$\mathcal{L}_{ ext{eff}} = \sum_{ ext{q},i} c^{ ext{q}}_i \mathcal{O}^{ ext{q}}_i + \sum_{ ext{g},i} c^{ ext{g}}_i \mathcal{O}^{ ext{g}}_i$$

This is then mapped to a the nucleon base

$$\mathcal{L}_{ ext{eff}}^{ ext{nucleon}} = \sum_{ ext{N},k} oldsymbol{c}_k^ ext{N} oldsymbol{\mathcal{O}}_k^ ext{N}$$

again we have $\mathcal{O}_k^{\mathrm{N}} = \bar{\chi} \Gamma \chi \bar{N} \Gamma' N$ with $\Gamma, \Gamma' \in \{\gamma_\mu, i\gamma_5, \gamma_\mu \gamma_5, \sigma_{\mu\nu}\}$ a full list is given in [1603.08002].

How to detect a WIMP anyway?

Conclusions

Important operators on nucleon level

$$\mathcal{O}_{\mathrm{D1}}^{\mathrm{N}} = \bar{\chi} \chi \bar{N} N$$
$$\mathcal{O}_{\mathrm{D5}}^{\mathrm{N}} = \bar{\chi} \gamma^{\mu} \chi \bar{N} \gamma_{\mu} N$$

How to detect a WIMP anyway?

Conclusions

Important operators on nucleon level

$$\mathcal{O}_{\mathrm{D1}}^{\mathrm{N}} = \bar{\chi} \chi \bar{N} N$$
$$\mathcal{O}_{\mathrm{D5}}^{\mathrm{N}} = \bar{\chi} \gamma^{\mu} \chi \bar{N} \gamma_{\mu} N$$

$$\mathcal{O}_{\mathrm{D8}}^{\mathrm{N}} = \bar{\chi}\gamma^{\mu}\gamma_{5}\chi\bar{N}\gamma_{\mu}\gamma_{5}N$$
$$\mathcal{O}_{\mathrm{D9}}^{\mathrm{N}} = \bar{\chi}\sigma^{\mu\nu}\chi\bar{N}\sigma_{\mu\nu}N$$

$$\sigma^{\mu\nu} = \frac{\mathrm{i}}{2} \left[\gamma^{\mu}, \gamma^{\nu} \right]$$

Conclusions

Exploiting the non relativistic (NR) limit

Since the WIMPs are non relativistic, the operators can be simplified.

Conclusions 00

Exploiting the non relativistic (NR) limit

Since the WIMPs are non relativistic, the operators can be simplified.

The first order of the NR expansion is given by the operators

$$\mathcal{O}_4^{\mathrm{NR}} = \boldsymbol{S}_\chi \boldsymbol{S}_{\mathrm{N}} \quad \mathcal{O}_1^{\mathrm{NR}} = \mathbb{1}$$

Conclusions

Exploiting the non relativistic (NR) limit

Since the WIMPs are non relativistic, the operators can be simplified.

The first order of the NR expansion is given by the operators

$$\mathcal{O}_4^{\mathrm{NR}} = \boldsymbol{S}_\chi \boldsymbol{S}_{\mathrm{N}} \quad \mathcal{O}_1^{\mathrm{NR}} = \mathbb{1}$$

will create Spin-dependent and independent cross section in leading order respectively.

Conclusions

Exploiting the non relativistic (NR) limit

Since the WIMPs are non relativistic, the operators can be simplified.

The first order of the NR expansion is given by the operators

$$\mathcal{O}_4^{\mathrm{NR}} = \boldsymbol{S}_{\chi} \boldsymbol{S}_{\mathrm{N}} \quad \mathcal{O}_1^{\mathrm{NR}} = \mathbb{1}$$

will create Spin-dependent and independent cross section in leading order respectively.

The expression of the nucleon operator yields the relations

$$egin{aligned} \langle \mathcal{O}_{\mathrm{D8}}^{\mathrm{N}}
angle &= -rac{1}{2} \langle \mathcal{O}_{\mathrm{D9}}^{\mathrm{N}}
angle &= -16 m_{\chi} m_{\mathrm{N}} \mathcal{O}_{4}^{\mathrm{NR}} \ \langle \mathcal{O}_{\mathrm{D1}}^{\mathrm{N}}
angle &= \langle \mathcal{O}_{\mathrm{D5}}^{\mathrm{N}}
angle &= 4 m_{\chi} m_{\mathrm{N}} \mathcal{O}_{1}^{\mathrm{NR}} \end{aligned}$$

How to detect a WIMP anyway?

