

Particle Dark Matter Candidates

Lisa Biermann | June 17, 2019

HAUPTSEMINAR: FROM THE SMALLEST TO THE LARGEST SCALES

KIT -- Die Forschungsuniversität in der Helmholtz-Gemeinschaft

Outline

- Particle Dark Matter Production in the Early Universe
 - Matter Content of the Universe
 - Criteria for a suitable particle dark matter candidate
 - Thermal Production of Particles
- Particle Dark Matter Candidates
 - WIMPs
 - The WIMP Miracle
 - WIMP models
 - WIMP Candidates from Supersymmetry
 - Axions and ALPs
 - Sterile Neutrinos
 - Superheavy Dark Matter
 - Kaluza-Klein Dark Matter
 - Asymmetric Dark Matter
 - SIDM, SIMPs, ELDERs and FIMPs
- Comparison and Summary

Particle Dark Matter Production in the Early Universe

... about why we need additional non-baryonic matter to describe our universe and how this dark matter must look like.

Description of the evolution of the universe by

Friedmann Lemaître Equation

$$\frac{H^2}{H_0^2} = \Omega_r a^{-4} + \Omega_m a^{-3} + \Omega_k a^{-2} + \Omega_\Lambda$$

Description of the evolution of the universe by

Friedmann Lemaître Equation

$$\frac{H^2}{H_0^2} = \Omega_r a^{-4} + \Omega_m a^{-3} + \Omega_k a^{-2} + \Omega_\Lambda$$

a: scale factor, describes motion of objects due to expansion of universe $r(t) \rightarrow a(t)r$

Description of the evolution of the universe by

Friedmann Lemaître Equation

$$\frac{H^2}{H_0^2} = \Omega_r a^{-4} + \Omega_m a^{-3} + \Omega_k a^{-2} + \Omega_\Lambda$$

- a: scale factor, describes motion of objects due to expansion of universe $r(t) \rightarrow a(t)r$
- *H*: Hubble constant, $H(t) = \frac{\dot{r}(t)}{r(t)} = \frac{\dot{a}(t)}{a(t)}$, $H_0 \approx 70 \frac{\text{km}}{\text{s Mps}}$

Description of the evolution of the universe by

Friedmann Lemaître Equation

$$\frac{H^2}{H_0^2} = \Omega_r a^{-4} + \Omega_m a^{-3} + \Omega_k a^{-2} + \Omega_\Lambda$$

- a: scale factor, describes motion of objects due to expansion of universe $r(t) \rightarrow a(t)r$
- *H*: Hubble constant, $H(t) = \frac{\dot{r}(t)}{r(t)} = \frac{\dot{a}(t)}{a(t)}$, $H_0 \approx 70 \frac{\text{km}}{\text{s Mps}}$
- Ω_i : density parameters (today):
 - Ω_r : radiation/relativistic matter density
 - Ω_m : non-relativistic matter density
 - Ω_k: curvature density
 - Ω_{Λ} : vacuum density

Definition of density parameters: ratio of density ρ_i of species *i* to critical density ρ_c :

$$\Omega_i = \frac{\rho_i}{\rho_c}$$

Definition of density parameters: ratio of density ρ_i of species *i* to critical density ρ_c :

$$\Omega_i = \frac{\rho_i}{\rho_c}$$

Critical density ρ_c : mediator between expansion and gravitational collapse of the universe:

$$\rho_c(t) = 3H(t)^2 M_{Pl}^2, \quad H(t) = \frac{\dot{a}(t)}{a(t)}, \quad G = \frac{1}{8\pi M_{Pl}^2}$$

Definition of density parameters: ratio of density ρ_i of species *i* to critical density ρ_c :

$$\Omega_i = \frac{\rho_i}{\rho_c}$$

Critical density ρ_c : mediator between expansion and gravitational collapse of the universe:

$$\rho_c(t) = 3H(t)^2 M_{Pl}^2, \quad H(t) = \frac{\dot{a}(t)}{a(t)}, \quad G = \frac{1}{8\pi M_{Pl}^2}$$

Matter relic density

$$\Omega_m = \Omega_b + \Omega_\chi$$
 with $\Omega_\chi > \Omega_b$

•
$$\Omega_m$$
: non-relativistic matter density

- Ω_b : non-relativistic baryonic matter density ($\Omega_f \ll \Omega_b$)
- Ω_{χ} : dark matter density

PLANCK results for matter densities:

CMB power spectrum:

spherical fourier transform of temperature fluctuation map of CMB

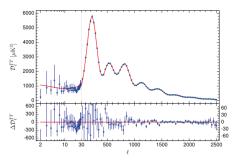


Figure: CMB power spectrum [arXiv:1502.01589]

PLANCK results for matter densities:

CMB power spectrum:

spherical fourier transform of temperature fluctuation map of CMB

- even peaks: compression of baryon-photon fluid due to gravitation
- odd peaks: counter effects of radiation pressure
- relative amplitude \sim measure of Ω_b

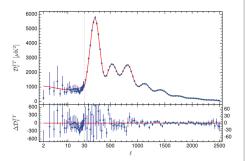


Figure: CMB power spectrum [arXiv:1502.01589]

PLANCK results for matter densities:

CMB power spectrum:

spherical fourier transform of temperature fluctuation map of CMB

- even peaks: compression of baryon-photon fluid due to gravitation
- odd peaks: counter effects of radiation pressure
- relative amplitude \sim measure of Ω_b

Non-relativistic baryonic matter relic density

 $\Omega_b h^2 = 0.022\,25 \pm 0.000\,23$

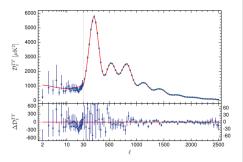


Figure: CMB power spectrum [arXiv:1502.01589]

PLANCK results for matter densities:

CMB power spectrum:

spherical fourier transform of temperature fluctuation map of CMB

- even peaks: compression of baryon-photon fluid due to gravitation
- odd peaks: counter effects of radiation pressure
- relative amplitude \sim measure of Ω_b

Non-relativistic baryonic matter relic density

 $\Omega_b h^2 = \mathbf{0.022\,25 \pm 0.000\,23}$

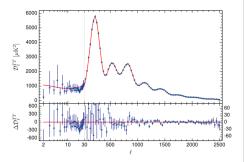


Figure: CMB power spectrum [arXiv:1502.01589]

- $\Omega_m = 0.308 \pm 0.012$
- $\Omega_{\chi} = \Omega_m \Omega_b \rightarrow 25 \%$ of ρ_c has to be non-baryonic dark matter

Role of Dark Matter in Structure Formation:

 origin of structures: evolution of initial quantum fluctuations in inflation field

- origin of structures: evolution of initial quantum fluctuations in inflation field
- before CMB decoupling: baryons and photons share density inhomogeneities

- origin of structures: evolution of initial quantum fluctuations in inflation field
- before CMB decoupling: baryons and photons share density inhomogeneities
- CMB temperature fluctuations: $\delta T/T \sim \delta \rho / \rho \sim 10^{-4}$ ("smoothness")

- origin of structures: evolution of initial quantum fluctuations in inflation field
- before CMB decoupling: baryons and photons share density inhomogeneities
- CMB temperature fluctuations: $\delta T/T \sim \delta \rho / \rho \sim 10^{-4}$ ("smoothness")
- observed structures today: $\delta
 ho/
 ho\gg 1$ (non-linear regime)

- origin of structures: evolution of initial quantum fluctuations in inflation field
- before CMB decoupling: baryons and photons share density inhomogeneities
- CMB temperature fluctuations: $\delta T/T \sim \delta \rho / \rho \sim 10^{-4}$ ("smoothness")
- observed structures today: $\delta
 ho/
 ho\gg 1$ (non-linear regime)
- GR: growth of fluctuations for matter in linear regime ($\delta \rho / \rho \lesssim 1$): $\delta \rho / \rho \sim a$, growth of a to today by factor 10^3

- origin of structures: evolution of initial quantum fluctuations in inflation field
- before CMB decoupling: baryons and photons share density inhomogeneities
- CMB temperature fluctuations: $\delta T/T \sim \delta \rho / \rho \sim 10^{-4}$ ("smoothness")
- observed structures today: $\delta
 ho/
 ho\gg 1$ (non-linear regime)
- GR: growth of fluctuations for matter in linear regime ($\delta \rho / \rho \lesssim 1$): $\delta \rho / \rho \sim a$, growth of a to today by factor 10^3
- problem: not enough time in baryon-only universe for structures to get to the non-linear regime

Role of Dark Matter in Structure Formation: requirement for $\delta \rho / \rho \gg 1$:

