Blatt 11

Ausgabe: Di, 9.07.19

Besprechung: Di, 16.07.19

Übungsbetreuung: Seraina Glaus (seraina.glaus@kit.edu) (Raum 12/08 - Geb. 30.23)

Aufgabe 1: Dirac-Notation

Wir möchten in dieser Aufgabe vertrauter mit der Bra-Ket oder auch Dirac-Notation von Zuständen im Hilbert-Raum werden. Beachten Sie, dass die drei Teilaufgaben linear unabhängig sind und die Rechnungen kurz sind.

- (a) In einem komplexen Hilbert-Raum sei durch Î := |u⟩ ⟨u| mit |u⟩ ≠ 0 ein linearer Operator definiert. Wann ist Î hermitesch? Welche Eigenschaft muss |u⟩ haben, damit Î ein Projektionsoperator ist?
 Hinweis: Der zu Î adjungierte Operator Î ist definiert durch (⟨ψ| T |φ⟩)* = ⟨φ| T |ψ⟩.
 - Hinweis: Der zu T adjungierte Operator T^{\dagger} ist definiert durch $(\langle \psi | T | \varphi \rangle)^* = \langle \varphi | T^{\dagger} | \psi \rangle$. Selbstadjungiertheit/Hermitizität bedeutet $\hat{T}^{\dagger} = \hat{T}$ (in Analogie zur linearen Algebra). \hat{T} ist ein Projektionsoperator, wenn es sich um einen hermiteschen Operator mit der zusätzlichen Eigenschaft $\hat{T}^2 = \hat{T}$ handelt.
- (b) Zeigen Sie: Besitzt ein linearer Operator \hat{A} die Eigenschaft $\hat{A}\hat{A}^{\dagger} = \hat{A}^{\dagger}\hat{A}$ und ist $|a\rangle$ mit $\langle a|a\rangle = 1$ ein Eigenvektor von \hat{A} zum Eigenwert a, so ist $|a\rangle$ auch Eigenvektor von \hat{A}^{\dagger} zum Eigenwert a^* .
 - Hinweis: Ein Operator, welcher mit seinem Adjungierten vertauscht, heißt Normaloperator und besitzt stets ein vollständiges System orthogonaler Eigenvektoren.
- (c) In einem zweidimensionalen komplexen Hilbert-Raum mit Orthonormalbasis $\{|1\rangle, |2\rangle\}$ sei ein linearer Operator \hat{A} durch $\hat{A}|1\rangle = -|2\rangle$ und $\hat{A}|2\rangle = |1\rangle$ definiert. Schreiben Sie \hat{A} als Linearkombination von Ket-Bra-Ausdrücken. Ist \hat{A} ein Normaloperator, d.h. kommutiert \hat{A} mit seinem adjungierten Operator? Ist \hat{A} hermitesch? Ist \hat{A} unitär? Existiert \hat{A}^{-1} ?

Aufgabe 2: Der quantenmechanische harmonische Oszillator

Der Hamilton-Operator des harmonischen Oszillators ist gegeben durch

$$\hat{H} = \frac{\hat{p}^2}{2m} + \frac{m\omega^2}{2}\hat{x}^2.$$

Man führt in Analogie zur kanonischen Transformation die Auf- und Absteigeoperatoren

$$\hat{a}^{\dagger} = \sqrt{\frac{m\omega}{2\hbar}} \left(\hat{x} - \frac{i\hat{p}}{m\omega} \right) \quad \text{und} \quad \hat{a} = \sqrt{\frac{m\omega}{2\hbar}} \left(\hat{x} + \frac{i\hat{p}}{m\omega} \right)$$

ein, die gemäß der Vorlesung Energiequanten erzeugen und vernichten.

- (a) Rekapitulieren Sie mit Hilfe der Vorlesung die Form des Hamilton-Operators ausgedrückt durch \hat{a} und \hat{a}^{\dagger} . Wie lauten die Energieeigenwerte E_n des harmonischen Oszillators?
- (b) Betrachten Sie nun die Ortsdarstellung, in der der Impulsoperator \hat{p} der bekannte Differentialoperator ist. Bestimmen die Grundzustandswellenfunktion $\psi_0(x)$, indem Sie ausnutzen, dass $\hat{a}\psi_0(x) = 0$ gilt.

- (c) Bestimmen Sie die Wellenfunktion des ersten angeregten Zustands mit Hilfe von \hat{a}^{\dagger} .
- (d) Bestimmen Sie die Orts- und Impulsunschärfe des Grundzustands, definiert durch

$$\Delta x = \sqrt{\langle \hat{x}^2 \rangle - \langle \hat{x} \rangle^2}$$
 und $\Delta p = \sqrt{\langle \hat{p}^2 \rangle - \langle \hat{p} \rangle^2}$

und zeigen Sie, dass die Heisenbergsche Unschärferelation erfüllt ist. Hinweis: Der Erwartungswert $\langle \hat{O} \rangle$ im Zustand $|\psi\rangle$ ist gegeben durch $\langle \psi | \hat{O} | \psi \rangle$.