Conclusions

Further NR operators

We had

$$\mathcal{O}_4^{\mathrm{NR}} = \boldsymbol{S}_{\chi} \boldsymbol{S}_{\mathrm{N}} \quad \mathcal{O}_1^{\mathrm{NR}} = \mathbb{1}$$

but there are further operators involving

the WIMPs velocity v

How to detect a WIMP anyway?

Conclusions

Further NR operators

We had

$$\mathcal{O}_4^{\mathrm{NR}} = \boldsymbol{S}_{\chi} \boldsymbol{S}_{\mathrm{N}} \quad \mathcal{O}_1^{\mathrm{NR}} = \mathbb{1}$$

but there are further operators involving

- the WIMPs velocity v
- the momentum transfer q

Conclusions

Further NR operators

We had

$$\mathcal{O}_4^{\mathrm{NR}} = \boldsymbol{S}_{\chi} \boldsymbol{S}_{\mathrm{N}} \quad \mathcal{O}_1^{\mathrm{NR}} = \mathbb{1}$$

but there are further operators involving

- the WIMPs velocity v
- the momentum transfer q
- the perpendicular verlocity $\mathbf{v}^{\perp} = \mathbf{v} + rac{q}{2\mu}$

Conclusions

Further NR operators

We had

$$\mathcal{O}_4^{\mathrm{NR}} = \boldsymbol{S}_{\chi} \boldsymbol{S}_{\mathrm{N}} \quad \mathcal{O}_1^{\mathrm{NR}} = \mathbb{1}$$

but there are further operators involving

- the WIMPs velocity v
- the momentum transfer q

• the perpendicular verlocity $\mathbf{v}^{\perp} = \mathbf{v} + \frac{q}{2\mu}$ Examples are

$$v^2$$
, $i(\boldsymbol{S}_{\chi} \times \boldsymbol{q}) \cdot \boldsymbol{v}$, $\boldsymbol{v}^{\perp} \cdot \boldsymbol{S}_N$

Conclusions 00

Nucleus level

The cross section with the nucleus is given by the coherent sum of the interaction with a nucleon

Conclusions

Nucleus level

The cross section with the nucleus is given by the coherent sum of the interaction with a nucleon

spin independent needs no extra input besides number of protons and neutrons

$$\overline{|\mathcal{M}|^2} = \left| \textit{Zc}_{\mathrm{SI}}^{\mathrm{p}} + \textit{Nc}_{\mathrm{SI}}^{\mathrm{n}} \right|^2$$

Conclusions

Nucleus level

The cross section with the nucleus is given by the coherent sum of the interaction with a nucleon

spin independent needs no extra input besides number of protons and neutrons

$$\overline{|\mathcal{M}|^2} = \left| \textit{Zc}_{\mathrm{SI}}^{\mathrm{p}} + \textit{Nc}_{\mathrm{SI}}^{\mathrm{n}} \right|^2$$

spin dependent matrix element needs an extra input in form of a nuclear model, like different shell models

Conclusions

Nucleus level

The cross section with the nucleus is given by the coherent sum of the interaction with a nucleon

spin independent needs no extra input besides number of protons and neutrons

$$\overline{|\mathcal{M}|^2} = \left| \textit{Zc}_{\mathrm{SI}}^{\mathrm{p}} + \textit{Nc}_{\mathrm{SI}}^{\mathrm{n}} \right|^2$$

spin dependent matrix element needs an extra input in form of a nuclear model, like different shell models

all make predictions of the same order of magnitude

Conclusions

Nucleus level

The cross section with the nucleus is given by the coherent sum of the interaction with a nucleon

spin independent needs no extra input besides number of protons and neutrons

$$\overline{|\mathcal{M}|^2} = \left| \textit{Zc}_{\mathrm{SI}}^{\mathrm{p}} + \textit{Nc}_{\mathrm{SI}}^{\mathrm{n}} \right|^2$$

spin dependent matrix element needs an extra input in form of a nuclear model, like different shell models

all make predictions of the same order of magnitude

• all have
$$\langle S_p \rangle \approx 0$$

Conclusions

Nucleus level

The cross section with the nucleus is given by the coherent sum of the interaction with a nucleon

spin independent needs no extra input besides number of protons and neutrons

$$\overline{|\mathcal{M}|^2} = \left| \textit{Zc}_{\mathrm{SI}}^{\mathrm{p}} + \textit{Nc}_{\mathrm{SI}}^{\mathrm{n}} \right|^2$$

spin dependent matrix element needs an extra input in form of a nuclear model, like different shell models

all make predictions of the same order of magnitude

• all have
$$\langle S_p
angle pprox 0$$

$$\overline{|\mathcal{M}|^2} = rac{J+1}{J} \left| \langle \mathcal{S}_\mathrm{p}
angle c_\mathrm{SD}^\mathrm{p} + \langle \mathcal{S}_\mathrm{n}
angle c_\mathrm{SD}^\mathrm{n}
ight|^2$$