- additional particle species decoupled from baryon-photon fluid before CMB decoupling
- creation of gravitational potential wells, $(\delta \rho / \rho)_{\rm DM} \gg 10^{-4}$ (at CMB decoupling)

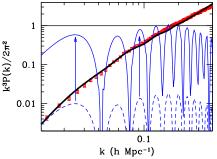
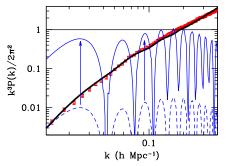


Figure: Power spectrum of matter density fluctuations (k: wavenumber) [arXiv:1112.1320] $\xrightarrow{\text{H} \text{ Sloan Digital Sky Survey}}{--\text{No-DM-model}}$ [arXiv:1112.1320] $\xrightarrow{\text{CDM-model}}{--\text{VeS-model}}$



Role of Dark Matter in Structure Formation: requirement for $\delta \rho / \rho \gg 1$:

- additional particle species decoupled from baryon-photon fluid before CMB decoupling
- creation of gravitational potential wells, $(\delta \rho / \rho)_{\rm DM} \gg 10^{-4}$ (at CMB decoupling)

Non-Baryonic Dark Matter stabilizes matter accumulation and enables structure formation

- "dark": sufficient electrical neutrality
- "cold": non-relativistic enough prohibiting free-streaming out of gravitational wells by itself

Figure: Power spectrum density fluctuations (k: wavenumber) [arXiv:1112.1320]		of matter Sloan Digital Sky Survey ACDM-model No-DM-model TeVeS-model
	Dark mat	ter relic density
$\Omega_{\chi}h^2 =$		0.1198 ± 0.0015

0 *darkness*: must have hidden from searches for ordinary matter

- \rightarrow constraints on ratio of charge to particle mass
- \rightarrow dissipation via photon radiation is inefficient

 \rightarrow dissipation via photon radiation is inefficient

2 **interactions**: self-interaction cross section to dark matter mass ratio $\frac{\sigma_{\chi\chi}}{m_{\chi}} \lesssim 1 \text{ cm}^2/\text{g}$ from Bullet Cluster merger \rightarrow if $m_{\chi} \sim m_p \rightarrow \sigma_{\chi\chi} \sim \sigma_{pp} \sim 1 \text{ barn} \sim \text{strong interactions}$

 \rightarrow dissipation via photon radiation is inefficient

- **(2)** *interactions*: self-interaction cross section to dark matter mass ratio $\frac{\sigma_{\chi\chi}}{m_{\chi}} \lesssim 1 \text{ cm}^2/\text{g}$ from Bullet Cluster merger \rightarrow if $m_{\chi} \sim m_p \rightarrow \sigma_{\chi\chi} \sim \sigma_{pp} \sim 1 \text{ barn} \sim \text{strong interactions}$
- 3 mass: very broad mass range
 - ightarrow stability of bound systems forbids $m_\chi\gtrsim 10^3\,{
 m M}_\odot$
 - ightarrow confinement on galactic scales $\sim
 m kpc
 ightarrow \lambda <
 m kpc
 ightarrow m_{\chi} > 10^{-22}\,
 m eV$
 - ightarrow lower mass bound from Tremaine-Gunn limit for fermionic dark matter

 \rightarrow dissipation via photon radiation is inefficient

- **(2)** *interactions*: self-interaction cross section to dark matter mass ratio $\frac{\sigma_{\chi\chi}}{m_{\chi}} \lesssim 1 \text{ cm}^2/\text{g}$ from Bullet Cluster merger \rightarrow if $m_{\chi} \sim m_p \rightarrow \sigma_{\chi\chi} \sim \sigma_{pp} \sim 1 \text{ barn} \sim \text{strong interactions}$
- In the second state of the second systems of the second systems for block $m_{\chi} \gtrsim 10^3 \, \text{M}_{\odot}$
 - ightarrow confinement on galactic scales $\sim
 m kpc
 ightarrow \lambda <
 m kpc
 ightarrow m_{\chi} > 10^{-22}\,
 m eV$
 - \rightarrow lower mass bound from Tremaine-Gunn limit for fermionic dark matter
- elic density and distribution: agreement with observed abundance, explanation of observed density and velocity distribution of galaxies

Thermal Production of Particles

Thermal Relic Framework

thermal decoupling can describe particle origin in early universe

 \rightarrow calculation and verification of relic densities

Thermal Production of Particles

Thermal Relic Framework

thermal decoupling can describe particle origin in early universe

 \rightarrow calculation and verification of relic densities

principle:

- at high temperatures: statistic mechanical thermal equilibrium due to reactions with $\Gamma \gg H(T)$
 - $1/\Gamma \sim$ average time between reactions,

 $t_H = 1/H(T) \sim$ Hubble time (\sim measure of age of universe)

- freeze-out: $\Gamma(T_{f.o.}) = H(T_{f.o.})$
- further cooling of universe: $\Gamma \ll H(T)$, only expansion determines number density (redshift)

Thermal Production of Particles

Thermal Relic Framework

thermal decoupling can describe particle origin in early universe

 \rightarrow calculation and verification of relic densities

principle:

- at high temperatures: statistic mechanical thermal equilibrium due to reactions with $\Gamma \gg H(T)$
 - $1/\Gamma \sim$ average time between reactions,

 $t_H = 1/H(T) \sim$ Hubble time (\sim measure of age of universe)

• freeze-out:
$$\Gamma(T_{f.o.}) = H(T_{f.o.})$$

• further cooling of universe: $\Gamma \ll H(T)$, only expansion determines number density (redshift)

hot relics: freeze-out happens in relativistic regime, $T_{f.o.} \gg m$

cold relics: freeze-out in non-relativistic regime, $T_{f.o.} \ll m$

Particle Dark Matter Candidates

... how particle dark matter models and particle dark matter candidates do or can look like.

WIMPs

... probably the most famous particle dark matter candidate.

= Weakly Interacting Massive Particle

assumptions:

- thermal creation, freeze-out and expansion of the universe determine the relic density
- non-relativistic at $T_{f.o.}/m_{\chi} \sim \text{few} \times \text{GeV} \rightarrow \text{stabilization of structure formation}$

• thermal equilibrium with SM particles: ($\chi = \bar{\chi}$ possible)

 $\chi\chi\leftrightarrow f\bar{f}$

freeze-out-condition

$$\begin{split} &\Gamma(T_{f.o.}) = H(T_{f.o.}) \\ &\Gamma(T_{f.o.}) = \sigma_{\chi\chi} v n_{\chi\chi}, \quad n_{\chi\chi} = n_{\text{non-rel}} \propto \frac{m_{\chi}^3}{x^{3/2}} \exp{(-x)}, \quad x = \frac{m_{\chi}}{T} \\ &H(T_{f.o.}) \propto \frac{T_{f.o.}^2}{M_{pl}} \quad \text{radiation dominated epoch} \end{split}$$

freeze-out-condition:

$$\begin{split} \Gamma(T_{f.o.}) &= H(T_{f.o.}) \\ \Rightarrow \quad \sqrt{x} \exp\left(-x\right) = \frac{1}{m_{\chi} M_{pl} \sigma_{\chi\chi}}, \quad x = \frac{m_{\chi}}{T} \end{split}$$

numerical solution for a cold relic ($x \gg 1$): $20 \le x_{f.o.} \le 50$

freeze-out-condition:

$$\begin{split} \Gamma(T_{f.o.}) &= H(T_{f.o.}) \\ \Rightarrow \quad \sqrt{x} \exp\left(-x\right) = \frac{1}{m_{\chi} M_{pl} \sigma_{\chi\chi}}, \quad x = \frac{m_{\chi}}{T} \end{split}$$

numerical solution for a cold relic ($x \gg 1$): $20 \le x_{f.o.} \le 50$

calculation of relic density:

$$\begin{split} \Omega_{\chi} &= \frac{\rho_{\chi}}{\rho_c} = \frac{m_{\chi} n_0}{\rho_c} \\ &= \frac{m_{\chi} T_0^3}{\rho_c} \frac{n_0}{T_0^3}, \quad \text{iso-entropic universe} \, \Leftrightarrow \, \frac{n}{T^3} = \text{const.} \\ &= \frac{T_0^3}{\rho_c} x_{f.o.} \left(\frac{n_{f.o.}}{T_{f.o.}^2} \right), \, n_{f.o.} \sim \frac{T_{f.o.}^2}{M_{pl}\sigma} \\ &= \left(\frac{T_0^3}{\rho_c M_{pl}} \right) \frac{x_{f.o.}}{\sigma} \end{split}$$

