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•• Spontaneous symmetry breaking

in the SM

•• W and Z mass generation

•• Charged and neutral current cou-

plings of fermions

•• Fermion mass generation

•• Higgs boson couplings



Electroweak sector

From experimental facts (charged currents couple only to left-handed fermions, existence of a

massless photon and a neutral Z), the gauge group is chosen as SU(2)L× U(1)Y.

ψL ≡ 1

2
(1 − γ5)ψ ψR ≡ 1

2
(1 + γ5)ψ ψ = ψL +ψR

LL ≡ 1

2
(1 − γ5)





νe

e



 =





νeL

eL



 νeR ≡ 1

2
(1 + γ5)νe eR ≡ 1

2
(1 + γ5)e

•• SU(2)L: weak isospin group. Three generators =⇒ three gauge bosons: W1, W2 and W3.

Generators for doublets are Ta = σ a/2, where σ a are the 3 Pauli matrices

For gauge singlets (eR, νR) Ta ≡ 0. All satisfy
[

Ta, Tb
]

= iǫabcTc.

The gauge coupling will be indicated with g.

•• U(1)Y: weak hypercharge Y. One gauge boson B with gauge coupling g′.

One generator (charge) Y(ψ), whose value depends on the fermion field

W3 and B carry identical quantum numbers (T3 = 0, Y = 0) =⇒ they will combine to produce

two neutral gauge bosons: Z and γ.



EW gauge-boson sector of the SM

Gauge invariance and renormalizability completely determine the

kinetic terms for the gauge bosons

LYM = −1

4
BµνBµν − 1

4
Wa
µνWµν

a

Bµν = ∂µBν − ∂νBµ

Wa
µν = ∂µWa

ν − ∂νWa
µ + gǫabc Wb,µ Wc,ν

The gauge symmetry does NOT allow any mass terms for W± and Z,

i.e. forbidden are terms like

LMass =
1

2
m2

WWa
µWµ

a
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Spontaneous symmetry breaking

Experimentally, the weak bosons are massive. We give mass to the gauge bosons through the

Higgs mechanism: generate mass terms from the kinetic energy term of a scalar doublet field Φ

that undergoes spontaneous symmetry breaking.

Introduce a complex scalar doublet

Φ =





φ+

φ0



 , YΦ =
1

2

LHiggs = (DµΦ)†(DµΦ)− V
(

Φ†Φ
)

Dµ = ∂µ − igWµ
i

σ i

2
− ig′YΦBµ

V
(

Φ†Φ
)

= V0 −µ2Φ†Φ + λ
(

Φ†Φ
)2

, µ2, λ > 0

Notice the “wrong” mass sign.

)
V

(|
Φ+ |

0
Φ| ,

|

|Φ +|

Φ0||

µ <02

µ>02

v/ 2

V
(

Φ†Φ
)

is SU(2)L×U(1)Y symmetric.



Expanding Φ around the minimum

Φ =





φ+

φ0



 =





φ+

1√
2
[v + H(x) + iχ(x)]



 =
1√
2

exp

[

iσiθ
i(x)

v

]





0

v + H(x)





We can rotate away the fields θi(x) by an SU(2)L gauge transformation

Φ(x)→Φ′(x) = U(x)Φ(x) =
1√
2





0

v + H(x)





where U(x) = exp
[

− iσiθ
i(x)
v

]

.

This gauge choice, called unitary gauge, is equivalent to absorbing the Goldstone modes θi(x).

The vacuum state can be chosen to correspond to the vacuum expectation value

Φ0 =
1√
2





0

v





Notice that only a scalar field can have a vacuum expectation value.The VEV of a fermion or

vector field would break Lorentz invariance.
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Consequences for the scalar field H

The scalar potential

V
(

Φ†Φ
)

= λ

(

Φ†Φ− v2

2

)2

expanded around the vacuum state

Φ(x) =
1√
2





0

v + H(x)





becomes

V =
λ

4

(

2vH + H2
)2

=
1

2
(2λv2)H2 + λvH3 +

λ

4
H4

Consequences:

•• the scalar field H gets a mass which is given by the quartic coupling λ

m2
H = 2λv2 =⇒ λ ≈ 0.13 since mH ≈ 125 GeV and v = 246.22 GeV

•• there is a term of cubic and quartic self-coupling.