Conclusions

Nucleus level

The cross section with the nucleus is given by the coherent sum of the interaction with a nucleon

spin independent needs no extra input besides number of protons and neutrons

$$\overline{|\mathcal{M}|^2} = \left| \textit{Zc}_{\mathrm{SI}}^{\mathrm{p}} + \textit{Nc}_{\mathrm{SI}}^{\mathrm{n}} \right|^2$$

- spin dependent matrix element needs an extra input in form of a nuclear model, like different shell models
 - all make predictions of the same order of magnitude

▶ all have
$$\langle S_p
angle pprox 0$$

$$\overline{|\mathcal{M}|^{2}} = \frac{J+1}{J} \left| \langle S_{\mathrm{p}} \rangle c_{\mathrm{SD}}^{\mathrm{p}} + \langle S_{\mathrm{n}} \rangle c_{\mathrm{SD}}^{\mathrm{n}} \right|^{2}$$

 For non zero momentum transfer additional form factors are needed

How to model WIMP interactions

How to detect a WIMP anyway? •000000000

Conclusions

On to detecting(?) the WIMP

now we want to measure the nuclear recoil

How to model WIMP interactions

How to detect a WIMP anyway? ••••••• Conclusions

On to detecting(?) the WIMP

now we want to measure the nuclear recoil

important concept : WIMP wind

How to detect a WIMP anyway? •••••••• Conclusions

- now we want to measure the nuclear recoil
- important concept : WIMP wind
 - ▶ sun moves through galactic halo $(v \sim 230 \frac{\text{km}}{\text{s}}) \Rightarrow$ expect higher count rate in one direction (Cygnus)

How to detect a WIMP anyway? ••••••• Conclusions

- now we want to measure the nuclear recoil
- important concept : WIMP wind
 - Sun moves through galactic halo (v ~ 230 km/s) ⇒ expect higher count rate in one direction (Cygnus)
 - earth moves around the sun ($v \sim 30 \frac{\text{km}}{\text{s}}$), with inclination $\theta \sim 60^{\circ}$) \Rightarrow annual modulation of the above count rate $\mathcal{O}(5\%)$

How to detect a WIMP anyway? ••••••• Conclusions

- now we want to measure the nuclear recoil
- important concept : WIMP wind
 - ▶ sun moves through galactic halo $(v \sim 230 \frac{\text{km}}{\text{s}}) \Rightarrow$ expect higher count rate in one direction (Cygnus)
 - earth moves around the sun ($v \sim 30 \frac{\text{km}}{\text{s}}$), with inclination $\theta \sim 60^{\circ}$) \Rightarrow annual modulation of the above count rate $\mathcal{O}(5\%)$
 - ► the earth rotates ⇒ direction of WIMP wind changes constantly

How to detect a WIMP anyway? ••••••• Conclusions

- now we want to measure the nuclear recoil
- important concept : WIMP wind
 - ▶ sun moves through galactic halo $(v \sim 230 \frac{\text{km}}{\text{s}}) \Rightarrow$ expect higher count rate in one direction (Cygnus)
 - earth moves around the sun ($v \sim 30 \frac{\text{km}}{\text{s}}$), with inclination $\theta \sim 60^{\circ}$) \Rightarrow annual modulation of the above count rate $\mathcal{O}(5\%)$
 - ► the earth rotates ⇒ direction of WIMP wind changes constantly
- experimental challenge: overcome backgrounds

How to model WIMP interactions

Conclusions 00

What backrounds are we talking about?

The most important backgrounds are...

How to model WIMP interactions ${\scriptstyle 000000000000}$

How to detect a WIMP anyway? 000000000

Conclusions

What backrounds are we talking about?

The most important backgrounds are...

electron recoil background

Conclusions

What backrounds are we talking about?

The most important backgrounds are...

- electron recoil background
- nuclear recoil background

Conclusions

What backrounds are we talking about?

The most important backgrounds are...

- electron recoil background
- nuclear recoil background
- neutrino floor

How to model WIMP interactions

How to detect a WIMP anyway?

Conclusions

Electron recoil background

Electrons in the detector are produced by

How to model WIMP interactions

How to detect a WIMP anyway?

Conclusions

Electron recoil background

Electrons in the detector are produced by

🕨 gamma quanta

How to model WIMP interactions

How to detect a WIMP anyway?