Lisa Biermann - Particle Dark Matter Candidates

Karlsruher Institut für Technologie

relic density from freeze out:

$$\Omega_{\chi} = \left(\frac{T_0^3}{\rho_c M_{pl}}\right) \frac{x_{f.o.}}{\sigma}$$

relic density from freeze out:

$$\Omega_{\chi} = \left(\frac{T_0^3}{\rho_c M_{pl}}\right) \frac{x_{f.o.}}{\sigma}$$

with $\sigma = \sigma_{\rm EW} \sim 10^{-8}\,{\rm GeV^{-2}}$ electroweak pair annihilation cross section

$$\Rightarrow \Omega_{\chi} h^2 = 0.12 \left(rac{13 \, \mathrm{GeV}}{m_{\chi}}
ight)^2$$

relic density from freeze out:

$$\Omega_{\chi} = \left(\frac{T_0^3}{\rho_c M_{pl}}\right) \frac{x_{f.o.}}{\sigma}$$

with $\sigma=\sigma_{\rm EW}\sim 10^{-8}\,{\rm GeV^{-2}}$ electroweak pair annihilation cross section

$$\Rightarrow \Omega_{\chi} h^2 = 0.12 \left(\frac{13 \,\mathrm{GeV}}{m_{\chi}}\right)^2$$

WIMP miracle: weak interacting cold thermal relic gives measured relic density

result from calculation with Boltzmann equation:

$$\Omega_{\chi}h^2 = 0.12 \left(\frac{x_{f.o.}}{23}\right)^{3/2} \frac{\sqrt{g_{\rm eff}}}{10} \left(\frac{35\,{\rm GeV}}{m_{\chi}}\right)^2$$

How a general WIMP must look like:

• Lee-Weinberg limit: $m_{\chi} \gtrsim 10 \text{ GeV}$ with assumption $\sigma \sim G_F^2 m_{\chi}^2$, same constraint also from PLANCK's upper limit on dark matter annihilation cross section

How a general WIMP must look like:

• Lee-Weinberg limit: $m_{\chi} \gtrsim 10 \text{ GeV}$ with assumption $\sigma \sim G_F^2 m_{\chi}^2$, same constraint also from PLANCK's upper limit on dark matter annihilation cross section

•
$$m_\chi \lesssim 120$$
 TeV with $\sigma \lesssim rac{4\pi}{m_\chi^2}$ (unitarity bound)

How a general WIMP must look like:

• Lee-Weinberg limit: $m_{\chi} \gtrsim 10 \text{ GeV}$ with assumption $\sigma \sim G_F^2 m_{\chi}^2$, same constraint also from PLANCK's upper limit on dark matter annihilation cross section

•
$$m_\chi \lesssim 120\,{
m TeV}$$
 with $\sigma \lesssim rac{4\pi}{m_\chi^2}$ (unitarity bound)

 coupling to Standard Model to assure annihilation to produce relic density in thermal relic framework

Dark Real Scalar in Higgs Portal Interaction

 renormalizable extension of Higgs potential by a real scalar field S (real scalar field to avoid mixing with SM Higgs boson and the resulting modification of SM Higgs couplings and W- and Z-masses)

 $V(\phi) = \mu_H^2 \phi^{\dagger} \phi + \lambda_H (\phi^{\dagger} \phi)^2 + \mu_S^2 S^2 + \kappa S^3 + \lambda_S S^4 + \kappa_3 \phi^{\dagger} \phi S + \lambda_3 \phi^{\dagger} \phi S^2$

Dark Real Scalar in Higgs Portal Interaction

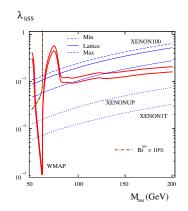
 renormalizable extension of Higgs potential by a real scalar field S (real scalar field to avoid mixing with SM Higgs boson and the resulting modification of SM Higgs couplings and W- and Z-masses)

$$V(\phi) = \mu_H^2 \phi^{\dagger} \phi + \lambda_H (\phi^{\dagger} \phi)^2 + \mu_S^2 S^2 + \kappa S^3 + \lambda_S S^4 + \kappa_3 \phi^{\dagger} \phi S + \lambda_3 \phi^{\dagger} \phi S^2$$

- additional global symmetry Z_2 -symmetry to prevent $S \rightarrow HH$ decays, $S \rightarrow -S$, $H \rightarrow +H$
- stable scalar particle with mass $m_S = \sqrt{2\mu_S^2 \lambda_3 v_H^2}$

and weak coupling to the SM with $g_{SSH} = -2\lambda_3 v_H$ and $g_{SSHH} = -2\lambda_3$

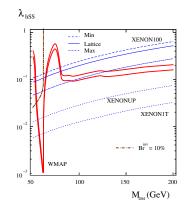
 \rightarrow annihilation via Higgs mediator possible


ightarrow viable DM candidate

Dark Real Scalar in Higgs Portal Interaction

 calculation of parameter space for observed relic density: annihilation rate

$$\langle \sigma v \rangle \propto \left(\left(4m_S^2 - m_H^2 \right)^2 + m_H^2 \Gamma_H^2 \right)^{-1}$$

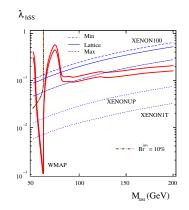


Dark Real Scalar in Higgs Portal Interaction

 calculation of parameter space for observed relic density: annihilation rate

$$\langle \sigma v \rangle \propto \left(\left(4m_S^2 - m_H^2 \right)^2 + m_H^2 \Gamma_H^2 \right)^{-1}$$

• self-coupling $\lambda_3 \sim 10^{-3}$ for Higgs pole $m_H = 2m_S$



Dark Real Scalar in Higgs Portal Interaction

 calculation of parameter space for observed relic density: annihilation rate

$$\langle \sigma v \rangle \propto \left(\left(4m_S^2 - m_H^2 \right)^2 + m_H^2 \Gamma_H^2 \right)^{-1}$$

- self-coupling $\lambda_3 \sim 10^{-3}$ for Higgs pole $m_H = 2m_S$
- $m_S \ll m_H$: $\lambda_3 \sim 1$

Dark Real Scalar in Higgs Portal Interaction

 calculation of parameter space for observed relic density: annihilation rate

$$\langle \sigma v \rangle \propto \left(\left(4m_S^2 - m_H^2 \right)^2 + m_H^2 \Gamma_H^2 \right)^{-1}$$

- self-coupling $\lambda_3 \sim 10^{-3}$ for Higgs pole $m_H = 2m_S$
- $m_S \ll m_H$: $\lambda_3 \sim 1$
- m_S ≫ m_H: annihilation to Higgs pairs via four-point interaction dominates over s-channel Higgs propagator contribution
 - ightarrow thresholds at $m_S=m_Z$ and

$$m_S = m_W$$

 λ_{hSS} Min XENON100 I attice 10^{-1} 10^{-2} ----- Br = 10% WMAP 10 50 100 150 200 M. (GeV)

Vector Portal Model:

- new massive gauge boson as a mediator of thermal freeze-out production of the dark matter particle
- or new massive gauge boson as dark matter itself
- global symmetries of SM can be extended to anomaly-free gauge symmetries

Vector Portal Model:

- new massive gauge boson as a mediator of thermal freeze-out production of the dark matter particle
- or new massive gauge boson as dark matter itself
- global symmetries of SM can be extended to anomaly-free gauge symmetries
- example: extension of hypercharge symmetry $U(1)_Y$ by additional $\overline{U(1)}$ gauge group
- kinetic mixing in Lagrangian

$$\mathcal{L}_{\text{gauge}} = -\frac{1}{4} \hat{B}^{\mu\nu} \hat{B}_{\mu\nu} - \frac{s_{\chi}}{2} \hat{V}^{\mu\nu} \hat{B}_{\mu\nu} - \frac{1}{4} \hat{V}^{\mu\nu} \hat{V}_{\mu\nu}$$

with small mixing parameter $s_{\chi} = \sin \chi$.

