Indirect Detection of Dark Matter

Shruti Patel

Summer Term 2019: From the Largest to the Smallest Scales

- 1. Introduction, Motivation, Challenges
- 2. Estimates for Annihilations and Decay
- 3. Astrophysical Probes for DM searches
 - 3.1 Gamma Rays
 - 3.2 Solar Neutrinos
 - 3.3 Charged Cosmic Rays
- 4. Conclusions

[J.Feng, astro-ph:1211.3116]

Indirect Detection of WIMPs

Indirect Detection

- Basic Principle: Detection of Standard Model particle debris from Dark Matter interactions in the Universe
 - DM \rightarrow quarks, leptons, bosons
 - these are or will produce cosmic rays, that we can detect on Earth $\to \gamma, \nu, e^+, \bar{p} ~\cdots$

Key Processes

- ▶ Pair annihilation of DM: $\chi + \chi \rightarrow SM$
- ▶ Decay of DM: $\chi \rightarrow SM$

Indirect Detection of WIMPs

Indirect Detection

- Basic Principle: Detection of Standard Model particle debris from Dark Matter interactions in the Universe
 - DM → quarks, leptons, bosons
 - these are or will produce cosmic rays, that we can detect on Earth $\to \gamma, \nu, e^+, \bar{p} ~\cdots$

Key Processes

- ▶ Pair annihilation of DM: $\chi + \chi \rightarrow SM$
- Decay of DM: $\chi \rightarrow SM$

Caveats to this search paradigm

- ▶ $\chi + \chi \rightarrow$ SM can be highly suppressed if loop-induced
- X → SM may not occur at all in models where DM stability is protected by a symmetry (eg. a Z₂ symmetry in the scalar sector, R parity in SUSY)

Diagrams for radiative decay of a sterile neutrino, to a photon and a neutrino.

Tree-level annihilation of a supersymmetric wino χ^0 to W bosons, through exchange of a chargino $\chi^+.$

Advantages, Challenges and Motivations

Advantages

- ▶ Indirect detection benefits from huge amount of ambient DM in the Universe
- Existence of telescopes which provide access of exotic sources of DM particles over a large energy range

Advantages, Challenges and Motivations

Advantages

- Indirect detection benefits from huge amount of ambient DM in the Universe
- Existence of telescopes which provide access of exotic sources of DM particles over a large energy range

Challenges

- Small production rates
- Large backgrounds from astrophysical particle production

Advantages, Challenges and Motivations

Advantages

- Indirect detection benefits from huge amount of ambient DM in the Universe
- Existence of telescopes which provide access of exotic sources of DM particles over a large energy range

Challenges

- Small production rates
- Large backgrounds from astrophysical particle production

Motivations

Indirect detection can probe questions not accessible in DD and collider searches

- 1. Is DM perfectly stable?
- 2. What is the explanation for the observed abundance of DM?

Considerations and Constraints

- **>** DM-Lifetime au must be longer than age of the Universe: $au \gg$ few $imes 10^{17}s$
- Symmetries of a low-energy theory can be broken by high-scale physics
 - \implies Symmetry-breaking operators suppressed at low energies
 - \implies Timescale of decay via these operators can be sufficiently long
- ▶ Consider an $O({\rm TeV})$ DM decaying through a Dim-6 operator suppressed by $M_{\rm GUT}$ $\sim 2 \times 10^{16}~{\rm GeV}$
 - $\Gamma \sim m_\chi^5 \cos^4\theta$ ($\cos\theta$: mixing angle establishing the coupling to any intermediate channel)
 - Lifetime $\tau \sim M_{\rm GUT}^4/m_{\chi}^5 \sim (2 \times 10^{16}\,{\rm Gev})^4/(10^3\,{\rm Gev})^5 \sim 10^{26}s$

Estimates for Decaying DM

Would a decaying DM be observable? Let's make a back-of-the-envelope estimate

Particle detection estimate for our local halo:

with a volume element dV at distance r from Earth, with DM number density n, lifetime au and detector area A

$$\frac{dN}{dt} = \frac{A}{4\pi r^2} \times n \frac{dV}{\tau} = A \times n(\vec{r}) \times \frac{d\Omega}{4\pi} \times \frac{dr}{\tau}$$