Conclusions

Electron recoil background

Electrons in the detector are produced by

- gamma quanta
- $\triangleright \beta$ particles

How to detect a WIMP anyway?

Conclusions

Electron recoil background

Electrons in the detector are produced by

- gamma quanta
- $\triangleright \beta$ particles

Both come from radioisotopes in surrounding rock and construction material.

Conclusions

Electron recoil background

Electrons in the detector are produced by

- gamma quanta
- $\triangleright \beta$ particles

Both come from radioisotopes in surrounding rock and construction material.

Distinct behaviour from nuclear recoil.

Conclusions

Electron recoil background

Electrons in the detector are produced by

- gamma quanta
- $\triangleright \beta$ particles

Both come from radioisotopes in surrounding rock and construction material.

Distinct behaviour from nuclear recoil. The keyword to bare in mind here is: quenching.

How to model WIMP interactions

How to detect a WIMP anyway?

Conclusions

Nuclear recoil background

Produced by

How to model WIMP interactions

How to detect a WIMP anyway?

Conclusions

Nuclear recoil background

Produced by

How to model WIMP interactions

How to detect a WIMP anyway?

Conclusions

Nuclear recoil background

Produced by

Conclusions

Nuclear recoil background

Produced by

muons

Most importantly the neutrons are

▶ hard to shield (long free path of order 10 cm)

Conclusions

Nuclear recoil background

Produced by

Most importantly the neutrons are

- hard to shield (long free path of order 10 cm)
- sourced by primordial chains and CR muons

Conclusions

Nuclear recoil background

Produced by

Most importantly the neutrons are

- hard to shield (long free path of order 10 cm)
- sourced by primordial chains and CR muons
- luckily multiple scattering processes and thus distinguishable from WIMP interaction

How to model WIMP interactions

Conclusions

Neutrino floor

Conclusions 00

Neutrino floor

The neutrino floor is sometimes called the ultimate background

neutrinos will interact with the nucleus via the weak interaction

Neutrino floor

- neutrinos will interact with the nucleus via the weak interaction
- \blacktriangleright for low WIMP masses the interesting neutrinos are solar ones and created by $^8{\rm B}$ decay

Neutrino floor

- neutrinos will interact with the nucleus via the weak interaction
- for low WIMP masses the interesting neutrinos are solar ones and created by ⁸B decay
- atmospheric neutrinos become important above masses of 10 GeV

Neutrino floor

- neutrinos will interact with the nucleus via the weak interaction
- for low WIMP masses the interesting neutrinos are solar ones and created by ⁸B decay
- atmospheric neutrinos become important above masses of 10 GeV
- there are further neutrino backgrounds that are subdominant

Neutrino floor

- neutrinos will interact with the nucleus via the weak interaction
- for low WIMP masses the interesting neutrinos are solar ones and created by ⁸B decay
- atmospheric neutrinos become important above masses of 10 GeV
- there are further neutrino backgrounds that are subdominant
- However there are hypothesis how to overcome the neutrino floor by looking for annual modulations

How to model WIMP interactions

How to detect a WIMP anyway? 0000000000

Conclusions

Conclusions

- use scintillation and ionization
- usually two phase detectors with liquid phase and gas phase

Conclusions

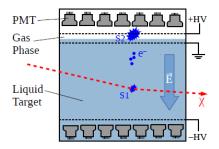
- use scintillation and ionization
- usually two phase detectors with liquid phase and gas phase
- typically Xenon and Argon are used

Conclusions

- use scintillation and ionization
- usually two phase detectors with liquid phase and gas phase
- typically Xenon and Argon are used
- Xenon is liquid at 165.2 K and provides direct measurement of scintillation

Conclusions

- use scintillation and ionization
- usually two phase detectors with liquid phase and gas phase
- typically Xenon and Argon are used
- Xenon is liquid at 165.2 K and provides direct measurement of scintillation
- Argon allows for pulse shape discrimination but contains ³⁹Ar. It is liquid below 87.2 K

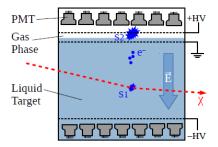

How to model WIMP interactions

How to detect a WIMP anyway? $\tt 0000000000$

Conclusions

How to meassure a nuclear recoil in LXe?

 scintillation via photomultipliers (S1)

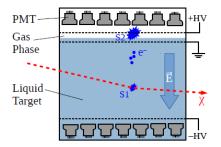


How to model WIMP interactions

How to detect a WIMP anyway?