Vector Portal Model:

• resulting physical masses (weak mixing angle ω):

$$m_{\gamma}^{2} = 0, \ m_{Z}^{2} = \hat{m}_{Z}^{2} \left[1 + s_{\chi}^{2} s_{\omega}^{2} \left(1 + \frac{\hat{m}_{V}^{2}}{\hat{m}_{Z}^{2}} \right) \right], \ m_{V}^{2} = \hat{m}_{V}^{2} \left[1 + s_{\chi}^{2} c_{\omega}^{2} \right]$$

Vector Portal Model:

• resulting physical masses (weak mixing angle ω):

$$m_{\gamma}^2 = 0, \ m_Z^2 = \hat{m}_Z^2 \left[1 + s_{\chi}^2 s_{\omega}^2 \left(1 + \frac{\hat{m}_V^2}{\hat{m}_Z^2} \right) \right], \ m_V^2 = \hat{m}_V^2 \left[1 + s_{\chi}^2 c_{\omega}^2 \right]$$

coupling of V to SM matter

- for $\frac{\hat{m}_V^2}{\hat{m}_Z^2} \ll 1$: vanishing coupling to $Z-{\rm current}$ in leading $s_\chi-{\rm order}$
 - $\rightarrow V$ is called hidden photon

• for
$$\frac{\hat{m}_V^2}{\hat{m}_Z^2} \gg 1$$
: coupling to $Z-{\rm current}$ can be dominating coupling to SM fields

 $\rightarrow V$ is called $Z'-{\rm boson}$

Vector Portal Model with Z' mediator:

•
$$\Omega \propto rac{1}{\sigma}$$
 with $\sigma \propto rac{m_\chi^2}{(s-m_{Z'}^2)^2+m_{Z'}^4}$

- a range for hot relics: for $m_\chi < 1 \, {\rm MeV}, \, \Omega_\chi \propto m_\chi$
 - ightarrow hot relic for $m_\chi \sim 10\,{
 m eV}$

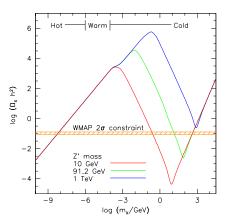


Figure: Relic density as a function of m_{χ} in Z' mediator model [arXiv:astro-ph/0412170]

Vector Portal Model with Z' mediator:

•
$$\Omega \propto rac{1}{\sigma}$$
 with $\sigma \propto rac{m_\chi^2}{(s-m_{Z'}^2)^2+m_{Z'}^4}$

- a range for hot relics: for $m_\chi < 1 \, {\rm MeV}, \, \Omega_\chi \propto m_\chi$
 - ightarrow hot relic for $m_\chi \sim 10\,{
 m eV}$
- $\begin{array}{l} \textbf{range for cold relics:} \\ m_\chi \gg m_{Z'} \colon \Omega_\chi \sim \sigma^{-1} \sim m_\chi^2 \\ m_\chi \ll m_{Z'} \colon \Omega_\chi \sim m_{Z'}^4 / m_\chi^2 \end{array}$
 - ightarrow cold relic for $m_\chi \sim 1\,{
 m TeV}$

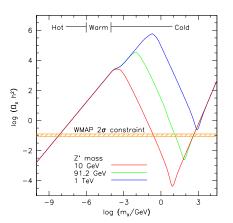


Figure: Relic density as a function of m_{χ} in Z' mediator model [arXiv:astro-ph/0412170]

WIMP Candidates from Supersymmetry

... just a glimpse on supersymmetric realization of WIMPs.

• couplings in **Minimal Supersymmetric Standard Model (MSSM)** do not ensure baryon (*B*) and lepton number (*L*) conservation

- couplings in Minimal Supersymmetric Standard Model (MSSM) do not ensure baryon (B) and lepton number (L) conservation
- introduction of R-parity: $P_R = (-1)^{3(B-L)+2S}$, $P_{R,SM} = +1$ and $P_{R,SUSY} = -1$

- couplings in Minimal Supersymmetric Standard Model (MSSM) do not ensure baryon (B) and lepton number (L) conservation
- introduction of R-parity: $P_R = (-1)^{3(B-L)+2S}$, $P_{R,SM} = +1$ and $P_{R,SUSY} = -1$
- R-parity conservation: SUSY particles can only be produced in pairs

 \rightarrow Lightest Supersymmetric Particle (LSP) is stable

- couplings in **Minimal Supersymmetric Standard Model (MSSM)** do not ensure baryon (*B*) and lepton number (*L*) conservation
- introduction of R-parity: $P_R = (-1)^{3(B-L)+2S}$, $P_{R,SM} = +1$ and $P_{R,SUSY} = -1$
- R-parity conservation: SUSY particles can only be produced in pairs
 → Lightest Supersymmetric Particle (LSP) is stable

- neutralinos are created through mixing of gauginos (bino with mass parameter M₁ and wino with mass parameter M₂) and higgsinos (mass parameter μ)
- lightest neutralino as LSP and DM candidate

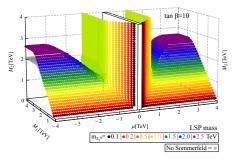


Figure: Parameter space for neutralinos as LSP [arXiv:1510.03460]

Lisa Biermann - Particle Dark Matter Candidates

... the first supersymmetric dark matter candidate ever proposed!

- ... the first supersymmetric dark matter candidate ever proposed!
 - Spin 3/2 superpartner of graviton

- ... the first supersymmetric dark matter candidate ever proposed!
 - Spin 3/2 superpartner of graviton
 - Massless gravitinos are described by (Majorana) Rarita-Schwinger fields (vector-spinor fields), $\Psi^a_\mu(x)$
 - Super-Higgs Mechanism introduces a massless Goldstino χ and provides the gravitino with mass $m_{3/2}$
 - Interactions with matter via Majorana super-current S_µ

Lagrangian for massive Gravitino

$$\mathcal{L} = -\frac{1}{2} \epsilon^{\mu\nu\rho\sigma} \bar{\Psi}_{\mu} \gamma_5 \gamma_{\nu} \partial_{\rho} \Psi_{\sigma} - \frac{m_{3/2}}{4} \bar{\Psi}_{\mu} \left[\gamma^{\mu}, \gamma^{\nu} \right] \Psi_{\nu} + \frac{1}{2M_{Pl}} \bar{\Psi}_{\mu} S^{\mu}$$

- ... the first supersymmetric dark matter candidate ever proposed!
 - Spin 3/2 superpartner of graviton
 - Massless gravitinos are described by (Majorana) Rarita-Schwinger fields (vector-spinor fields), $\Psi^a_\mu(x)$
 - Super-Higgs Mechanism introduces a massless Goldstino χ and provides the gravitino with mass $m_{3/2}$
 - Interactions with matter via Majorana super-current S_µ

Lagrangian for massive Gravitino

$$\mathcal{L} = -\frac{1}{2} \epsilon^{\mu\nu\rho\sigma} \bar{\Psi}_{\mu} \gamma_5 \gamma_{\nu} \partial_{\rho} \Psi_{\sigma} - \frac{m_{3/2}}{4} \bar{\Psi}_{\mu} \left[\gamma^{\mu}, \gamma^{\nu} \right] \Psi_{\nu} + \frac{1}{2M_{Pl}} \bar{\Psi}_{\mu} S^{\mu}$$

- \rightarrow Very weak interactions:
 - transverse modes: suppressed by Planck scale
 - $\bullet~$ longitudinal modes: suppressed by supersymmetry-breaking scale $F \propto m_{3/2}^{-1}$

assumption: gravitino as stable LSP (= lightest supersymmetric particle)

- assumption: gravitino as stable LSP (= lightest supersymmetric particle)
- for $m_{3/2}$ below electroweak scale and $s \ll M_{\tilde{\gamma}}^2$: pair-annihilation cross section is dominated by two-photon channel over fermion-antifermion channel

Freeze-out temperature for light gravitinos:

$$T_{f.o.} \sim 450 \, {
m GeV} \left(rac{m_{3/2}}{0.1 \, {
m eV}}
ight)^{4/5} \left(rac{100 \, {
m GeV}}{M_{ ilde{\gamma}}}
ight)^{2/5}$$

Relic density: $(g_*(T)$ is effective number of relativistic degrees of freedom)

$$\Omega_{3/2}h^2 \simeq rac{m_{3/2}}{ extsf{keV}} \left(rac{100}{g_*(T_{f.o.})}
ight)$$

 \rightarrow potential **hot relics** ($T_{f.o.} \gg m_{3/2}$) with $m_{3/2} \sim 100 \text{ eV}$ \rightarrow in disagreement with Tremaine-Gunn bound (too light)

- $T_{f.o.} \sim M_s$ for $m_{3/2} \gtrsim 0.02 \, {\rm eV}$ with M_s mass scale of other SUSY particles
- single-gravitino processes possible while other SUSY particles are in thermal equilibrium: (e.g. with gauge boson V and corresponding gaugino λ)

$$V + \tilde{\lambda} \leftrightarrow V + \tilde{G}, \qquad V + V \leftrightarrow \tilde{\lambda} + \tilde{G}$$

Freeze-out temperature including single-gravitino processes

$$T_{f.o.} \sim 1\, {\sf TeV} \left(rac{m_{3/2}}{1\, {\sf keV}}
ight)^2 \left(rac{1\, {\sf TeV}}{M_3}
ight)^2$$

- problem: thermalization of gravitinos with $m_{3/2}\gtrsim 1\,{\rm keV}$ lead to $\Omega_{3/2}h^2\gg\Omega_\chi h^2$

- problem: thermalization of gravitinos with $m_{3/2}\gtrsim 1\,{\rm keV}$ lead to $\Omega_{3/2}h^2\gg\Omega_\chi h^2$

- mechanism to generate heavier gravitinos:
 - example 1: decay of NLSP (next-to-lightest supersymmetric particles) after freeze-out

$$\Omega_{3/2}h^2 = m_{3/2}\cdot \frac{\Omega_{\rm NLSP}h^2}{m_{\rm NLSP}}$$

• example 2: gravitinos are not the LSP non-thermal production of LSP's via decay of gravitinos with $m_{3/2} \gg 100 \text{ TeV}$

... a particle dark matter candidate with concrete connection to the strong CP problem of QCD.