Estimates for Decaying DM

Would a decaying DM be observable? Let's make a back-of-the-envelope estimate

Particle detection estimate for our local halo:

with a volume element dV at distance r from Earth, with DM number density n, lifetime au and detector area A

$$\frac{dN}{dt} = \frac{A}{4\pi r^2} \times n \frac{dV}{\tau} = A \times n(\vec{r}) \times \frac{d\Omega}{4\pi} \times \frac{dr}{\tau}$$

▶ If $n(\vec{r})$ is the number density of DM within a 1 kpc distance of Earth we get

counts/unit time =
$$\frac{A \cdot n \cdot r}{\tau} = \frac{A \cdot \rho \cdot r}{m_{\chi} \tau} = \frac{A \cdot (0.4 \text{ GeV/cm}^3) \cdot 1 \text{kpc}}{m_{\chi} \tau}$$

with $\rho \sim 0.4 \, {\rm GeV/cm^3}$ being the local DM density in the neighbourhood of the Earth

Estimates for Decaying DM

Would a decaying DM be observable? Let's make a back-of-the-envelope estimate

Particle detection estimate for our local halo:

with a volume element dV at distance r from Earth, with DM number density n, lifetime au and detector area A

$$\frac{dN}{dt} = \frac{A}{4\pi r^2} \times n \frac{dV}{\tau} = A \times n(\vec{r}) \times \frac{d\Omega}{4\pi} \times \frac{dr}{\tau}$$

• If $n(\vec{r})$ is the number density of DM within a 1 kpc distance of Earth we get

counts/unit time =
$$\frac{A \cdot n \cdot r}{\tau} = \frac{A \cdot \rho \cdot r}{m_{\chi} \tau} = \frac{A \cdot (0.4 \text{ GeV/cm}^3) \cdot 1 \text{kpc}}{m_{\chi} \tau}$$

with $\rho \sim 0.4\,{\rm GeV/cm^3}$ being the local DM density in the neighbourhood of the Earth

• Using
$$m_{\chi} = 1$$
 TeV, $\tau = 10^{26}s$, and $A = 1$ m²

$$rac{dN}{dt} = 10^{-4}/s \sim$$
 few 1000 events per year

Benhchmark detector: AMS-02: The Alpha Magnetic Spectrometer [www.ams02.org]

"Thermal relic" scenario

- If DM self-annihilates and was once in thermal equilibrium with the SM, late-time relic abundance can be entirely determined by the annihilation cross section σ_{ann}
- Measuring σ_{ann} at late times by observing the annihilation products would give direct insight into the mechanism governing DM abundance
- Annihilation rate per unit volume per unit time, for number densities n is $\sigma v_{rel} n^2/2$
- Annihilation rate scales as $n^2 \equiv \rho^2/m_\chi^2$ for fixed σ
 - \implies limits on annihilation signals become weaker as the DM mass increases

"Thermal relic" scenario

- If DM self-annihilates and was once in thermal equilibrium with the SM, late-time relic abundance can be entirely determined by the annihilation cross section σ_{ann}
- Measuring σ_{ann} at late times by observing the annihilation products would give direct insight into the mechanism governing DM abundance
- Annihilation rate per unit volume per unit time, for number densities n is $\sigma v_{rel} n^2/2$
- Annihilation rate scales as $n^2 \equiv \rho^2/m_{\chi}^2$ for fixed σ \implies limits on annihilation signals become weaker as the DM mass increases

Detectability of thermal relic DM:

$$\frac{dN}{dt} = \frac{A\langle \sigma v_{\rm rel} \rangle}{2} (1\,{\rm kpc}) \frac{\rho^2}{m_\chi^2} \sim 10^{-26} {\rm cm}^3/{\rm s} \times A \times (1{\rm kpc}) \times \left(\frac{0.4 {\rm GeV}}{m_\chi}\right)^2 {\rm cm}^{-6}$$

For $m_\chi = 100$ GeV, $rac{dN}{dt} \sim$ 100 events per year

DM gravitationally trapped in celestial bodies fuels steady rate of annihilation/decay

Astrophysical Searches can be divided into two categories

1. Not-So-Indirect/Neutral searches:

Probes can identify a source direction

- $\implies
 u$ and γ rays mainly travelling in more-or-less straight lines
- 2. Indirect/Charged searches:

Probes that do not "trace back" to the annihilation/decay event

 \implies trajectories are bent as particles propagate

DM gravitationally trapped in celestial bodies fuels steady rate of annihilation/decay