Conclusions

- scintillation via photomultipliers (S1)
- use electric field of 1 kV/cm
 to bring electrons to gas
 phase

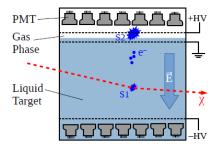


How to model WIMP interactions

How to detect a WIMP anyway?

Conclusions

- scintillation via photomultipliers (S1)
- use electric field of 1 kV/cm
 to bring electrons to gas
 phase
- use electric field of 10 ^{kV}/_{cm} to create electroluminescence (S2)

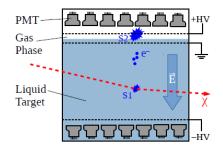


How to model WIMP interactions

How to detect a WIMP anyway?

Conclusions

- scintillation via photomultipliers (S1)
- use electric field of 1 kV/cm
 to bring electrons to gas
 phase
- use electric field of 10 ^{kV}/_{cm} to create electroluminescence (S2)
- determine S2/S1 to exclude electron recoils



How to model WIMP interactions

How to detect a WIMP anyway?

Conclusions

- scintillation via photomultipliers (S1)
- use electric field of 1 kV/cm
 to bring electrons to gas
 phase
- use electric field of 10 ^{kV}/_{cm} to create electroluminescence (S2)
- determine S2/S1 to exclude electron recoils
- from time difference determine location of interaction (time projection chamber)

How to model WIMP interactions

How to detect a WIMP anyway?

Conclusions

The Xenon1T experiment

Xenon1T is a liquid noble gas detector using Xe

How to model WIMP interactions

How to detect a WIMP anyway?

Conclusions

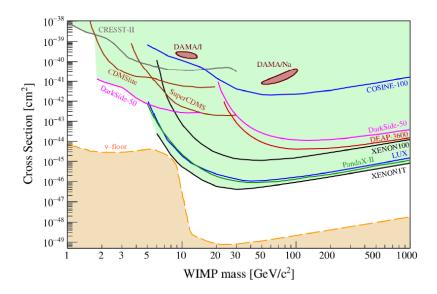
The Xenon1T experiment

- Xenon1T is a liquid noble gas detector using Xe
- Iocated at the underground laboratory Gran Sasso (LNGS)

How to model WIMP interactions

How to detect a WIMP anyway?

Conclusions

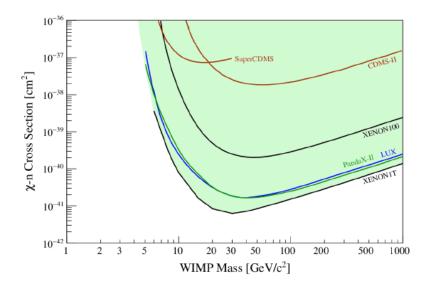

The Xenon1T experiment

- Xenon1T is a liquid noble gas detector using Xe
- Iocated at the underground laboratory Gran Sasso (LNGS)
- many stages XENON10, XENON100, XENON1T

How to model WIMP interactions

How to detect a WIMP anyway? 000000000 Conclusions

The current limits for SI interaction [arXiv:1903.03026]



How to model WIMP interactions

How to detect a WIMP anyway?

Conclusions

The current limits for SD interaction [arXiv:1903.03026]

How to model WIMP interactions ${\scriptstyle 000000000000}$

How to detect a WIMP anyway?

Conclusions •0

Conclusions

In this talk we covered

direct detection for fermionic WIMP DM

How to model WIMP interactions ${\scriptstyle 000000000000}$

How to detect a WIMP anyway?

Conclusions • 0

Conclusions

In this talk we covered

- direct detection for fermionic WIMP DM
- spin dependent and spin independent interactions

How to detect a WIMP anyway?

Conclusions •0

Conclusions

In this talk we covered

- direct detection for fermionic WIMP DM
- spin dependent and spin independent interactions
- ▶ the procedure to go from the parton level to the nucleus level

How to detect a WIMP anyway?

Conclusions • O

Conclusions

In this talk we covered

- direct detection for fermionic WIMP DM
- spin dependent and spin independent interactions
- ▶ the procedure to go from the parton level to the nucleus level
- The Xenon1T experiment and its results

How to model WIMP interactions

How to detect a WIMP anyway?

Conclusions 0

Thank you for your attention.

sources

- Marc Schumann, Direct detection of WIMP dark matter, (2019), [arXiv:1903.03026]
- Andrea De Simone, Thomas Jacques, Simplified models vs. effective field theory approaches in dark matter searches, (2016), [arXiv:1603.08002]
- Stefano Profuno, An Introduction to particle dark matter, World Scientific Publishing Europe Ltd. (2017)