Strong CP Problem of QCD

Lagrangian of Quantum Chromodynamics (QCD)

$$\mathcal{L}_{\text{QCD}} = -\frac{1}{4}G^{a}_{\mu\nu}G^{a\mu\nu} + \sum_{j=1}^{n} \left[\bar{q}_{j}\gamma^{\mu}iD_{\mu}q_{j} - \left(m_{j}q^{\dagger}_{Lj}q_{Rj} + h.c.\right)\right] + \frac{\theta g^{2}s}{32\pi^{2}}G^{a}_{\mu\nu}\tilde{G}^{a\mu\nu} \quad (1)$$

- Adler-Bell-Jackiw anomaly: if none of the quark masses vanishes the theta term has to be present
- strong CP problem: theta term violates CP, T and P-symmetry $\bar{\theta} = \theta + arg(\det \mathcal{M})$, chiral pertubation theory: $d_n \approx 5 \cdot 10^{-16} \cdot \bar{\theta} \cdot e \text{cm} \Leftrightarrow d_{n, \exp} < \text{few} \cdot 10^{-26} e \text{cm}$

 \Rightarrow Smallness of θ , θ ?

Strong CP Problem of QCD

Peccei-Quinn Theory: global $U_{PQ}(1)$ symmetry

- explicitly broken by non-perturbative effects producing theta-term
- spontaneously broken at scale $f_a o m_a \sim rac{\Lambda^2_{ t QCD}}{f_a}$

\Rightarrow pseudo-Nambu-Goldstone boson: axion

 \rightarrow ground state of axion potential drives $\bar{\theta} \rightarrow 0$

Constraints and Consequences

• general axion mass range dictated by **PQ-theory**: $m_a \sim \frac{\Lambda^2_{\rm QCD}}{f_a}$

 $10^{-12}\,{
m eV} \lesssim m_a \lesssim 1\,{
m MeV}$ (for $100\,{
m GeV} < f_a < M_{pl}$)

Constraints and Consequences

- general axion mass range dictated by **PQ-theory**: $m_a \sim \frac{\Lambda_{QCD}^2}{f_a}$ $10^{-12} \text{ eV} \lesssim m_a \lesssim 1 \text{ MeV} \text{ (for } 100 \text{ GeV} < f_a < M_{pl} \text{)}$
- $m_a < 1 \text{ MeV}$ (below e^+e^- -threshold) because no decays like $\pi^+ \rightarrow a(e^+e^-)e^+\nu_e$ are observed

Constraints and Consequences

- general axion mass range dictated by **PQ-theory**: $m_a \sim \frac{\Lambda_{\text{QCD}}^2}{f_a}$ $10^{-12} \text{ eV} \lesssim m_a \lesssim 1 \text{ MeV} \text{ (for } 100 \text{ GeV} < f_a < M_{pl} \text{)}$
- $m_a < 1 \text{ MeV}$ (below e^+e^- -threshold) because no decays like $\pi^+ \to a(e^+e^-)e^+\nu_e$ are observed
- 10 keV $\leq m_a \leq 1$ MeV (below e^+e^- -threshold) would lead to $K^+ \to \pi^+ + a, J/\Psi \to a + \gamma, \Upsilon \to a + \gamma$ (axion would leave detector before decaying into two photons) \to unobserved decays

Thermal Production of Hot Axions

axion production and annihilation in early universe mainly through:

$$\begin{array}{ll} a+g\leftrightarrow \bar{q}+q & a+g\leftrightarrow g+g \\ a+q\leftrightarrow g+q & a+\bar{q}\leftrightarrow g+\bar{q} \end{array}$$

$$T_{f.o.} pprox 5 imes 10^{11} \, {
m GeV} \left(rac{f_a}{10^{12} \, {
m GeV}}
ight)$$

<u>problem</u>: $\Omega_{\text{th.ax.}} \sim \Omega_{\chi} \Rightarrow m_a \sim 13 \,\text{eV} \Rightarrow \tau_a < \tau_U$

\Rightarrow DM cannot consist only of thermally produced hot axions

Non-thermal Production of Cold Light Dark Matter

toy model: complex scalar field $\phi(t)$ with potential V, metric g

$$\frac{\mathcal{L}}{\sqrt{\det(g)}} = \left(\partial^{\mu}\phi^{*}\right)\left(\partial_{\mu}\phi\right) - V(\phi) = \left(\partial^{\mu}\phi^{*}\right)\left(\partial_{\mu}\phi\right) - m_{\phi}^{2}\phi^{*}\phi$$

for flat space (
$$k = 0$$
): det(g) = a^6

equation of motion:

$$\ddot{\phi}(t) + 3H\dot{\phi}(t) + m_{\phi}^2\phi(t) = 0$$

Non-thermal Production of Cold Light Dark Matter

$$\ddot{\phi}(t) + 3H\dot{\phi}(t) + m_{\phi}^2\phi(t) = 0$$

solution: $\phi(t) = \exp(i\omega t)$, $\omega = \frac{3i}{2}H \pm \sqrt{-\frac{9}{4}H^2 + m_{\phi}^2}$ <u>3 cases</u>:

• Early Universe, $H \gg m_{\phi}$: $\omega_1 = 0, \omega_2 = 3iH, \phi(t) = \phi_1 + \phi_2 \exp(-3Ht)$ \Rightarrow misalignment mechanism: temporal evolution to ϕ_1 , not a minimum of $V(\phi)$ (in general)

Non-thermal Production of Cold Light Dark Matter

$$\ddot{\phi}(t) + 3H\dot{\phi}(t) + m_{\phi}^2\phi(t) = 0$$

solution: $\phi(t) = \exp{(i\omega t)}, \omega = \frac{3i}{2}H \pm \sqrt{-\frac{9}{4}H^2 + m_{\phi}^2}$ <u>3 cases</u>:

• Early Universe, $H \gg m_{\phi}$: $\omega_1 = 0, \omega_2 = 3iH, \phi(t) = \phi_1 + \phi_2 \exp(-3Ht)$ \Rightarrow misalignment mechanism: temporal evolution to ϕ_1 , not a minimum of $V(\phi)$ (in general)

• Transition point: $H_{\text{prod}} \sim m_{\phi}$: $\omega \approx \frac{3i}{2}H_{\text{prod}}$ exponential decay to constant ϕ_1 gets replaced by oscillation mode \rightarrow DM as degree of freedom

 \Rightarrow production of cold light dark matter

Non-thermal Production of Cold Light Dark Matter

$$\ddot{\phi}(t) + 3H\dot{\phi}(t) + m_{\phi}^2\phi(t) = 0$$

solution: $\phi(t) = \exp{(i\omega t)}, \omega = \frac{3i}{2}H \pm \sqrt{-\frac{9}{4}H^2 + m_{\phi}^2}$ <u>3 cases</u>:

• Early Universe, $H \gg m_{\phi}$: $\omega_1 = 0, \omega_2 = 3iH, \phi(t) = \phi_1 + \phi_2 \exp(-3Ht)$ \Rightarrow misalignment mechanism: temporal evolution to ϕ_1 , not a minimum of $V(\phi)$ (in general)

• Transition point: $H_{\text{prod}} \sim m_{\phi}$: $\omega \approx \frac{3i}{2}H_{\text{prod}}$ exponential decay to constant ϕ_1 gets replaced by oscillation mode \rightarrow DM as degree of freedom

 \Rightarrow production of cold light dark matter

• Late Universe, $H \ll m_{\phi}$: $\phi(t) = \phi_3 \exp(\pm i m_{\phi} t) \exp(-3H/2t)$

Non-Thermal Production of Cold Axions

... through the misalignment mechanism:

- assumption: relaxation of $\bar{\theta} \to 0$ through oscillation
- solution to Lagrange equation of motion for $T \gg \Lambda_{\text{QCD}}$: $\bar{\theta} = \bar{\theta}_1 = \text{const.} = \text{misalignment-angle}$
- relic density condition: $m_a \sim 2 \,\mu {
 m eV}, \, f_a \sim 10^{13} \,{
 m GeV}$