Astrophysical Searches can be divided into two categories

1. Not-So-Indirect/Neutral searches:

Probes can identify a source direction

- $\implies
 u$ and γ rays mainly travelling in more-or-less straight lines
- 2. Indirect/Charged searches:

Probes that do not "trace back" to the annihilation/decay event

 \implies trajectories are bent as particles propagate

Current experiments consist of

- Cosmic-ray detectors, neutrino telescopes, photon telescopes in the radio and microwave bands
- photon telescopes in the hard UV, X-ray and gamma-ray bands

[1710:05137]

Detection of Neutral Particles: Ingredients

γ rays and νs travel through space undisturbed, the resulting flux with R no. of particles:

$$\frac{dR}{dt\,dA\,dE} = P \cdot J(\Delta\Omega)$$

Detection of Neutral Particles: Ingredients

γ rays and νs travel through space undisturbed, the resulting flux with R no. of particles:

$$\frac{dR}{dt\,dA\,dE} = P \cdot J(\Delta\Omega)$$

▶ $P \equiv$ **Particle Physics Input**. For annihilations:

$$P = \frac{\langle \sigma v_{\rm rel} \rangle}{2m_{\chi}^2} \cdot \sum_i BR_i \frac{dN_{\gamma}^i}{dE_i} \,,$$

 $BR_i=$ branching fraction to different annihilation channels $\frac{dN_\gamma^\gamma}{dE_i}=$ particle spectrum as function of energy, determines spectral shape of the signal

Detection of Neutral Particles: Ingredients

γ rays and νs travel through space undisturbed, the resulting flux with R no. of particles:

$$\frac{dR}{dt\,dA\,dE} = P \cdot J(\Delta\Omega)$$

▶ $P \equiv$ **Particle Physics Input**. For annihilations:

$$P = \frac{\langle \sigma v_{\rm rel} \rangle}{2m_{\chi}^2} \cdot \sum_i BR_i \frac{dN_{\gamma}^i}{dE_i} \,,$$

 $BR_i=$ branching fraction to different annihilation channels $\frac{dN_{\gamma}^{\gamma}}{dE_i}=$ particle spectrum as function of energy, determines spectral shape of the signal

► $J(\Delta \Omega) = DM$ Density Profile \equiv Astrophysical Input

$$(\Delta\Omega) \propto \int_{\Delta\Omega} \int_{l=0}^\infty dl \, d\Omega \rho_\chi^2(l)$$

 $J(\Delta\Omega)$ characterizes DM mass density, determined by gravitational probes or N-body simulations

Search strategy depends on the photon/neutrino spectrum per annihilation/decay Three possible spectral categories for photons¹:

- 1. Hadronic / photon-rich continuum:
 - $\chi\chi \to \{q, l, V\} \to \pi^{\pm}, \pi^0$
 - $\pi^0 \to \gamma \gamma$ has 99% branching ratio \implies broad spectrum of γ produced along with e^{\pm} from π^{\pm} decays
- 2. Leptonic / photon-poor:
 - $\chi\chi \to \{e,\mu\}$
 - γ produced directly only as part of 3-body final states, by final state radiation or internal bremsstrahlung \implies suppressed rate for γ production
- 3. Lines:
 - $\chi\chi
 ightarrow \gamma\gamma$ (or $ar{
 u}
 u$ in the neutrino case)
 - Allows for "bump hunts", a clear detection of a gamma-ray spectral line a smoking gun for DM annihilation
 - DM is neutral \implies process is only induced via a loop

¹Qualitatively similar for neutrinos except in the leptonic case

Astrophysical Input: DM dentsity profiles

Three standard density profiles

1. Navarro-Frenk-White (NFW) profile

$$\rho_{\rm NFW}(r) = \frac{\rho_\odot}{\left(\frac{r}{R}\right)^{\gamma} \left(1 + \frac{r}{R}\right)^{3-\gamma}} \stackrel{\gamma \equiv 1}{=} \frac{\rho_\odot}{\frac{r}{R} \left(1 + \frac{r}{R}\right)^2} \,,$$

with r the distance from the galactic center, $R=20~{\rm kpc},~\rho_\odot=0.4{\rm GeV/cm^3}$ at $r_\odot=8.5~{\rm kpc}$