•• The coupling λ ≈ 0.13 is small, i.e. perturbation theory is warranted.



Higgs kinetic terms and coupling to W, Z

DµΦ =

(

∂µ − igWµ
i

σ i

2
− ig′

1

2
Bµ
)

1√
2





0

v + H(x)





=
1√
2





0

∂µH



− i

2
√

2



g





Wµ
3 Wµ

1 − iWµ
2

Wµ
1 + iWµ

2 −Wµ
3



+ g′Bµ









0

v + H





=
1√
2









0

∂µH



− i

2
(v + H)





g
(

Wµ
1 − iWµ

2

)

−gWµ
3 + g′Bµ









=
1√
2





0

∂µH



− i

2

(

1 +
H

v

)





vg Wµ+

−v
√

(g2 + g′2)/2 Zµ





(DµΦ)† DµΦ =
1

2
∂µH∂µH +

[

( gv

2

)2
Wµ+W−

µ +
1

2

(

g2 + g′2
)

v2

4
ZµZµ

]

(

1 +
H

v

)2



Consequences

•• The W and Z gauge bosons have acquired masses

m2
W =

g2v2

4
m2

Z =

(

g2 + g′2
)

v2

4
=

m2
W

cos2θW

From the measured value of the Fermi constant GF

GF√
2
=

(

g

2
√

2

)2 1

m2
W

=⇒ v =

√

1√
2GF

≈ 246.22 GeV

•• the photon stays massless

•• HWW and HZZ couplings from 2H/v term (and HHWW and HHZZ couplings from H2/v2

term)

LHVV =
2m2

W

v
W+
µ W−µH +

m2
Z

v
ZµZµH ≡ gmWW+

µ W−µH +
1

2

gmZ

cosθW
ZµZµH

Higgs coupling proportional to mass

•• tree-level HVV (V = vector boson) coupling requires VEV! e.g. gmW = g2v/2

Normal scalar couplings give Φ†ΦV or Φ†ΦVV couplings only.



Gauging the symmetry: fermion Lagrangian

Following the gauge recipe (for one generation of leptons, quarks work the same way)

Lψ = i L̄L D/ LL + i ν̄eR D/ νeR + i ēR D/ eR

where

Dµ = ∂µ − igWµ
i Ti − ig′Yψ Bµ Ti =

σ i

2
or Ti = 0, i = 1, 2, 3

Lψ ≡ Lkin + LCC + LNC

Lkin = i L̄L ∂/ LL + i ν̄eR ∂/νeR + i ēR ∂/ eR

LCC = g W1
µ L̄L γ

µ σ1

2
LL + g W2

µ L̄L γ
µ σ2

2
LL =

g√
2

W+
µ ν̄L γ

µ eL +
g√
2

W−
µ ēL γ

µ νL

LNC =
g

2
W3
µ [ν̄eL γ

µ νeL − ēL γ
µ eL] + g′ Bµ

[

YL (ν̄eL γ
µ νeL + ēL γ

µ eL)

+YνeR
ν̄eR γ

µ νeR + YeR
ēR γ

µ eR

]

with

W±
µ =

1√
2

(

W1
µ ∓ iW2

µ

)