Non-Thermal Production of Cold Axions

... through the misalignment mechanism:

- assumption: relaxation of $\bar{\theta} \to 0$ through oscillation
- solution to Lagrange equation of motion for $T \gg \Lambda_{\text{QCD}}$: $\bar{\theta} = \bar{\theta}_1 = \text{const.} = \text{misalignment-angle}$
- relic density condition: $m_a \sim 2 \,\mu {\rm eV}, \, f_a \sim 10^{13} \,{\rm GeV}$

⇒ very cold axions with typical velocity $\frac{v_a}{c} \sim 10^{-18}$ ⇒ $a \rightarrow \gamma \gamma$ gives $\tau_{a \rightarrow \gamma \gamma} \approx 2 \times 10^{47}$ years $\gg \tau_U \sim 14 \times 10^9$ years \checkmark

Generalization

<u>axion</u>: explanation of strong CP problem and Dark Matter

Generalization

<u>axion</u>: explanation of strong CP problem and Dark Matter

Axion-like particle (ALP):

 global U(1) symmetry spontaneously broken by hidden Higgs-type mechanism (symmetry breaking scale v_h) H_h(x) = ¹/_{√2} (v_h + h_h(x)) exp (^{ia(x)}/_{v_h}) (v_h suppresses ALP-SM interactions)

•
$$m_a = rac{\mu^2}{f_a}$$
, μ is not related to $\Lambda_{ extsf{QCD}}$

Generalization

<u>axion</u>: explanation of strong CP problem and Dark Matter

Axion-like particle (ALP):

• global U(1) symmetry spontaneously broken by hidden Higgs-type mechanism (symmetry breaking scale v_h) $H_h(x) = \frac{1}{\sqrt{2}} \left(v_h + h_h(x) \right) \exp \left(\frac{ia(x)}{v_h} \right)$ $\left(v_h \text{ suppresses ALP-SM interactions} \right)$

•
$$m_a = \frac{\mu^2}{f_a}$$
, μ is not related to Λ_{QCD}
 $\Rightarrow \mu \approx 100 \text{ eV}$, $m_a \approx 10^{-22} \text{ eV}$
typical velocity $v \approx 100 \text{ km/s}$, $\lambda_{de-broglie} \sim \text{galaxy}$
 $\Rightarrow \text{fuzzy dark matter}$

... on the task of simultaneously explaining dark matter and neutrino masses and mixing.

possible explanation of neutrino masses and mixing:

n right-handed fermions N_a (a = 1, ..., n) which form a singlet under all SM gauge interactions = *sterile* neutrinos

See-Saw Lagrangian

$$\mathcal{L} = \mathcal{L}_{SM} + i\bar{N}_a \partial \!\!\!/ N_a - y_{\alpha a} H^{\dagger} \bar{L}_{\alpha} N_a - \frac{M_a}{2} \bar{N}_a^c N_a \tag{2}$$

possible explanation of neutrino masses and mixing:

n right-handed fermions N_a (a = 1, ..., n) which form a singlet under all SM gauge interactions = *sterile* neutrinos

See-Saw Lagrangian

$$\mathcal{L} = \mathcal{L}_{SM} + i\bar{N}_a \partial \!\!\!/ N_a - y_{\alpha a} H^{\dagger} \bar{L}_{\alpha} N_a - \frac{M_a}{2} \bar{N}_a^c N_a \tag{2}$$

■ mass eigenvalues: M(v_{1,2,3}) ~ ^{y²v²}/_M ⇔ m(v_a) ~ M → lightness of active neutrinos due to heaviness of sterile neutrinos!

• mixing angle
$$heta^2 \sim rac{y_{lpha a} v^2}{M^2}$$

 $\hfill\blacksquare$ scale M can be derived as VEV of a real scalar S associated with the electroweak scale

Sterile Neutrinos as Dark Matter Candidate

... consider the lightest sterile neutrino as a particle dark matter candidate.

Sterile Neutrinos as Dark Matter Candidate

... consider the lightest sterile neutrino as a particle dark matter candidate.

• SN lifetime estimation with mixing angle θ and mass m:

$$\Gamma \sim \theta^2 G_F^2 m^5 \quad \Rightarrow \quad \tau \sim 10^{16} \, \mathrm{s} \, \theta^{-2} \left(\frac{m}{\mathrm{keV}} \right)^{-5} \Rightarrow m \ll 1 \, \mathrm{keV} / \theta^{2/5}$$

Sterile Neutrinos as Dark Matter Candidate

... consider the lightest sterile neutrino as a particle dark matter candidate.

• SN lifetime estimation with mixing angle θ and mass m:

$$\Gamma \sim \theta^2 G_F^2 m^5 \quad \Rightarrow \quad \tau \sim 10^{16} \, \mathrm{s} \, \theta^{-2} \left(\frac{m}{\mathrm{keV}} \right)^{-5} \Rightarrow m \ll 1 \, \mathrm{keV} / \theta^{2/5}$$

decay into three active neutrinos:

$$\Gamma_{3\nu} = \frac{G_F^2 m^5 \theta^2}{96\pi^3} \quad \Rightarrow \quad \tau_{3\nu} \simeq 10^{14} \, \text{years} \left(\frac{10 \, \text{keV}}{m}\right)^5 \left(\frac{10^{-8}}{\theta^2}\right)$$

Sterile Neutrinos as Dark Matter Candidate

... consider the lightest sterile neutrino as a particle dark matter candidate.

• SN lifetime estimation with mixing angle θ and mass m:

$$\Gamma \sim \theta^2 G_F^2 m^5 \quad \Rightarrow \quad \tau \sim 10^{16} \, \mathrm{s} \, \theta^{-2} \left(\frac{m}{\mathrm{keV}} \right)^{-5} \Rightarrow m \ll 1 \, \mathrm{keV} / \theta^{2/5}$$

decay into three active neutrinos:

$$\Gamma_{3\nu} = \frac{G_F^2 m^5 \theta^2}{96\pi^3} \quad \Rightarrow \quad \tau_{3\nu} \simeq 10^{14} \, \text{years} \left(\frac{10 \, \text{keV}}{m}\right)^5 \left(\frac{10^{-8}}{\theta^2}\right)$$

• Fermi statistic constraint: Tremaine-Gunn bound \sim decreasing of max. value of phase-space density with time $m\gtrsim 1\,{\rm keV}$

Production of Sterile Neutrinos

early universe: non-thermal production by oscillations between active and sterile neutrinos

Production of Sterile Neutrinos

early universe: non-thermal production by oscillations between active and sterile neutrinos

interaction eigenstates (active and sterile neutrinos) are no eigenstates of neutrino mass matrix

Production of Sterile Neutrinos

early universe: non-thermal production by oscillations between active and sterile neutrinos

interaction eigenstates (active and sterile neutrinos) are no eigenstates of neutrino mass matrix

e.g. mixing only between ν_e and N_1

$$\begin{aligned} |\nu_1\rangle &= \cos(\theta) |\nu_e\rangle - \sin(\theta) |N_1\rangle \\ |\nu_2\rangle &= \sin(\theta) |\nu_e\rangle + \cos(\theta) |N_1\rangle \end{aligned}$$

Kalsruher Institut für Technologie

Production of Sterile Neutrinos

early universe: non-thermal production by oscillations between active and sterile neutrinos

interaction eigenstates (active and sterile neutrinos) are no eigenstates of neutrino mass matrix

e.g. mixing only between ν_e and N_1

$$\begin{aligned} |\nu_1\rangle &= \cos(\theta) |\nu_e\rangle - \sin(\theta) |N_1\rangle \\ |\nu_2\rangle &= \sin(\theta) |\nu_e\rangle + \cos(\theta) |N_1\rangle \end{aligned}$$

$$\Omega_{SN,\text{osci}} h^2 \sim 0.1 \left(\frac{\theta^2}{3 \times 10^{-9}}\right) \left(\frac{m_{SN}}{3 \,\text{keV}}\right)^{1.8}$$

Production of SN

$$\Omega_{SN,\rm osci}\,h^2\sim 0.1 \left(\frac{\theta^2}{3\times 10^{-9}}\right) \left(\frac{m_{SN}}{3\,\rm keV}\right)^{1.8}$$

- potentially warm DM candidate: produced relativistically by oscillations
- \blacksquare structure formation with SN possible for $m\gtrsim 2-4\,{\rm keV}$

Production of SN

$$\Omega_{SN,\rm osci}\,h^2\sim 0.1 \left(\frac{\theta^2}{3\times 10^{-9}}\right) \left(\frac{m_{SN}}{3\,\rm keV}\right)^{1.8}$$

- potentially warm DM candidate: produced relativistically by oscillations
- structure formation with SN possible for $m\gtrsim 2-4\,{\rm keV}$

Possible model implementation:

ν MSM = minimal SM with neutrino masses

- three sterile neutrinos M_1 , M_2 , M_3
- Iightest SN with $M_1 \sim {
 m keV}$ is dark matter
- $M_2 \simeq M_3 \sim \text{GeV}$ with $|M_2 M_3| \sim 1$ keV lead to dynamical generation (neutrino oscillations) of lepton asymmetry $L \sim B \rightarrow$ explanation of baryon asymmetry

... just a short glimpse on more "exotic" dark matter candidates.