2. Einasto profile (It fits micro-lensing and star velocity data best)

$$\rho_{\rm Einasto}(r) = \rho_{\odot} \, \exp\left[-\frac{2}{\alpha} \left(\left(\frac{r}{R}\right)^{\alpha} - 1\right)\right] \,,$$

with $\alpha=0.17~{\rm and}~R=20~{\rm kpc}$

3. Burkert profile

$$\rho_{\rm Burkert}(r) = \frac{\rho_{\odot}}{\left(1 + \frac{r}{R}\right) \left(1 + \frac{r^2}{R^2}\right)}$$

where we assume $R=3\ \rm kpc$

Astrophysical Input: DM dentsity profiles

[Plehn: 1705.01987]

γ -Ray Probes: Galaxy Targets and Detectors

[1411.1925]

[PhD Thesis: G. Giesen]

target region	advantages	inconveniences
Galactic Center	high concentration of DM	uncertainty on the DM profile
	close proximity	important population of γ -ray sources
	\rightarrow spectral features as smoking gun	diffuse emission from cosmic rays
dSph	no γ -ray point sources	"ultra-faint" satellites
	no intrinsic diffuse emission	recently reevaluated uncertainties
	no substructures	on DM distribution
Dark satellites	smoking gun confirmation of ΛCDM	not found yet
Clusters	DM dominated	unknown substructures
	bright sources	uncertainty on the mass profile
Galactic diffuse	spectral and spatial distribution	astrophysical diffuse emission
emission	can be used	
Isotropic background	spectral and spatial distribution	halo and subhalo abundance
	can be used	as a function of redshift to be modeled
		contribution of astrophysical sources

[PhD Thesis: G. Giesen]

target region	advantages	inconveniences
Galactic Center	high concentration of DM	uncertainty on the DM profile
	close proximity	important population of γ -ray sources
	\rightarrow spectral features as smoking gun	diffuse emission from cosmic rays
dSph	no γ -ray point sources	"ultra-faint" satellites
	no intrinsic diffuse emission	recently reevaluated uncertainties
	no substructures	on DM distribution
Dark satellites	smoking gun confirmation of ΛCDM	not found yet
Clusters	DM dominated	unknown substructures
	bright sources	uncertainty on the mass profile
Galactic diffuse	spectral and spatial distribution	astrophysical diffuse emission
emission	can be used	
Isotropic background	spectral and spatial distribution	halo and subhalo abundance
	can be used	as a function of redshift to be modeled
		contribution of astrophysical sources

[PhD Thesis: G. Giesen]

target region	advantages	inconveniences
Galactic Center	high concentration of DM	uncertainty on the DM profile
	close proximity	important population of γ -ray sources
	\rightarrow spectral features as smoking gun	diffuse emission from cosmic rays
dSph	no γ -ray point sources	"ultra-faint" satellites
	no intrinsic diffuse emission	recently reevaluated uncertainties
	no substructures	on DM distribution
Dark satellites	smoking gun confirmation of $\Lambda {\rm CDM}$	not found yet
Clusters	DM dominated	unknown substructures
	bright sources	uncertainty on the mass profile
Galactic diffuse	spectral and spatial distribution	astrophysical diffuse emission
emission	can be used	
Isotropic background	spectral and spatial distribution	halo and subhalo abundance
	can be used	as a function of redshift to be modeled
		contribution of astrophysical sources

γ -Ray Probes: Constraints from Fermi-LAT

Constraints on DM from a combined analysis of 15 dSph using 4- and 6-years of Fermi-LAT data

γ -Ray Probes: Galactic Center GeV Excess

[Christoph Weniger, GRAPPA, Presented at 13th Recontres du Vietnam]

ν Probes: Direct Detection In Disguise

Neutrinos give a handle on Direct Detection cross-sections

- The main edge for ν-telescopes is Solar Neutrinos
- WIMPs scatter against Hydrogen in the Sun and subsequently annihilate ν searches from the Sun sensitive to spin-dependent (SD) WIMP-nucleon cross-section
- Capture rate for DM in the Sun for SD scattering [Hooper, Kribs: hep-ph/0208261]

$$C_{\rm SD}^{\odot} \simeq 3.35 \times 10^{18} \, {\rm s}^{-1} \left(\frac{\rho_{\rm local}}{0.3 \, {\rm GeV/cm^3}} \right) \left(\frac{270 \, {\rm km/s}}{\bar{v}_{\rm local}} \right)^3 \left(\frac{\sigma_{\rm H,SD}}{10^{-6} \, {\rm pb}} \right) \left(\frac{1000 \, {\rm GeV}}{m_{\chi}} \right)^2$$

Analogous formula for the capture rate from spin-independent (scalar) scattering

$$C_{\rm SI}^{\odot} \simeq 1.24 \times 10^{18} \, {\rm s}^{-1} \left(\frac{\rho_{\rm local}}{0.3 \, {\rm GeV/cm^3}} \right) \left(\frac{270 \, {\rm km/s}}{\bar{v}_{\rm local}} \right)^3 \left(\frac{2.6 \, \sigma_{\rm H,SI} + 0.175 \, \sigma_{\rm He,SI}}{10^{-6} \, {\rm pb}} \right) \left(\frac{1000 \, {\rm GeV}}{m_{\chi}} \right)^2$$

- Factors of 2.6 and 0.175 from solar abundances of elements, dynamical factors, form factor suppression
- Spin-dependent cross section 3 or 4x larger than spin-independent cross section

ν Probes: Direct Detection In Disguise

If the capture and annihilation cross sections are high, the Sun reaches equilibrium between these processes.

 \blacktriangleright For N WIMPs in the Sun, the rate of change is

$$\dot{N} = C^{\odot} - A^{\odot} N^2$$

with Annihilation Rate $A^{\odot}=\frac{\langle \sigma v \rangle}{V_{\rm eff}}$

- ▶ V_{eff} is effective volume of the core \rightarrow determined by matching core temperature with the gravitational potential energy of a single WIMP at core radius
- Solving the diff. equation gives the annihilation rate in the Sun

$$\Gamma = \frac{1}{2} A^{\odot} N^2 = \frac{1}{2} C^{\odot} \tanh^2 \left(\sqrt{C^{\odot} A^{\odot}} t_{\odot} \right)$$

 \blacktriangleright $t_{\odot}\simeq 4.5$ billion years+ ightarrow age of the solar system.

 $\blacktriangleright~A^{\odot}$ maximized when it reaches equilibrium with C^{\odot}

 $\sqrt{C^{\odot}A^{\odot}}t_{\odot} \gg 1$

• At equilibrium $\Gamma \simeq \frac{C^{\odot}}{2}$ and resulting ν flux is

$$\frac{dN_{\nu_f}}{dE_{\nu_f}} = \frac{C^{\odot}}{8\pi (D^{\odot})^2} \left(\frac{dN_{\nu_f}}{dE_{\nu_f}}\right)_{\rm inj} \implies {\rm Limits \ on \ } \sigma_{\rm H,DS}$$

[Feng, ast ro-ph: 1211.3116]

Limits on SD scattering cross section from **COUPP** - The Chicagoland Observatory for Underground Particle Physics, **KIMS**- Korea Invisible Mass Search, **Super-K** and **AMANDA**- Antarctic Muon And Neutrino Detector Array

- Main signature for DM in charged cosmic rays is in the anti-proton and positron channel
- Anti-particles rarely produced in secondary processes
- Even a small addition of anti-particles produced in WIMP-annihilation could give detectable signal
- Signal takes form of rise in $\frac{e^+}{e^-}$ or $\frac{\bar{p}}{p}$ ratio
- \blacktriangleright Smoking Gun signature provided by anti-deuteron \rightarrow Expected signal 4x larger than background for energies < 1 GeV/n

A Quick Word on Charged Cosmic Rays

[Accardo et al, AMS COLLABORATION]

Slope parameter and positron fraction as measured by AMS

- 1. Indirect Searches for DM complementary to Direct and Collider searches
- 2. We can get insights to questions that cannot be answered by other searches
 - DM Stability
 - Explanation for Relic Abundance
- 3. Indirect Detection is divided into searches for Neutral and Charged Cosmic Rays
- 4. Hints of an excess at the galactic center and in the positron/electron fraction in the earth's atmosphere not fully resolved but point to exciting developments to come

Thank you for your attention!

[Randall Munroe: XKCD]

- 1. Title Picture: Astronomy Picture of the Day (nasa.gov)
- 2. TASI Lectures on Indirect Detection of Dark Matter by Tracy R. Slatyer
- 3. Indirect Detection of WIMP Dark Matter: a compact review by Jan Conrad
- 4. An Introduction to Particle Dark Matter by Stefano Profumo
- 5. Conclusion Picture: Randall Munroe (xkcd.com/2035/)