<u>WIMPzillas</u>

 Schrödinger 1939: "The proper vibrations of the expanding universe" description of particle production in presence of an intense classical field

<u>WIMPzillas</u>

- Schrödinger 1939: "The proper vibrations of the expanding universe" description of particle production in presence of an intense classical field
- non-thermal production mechanism of superheavy particles X in early universe in presence of strong gravitational fields

<u>WIMPzillas</u>

- Schrödinger 1939: "The proper vibrations of the expanding universe" description of particle production in presence of an intense classical field
- non-thermal production mechanism of superheavy particles X in early universe in presence of strong gravitational fields
- most likely just after inflation, at $T = T_*$:

interaction rate is weak enough

X is never in thermal equilibrium

$$\Leftrightarrow \Gamma_X < H$$

$$\Leftrightarrow \left(\frac{200\,\mathrm{TeV}}{M_X}\right)^2 \left(\frac{T_*}{M_X}\right) < 1$$

mass estimation for WIMPzillas

$$M_X\gtrsim 200\,{
m TeV}$$

Strangelets

- macroscopic objects: quarks clumped together to macroscopic objects (= nuggets)
- $r = 10 \, \text{mm} 10 \, \text{cm}$

•
$$m = 10^9 \,\mathrm{g} - 10^{18} \,\mathrm{g} \, \Leftrightarrow \, M_X \gtrsim 200 \,\mathrm{TeV} = 3.6 imes 10^{-25} \,\mathrm{g}$$

Strangelets

- macroscopic objects: quarks clumped together to macroscopic objects (= nuggets)
- $r = 10 \, \text{mm} 10 \, \text{cm}$

•
$$m = 10^9 \,\mathrm{g} - 10^{18} \,\mathrm{g} \, \Leftrightarrow \, M_X \gtrsim 200 \,\mathrm{TeV} = 3.6 imes 10^{-25} \,\mathrm{g}$$

■ possible connection to baryogenesis:
 → if ratio of nugget to antinugget 2:3 after nugget formation:
 explanation of baryogenesis without needing a net baryon excess

Kaluza-Klein-, Asymmetric-, Self- and Strongly-Interacting- and Feebly Interacting Dark Matter as well as ELastically DEcoupling Relics

... some further particle dark matter interaction and production mechanisms.

Kaluza-Klein Dark Matter in Universal Extra Dimension

assumptions:

- SM fields are allowed to propagate in extra spatial dimension (ED)
- tree-level mass of the n-th Kaluza-Klein excitation of SM field $X^{(n)}$ with SM mass $m^2_{X^{(0)}}$

 $m_{X^{(n)}}^2 = \frac{n^2}{R^2} + m_{X^{(0)}}^2,$ assuming ED realized by circle with radius R

- LKP (= lightest Kaluza-Klein particle) as DM candidate:
 - $1/R \lesssim$ 800 GeV: Kaluza-Klein graviton $G^{(1)}$ (super-WIMP)
 - $1/R \gtrsim$ 800 GeV: Kaluza-Klein hypercharged gauge boson $B^{(1)}$ (Spin 1 WIMP)

Asymmetric Dark Matter

Is the similarity between Ω_{χ} and Ω_b just a coincidence, or can they be linked?

$$rac{\Omega_{\chi}}{\Omega_b} = rac{0.12}{0.022} pprox 5.5$$

 Ω_b determined by initial asymmetry, $\frac{n_B - n_{\bar{B}}}{n_B} \approx 3 \times 10^{-8}$ (not by thermal freeze-out).

Asymmetric Dark Matter

Is the similarity between Ω_{χ} and Ω_b just a coincidence, or can they be linked?

$$rac{\Omega_{\chi}}{\Omega_b} = rac{0.12}{0.022} pprox 5.5$$

 Ω_b determined by initial asymmetry, $\frac{n_B - n_{\bar{B}}}{n_B} \approx 3 \times 10^{-8}$ (not by thermal freeze-out).

assumptions:

- link between Ω_{χ} and Ω_b
- production of DM out of thermal bath and annihilation with DM anti-particles
- at decoupling of DM-baryon-link: relativistic baryons and non-relativistic DM
 - $ightarrow m_\chi pprox$ 15 $T_{
 m dec}$, heavy DM $m_\chi \gg m_b$
- observed relic density Ω_{χ} due to initial asymmetry

Self-Interacting Dark Matter (SIDM)

DM candidate classification depending on behavior of co-moving number N and entropy S in region $T\sim m_{\chi}$

Self-Interacting Dark Matter (SIDM)

- DM candidate classification depending on behavior of co-moving number N and entropy S in region $T\sim m_{\chi}$
- Hot DM ($T_{f.o.} \gg m_{\chi}$): N and S do not change
- Cold DM ($T_{f.o.} \ll m_{\chi}$): N and S do change

Self-Interacting Dark Matter (SIDM)

- DM candidate classification depending on behavior of co-moving number N and entropy S in region $T\sim m_{\chi}$
- Hot DM ($T_{f.o.} \gg m_{\chi}$): N and S do not change
- Cold DM ($T_{f.o.} \ll m_{\chi}$): N and S do change

SIDM-scenario: change of N, but no change of S

Self-Interacting Dark Matter (SIDM)

- DM candidate classification depending on behavior of co-moving number N and entropy S in region $T\sim m_{\chi}$
- Hot DM ($T_{f.o.} \gg m_{\chi}$): N and S do not change
- Cold DM ($T_{f.o.} \ll m_{\chi}$): N and S do change

SIDM-scenario: change of N, but no change of S example: existance of self-annihilation processes

$$\underbrace{\chi \dots \chi}_{n} \to \chi \chi \quad n \ge 3$$

<u>condition</u>: thermal decoupling happens before self-interaction gets out of equilibrium \rightarrow change of N, but S constant (no heat exchange with thermal plasma)

Self-Interacting Dark Matter (SIDM)

- DM candidate classification depending on behavior of co-moving number N and entropy S in region $T\sim m_{\chi}$
- Hot DM ($T_{f.o.} \gg m_{\chi}$): N and S do not change
- Cold DM ($T_{f.o.} \ll m_{\chi}$): N and S do change

SIDM-scenario: change of N, but no change of S example: existance of self-annihilation processes

$$\underbrace{\chi \dots \chi}_{n} \to \chi \chi \quad n \ge 3$$

<u>condition</u>: thermal decoupling happens before self-interaction gets out of equilibrium \rightarrow change of N, but S constant (no heat exchange with thermal plasma) problem: prediction of very light DM $m_{\chi} \leq 100 \,\mathrm{eV} \Leftrightarrow$ large-scale structure constraints

Strongly Interacting Massive Particles (SIMPs)

- SIDM with small coupling to SM thermal bath (thermal equilibrium guaranteed for both sectors)
- self-interacting effects $n \rightarrow 2$, $n \ge 3$ determine relic density

Strongly Interacting Massive Particles (SIMPs)

- SIDM with small coupling to SM thermal bath (thermal equilibrium guaranteed for both sectors)
- self-interacting effects $n \rightarrow 2$, $n \ge 3$ determine relic density
- SIMP-miracle: couplings and masses can be combined such that correct relic abundance is reproduced

 \rightarrow combination associated with scale of QCD, $\alpha_{n\rightarrow2}\sim 1$

$$\left(\frac{\Omega_{\chi}}{0.2}\right) \sim \left(\frac{m_{\chi}}{35\,\mathrm{MeV}}\right)^{3/2} \left(\frac{x_{f.o.}}{20}\right)^2 \left(\frac{1}{\alpha_{3\to 2}}\right)^{-3/2}$$

with $4 \rightarrow 2$: $m_{\chi} \sim 100 \text{ keV}$

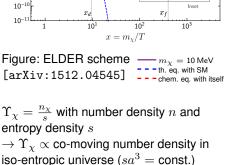
Strongly Interacting Massive Particles (SIMPs)

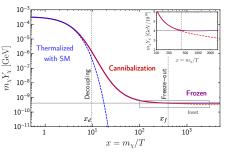
- SIDM with small coupling to SM thermal bath (thermal equilibrium guaranteed for both sectors)
- self-interacting effects $n \rightarrow 2$, $n \ge 3$ determine relic density
- SIMP-miracle: couplings and masses can be combined such that correct relic abundance is reproduced

 \rightarrow combination associated with scale of QCD, $\alpha_{n\rightarrow2}\sim 1$

$$\left(\frac{\Omega_{\chi}}{0.2}\right) \sim \left(\frac{m_{\chi}}{35\,\mathrm{MeV}}\right)^{3/2} \left(\frac{x_{f.o.}}{20}\right)^2 \left(\frac{1}{\alpha_{3\to 2}}\right)^{-3/2}$$

with $4 \rightarrow 2$: $m_\chi \sim 100 \text{ keV}$


problem: condition for equilibrium is coupling with visible sector


ELastically DEcoupling Relics (ELDERs)

ELDER scheme:

After chemical decoupling from thermal bath: DM is still in

- kinetic equilibrium with thermal plasma
- chemical equilibrium with itself due to SIMP-like processes $n \rightarrow 2$

51/55

ELastically DEcoupling Relics (ELDERs)

ELDER scheme:

After chemical decoupling from thermal bath: DM is still in

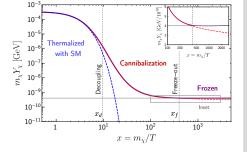
- kinetic equilibrium with thermal plasma
- chemical equilibrium with itself due to SIMP-like processes $n \rightarrow 2$

After kinetic decoupling at x_d :

• cannibalization phase with fast $n \rightarrow 2$ self-annihilation processes

$$\begin{split} \Upsilon_{\chi} &= \frac{n_{\chi}}{s} \text{ with number density } n \text{ and} \\ \text{entropy density } s \\ &\rightarrow \Upsilon_{\chi} \propto \text{co-moving number density in} \\ \text{iso-entropic universe } (sa^3 = \text{const.}) \end{split}$$

Figure: ELDER scheme


[arXiv:1512.04545]

 $-m_{\chi} = 10 \text{ MeV}$

th. eq. with SM chem. eq. with itself

51/55

ELastically DEcoupling Relics (ELDERs)

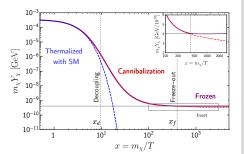
ELDER scheme:

After chemical decoupling from thermal bath: DM is still in

- kinetic equilibrium with thermal plasma
- chemical equilibrium with itself due to SIMP-like processes $n \rightarrow 2$

After kinetic decoupling at x_d :

• cannibalization phase with fast $n \rightarrow 2$ self-annihilation processes


After freeze-out at x_f :

- <u>case 1</u>: cannibalization processes out of equilibrium, DM is completely frozen
- <u>case 2</u>: self-annihilation induced cannibalization continues after decoupling

$$\begin{split} & \Upsilon_{\chi} = \frac{n_{\chi}}{s} \text{ with number density } n \text{ and} \\ & \text{entropy density } s \\ & \rightarrow \Upsilon_{\chi} \propto \text{co-moving number density in} \\ & \text{iso-entropic universe } (sa^3 = \text{const.}) \end{split}$$

Figure: ELDER scheme

[arXiv:1512.04545]

 $m_{\chi} = 10 \text{ MeV}$ th. eq. with SM

chem. eq. with itself

Freeze-in mechanism

assumption:

- coupling between SM and DM large enough to reach thermal equilibrium
- SM particles decay and annihilate producing DM
- DM not in thermal equilibrium

= non-thermal **freeze-in** mechanism, e.g. sterile neutrinos

FIMP = Feebly-Interacting Massive Particle

- zero initial abundance
- never in thermal equilibrium due to highly suppressed interaction vertex with coupling $\lambda \ll 1$
- stable because of shared unbroken symmetry with LOSP

FIMP = Feebly-Interacting Massive Particle

- zero initial abundance
- $\bullet\,$ never in thermal equilibrium due to highly suppressed interaction vertex with coupling $\lambda \ll 1$
- stable because of shared unbroken symmetry with LOSP

LOSP = Lightest Obervable Sector Particle

• participates in λ -vertex

FIMP = Feebly-Interacting Massive Particle

- zero initial abundance
- $\bullet\,$ never in thermal equilibrium due to highly suppressed interaction vertex with coupling $\lambda \ll 1$
- stable because of shared unbroken symmetry with LOSP

LOSP = Lightest Obervable Sector Particle

- participates in \u03c6-vertex
- if LOSP is heavier:
 - dominant contribution from freeze-in with additional small contribution from LOSP freeze-out and decay to FIMP DM
 - dominant contribution from freeze-out and decay of LOSP to FIMP DM, additional small contribution from freeze-in

• FIMP = Feebly-Interacting Massive Particle

- zero initial abundance
- $\bullet\,$ never in thermal equilibrium due to highly suppressed interaction vertex with coupling $\lambda \ll 1$
- stable because of shared unbroken symmetry with LOSP

LOSP = Lightest Obervable Sector Particle

- participates in λ−vertex
- if LOSP is heavier:
 - dominant contribution from freeze-in with additional small contribution from LOSP freeze-out and decay to FIMP DM
 - dominant contribution from freeze-out and decay of LOSP to FIMP DM, additional small contribution from freeze-in
- if LOSP is lighter than FIMP:
 - dominant contribution from freeze-in of FIMP which later decays to LOSP DM, additional small contribution from LOSP freeze-out
 - Observe and the serveral and the serv

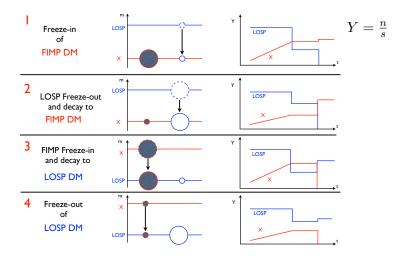
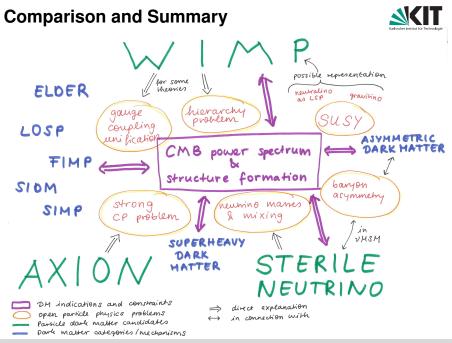



Figure: Mechanism of freeze-in and freeze-out for FIMP and LOSP DM [arXiv:0911.1120]

Lisa Biermann – Particle Dark Matter Candidates

Thanks for Your Attention!

References

Literature

- Profumo, Stefano. An Introduction to Particle Dark Matter. World Scientific Publishing Europe Ltd., 2017.
- Bauer, Martin and Plehn, Tilman. Yet Another Introduction to Dark Matter The Particle Physics Approach. 2017. arXiv: 1705.01987v2 [hep-ph]

Pictures

titleimage: NASA and the European Space Agency. *Hubble Ultra Deep Field, an image of a small segment of space in constellation* Fornax. http://hubblesite.org/newscenter/archive/releases/2004/07/image/a/warn/. Last call: 10.06.2019.

slide 5: Planck Collaboration, Ade, P. A. R. and others. *Planck 2015 results. XIII. Cosmological parameters.* In: Astron. Astrophys. 594 (2016). arXiv: 1502.01589 [astro-ph.C0]

<u>slide 7</u>: Scott Dodelson. The Real Problem with MOND. In: Int. J. Mod. Phys. D20 (2011), p.2749-2753. arXiv: 1112.1320 [astro-ph.CO]

slide 18: Djouadi, Abdelhak and Lebedev, Oleg and Mambrini, Yann and Quevillon, Jeremie. Implications of LHC searches for Higgs-portal dark matter. In: Phys. Lett. B709 (2012), p.65-69. arXiv: 1112.3299 [hep-ph]

slide 21: Baltz, Edward. Dark matter candidates. In: eConf C040802 (2004). arxiv: astro-ph/0412170

slide 23: Bramante, Joseph and Desai, Nishita and Fox, Patrick and Martin, Adam and Ostdiek, Bryan and Plehn, Tilman. Towards the Final Word on Neutralino Dark Matter. In: Phys. Rev. D93 (2016). arXiv: 1510.03460 [hep-ph]

slide 50: Kuflik, Eric and Perelstein, Maxim and Lorier, Nicolas Rey-Le and Tsai, Yu-Dai. *Elastically Decoupling Dark Matter*. In: Phys. Rev. Lett. 116 (2016). arXiv: 1512.04545 [hep-ph]

slide 53: Hall, Lawrence J. and Jedamzik, Karsten and March-Russell, John and West, Stephen M. Freeze-In Production of FIMP Dark Matter. In: JHEP 03 (2010). arXiv: 0911.1120 [hep-ph]