Fermion couplings fixed by renormalizability and gauge quantum numbers

SU(3) SU(2) U(1)Y

Qi
L =





uL

dL









cL

sL









tL

bL



 3 2 1
6

ui
R = uR cR tR 3 1 2

3

di
R = dR sR bR 3 1 − 1

3

Li
L =





νeL

eL









νµL

µL









ντL

τL



 1 2 − 1
2

ei
R = eR µR τR 1 1 −1

νi
R = νeR νµR ντR 1 1 0



Weak mixing angle

W3
µ and Bµ mix to produce two orthogonal mass eigenstates

massive partner : g W3
µ−g′ Bµ =

√

g2 + g′2 Zµ =
√

g2 + g′2
(

W3
µcosθW − BµsinθW

)

orthogonal, massless : g′ W3
µ + g Bµ =

√

g2 + g′2 Aµ =
√

g2 + g′2
(

W3
µsinθW + BµcosθW

)

with mixing angle fixed by cosθW =
g

√

g2 + g′2
sinθW =

g′
√

g2 + g′2

Write the NC Lagrangian in terms of these mass eigenstates

LNC = ψ̄γµ
(

gT3Wµ
3 + g′YBµ

)

ψ = ψ̄γµ

(

1
√

g2 + g′2
(g2T3 − g′2Y)Zµ +

gg′
√

g2 + g′2
(T3 + Y)Aµ

)

ψ

Must identify electron charge, e, as

e =
gg′

√

g2 + g′2
= g sinθW = g′ cosθW

and the charge of a particle, as a multiple of the positron charge, is given by the

Gell-Mann–Nishijima formula: Q = T3 + Y



The neutral current

It is customary to write the Z coupling to fermions in terms of the electric charge Q and the third

component of isospin (T3 = ±1/2 for left-chiral fermions, 0 for right-chiral fermions)

LNC = ψ̄γµ

(

1
√

g2 + g′2
(g2T3 − g′2Y)Zµ +

gg′
√

g2 + g′2
(T3 + Y)Aµ

)

ψ = eψ̄γµQψAµ + ψ̄γµQZψZµ

QZ is given by

QZ =
1

√

g2 + g′2
(g2T3 − g′2(Q − T3)) =

e

cosθW sinθW

(

T3 − Q sin2θW

)

This procedure works for leptons and also for the quarks (see more later)

Qi
L =





uL

dL



 ,





cL

sL



 ,





tL

bL





ui
R = uR, cR, tR

di
R = dR, sR, bR
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Fermion mass generation

A direct mass term is not invariant under SU(2)L or U(1)Y gauge transformation

m f ψ̄ψ = m f (ψ̄RψL + ψ̄LψR)

since left- and righthanded fields have different gauge quantum numbers

Generate fermion masses through Yukawa-type interactions terms

LYukawa = −ΓdQ̄LΦdR − Γ ∗d d̄RΦ
†QL

−ΓuQ̄LΦcuR + h.c. Φc = iσ2Φ
∗ =

1√
2





v + H(x)

0





−Γe L̄LΦeR + h.c.

−Γν L̄LΦcνR + h.c.

where Q, L are left-handed doublet fields and dR, uR, eR, νR are right-handed SU(2) -singlet

fields.

Notice: neutrino masses can be implemented via Γν term. Since mν ≈ 0 we neglect it in the

following.



Fermion masses for three generations

Generate fermion masses for three generations of quarks and leptons by generalizing

LYukawa = −Γ i j
d Q̄′ i

LΦd
′ j
R − Γ i j∗

d d̄
′ j
RΦ

†Q′ i
L

−Γ i j
u Q̄′ i

LΦcu
′ j
R + h.c. Φc = iσ2Φ

∗ =
1√
2





v + H(x)

0





−Γ i j
e L̄i

LΦe
j
R + h.c.

where Q′, u′ and d′ are quark fields that are generic linear combination of the mass eigenstates u

and d and Γu, Γd and Γe are 3 × 3 complex matrices in generation space, spanned by the indices i

and j.

LYukawa is Lorentz invariant, gauge invariant and renormalizable, and therefore it can (actually it

must) be included in the Lagrangian.
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Expanding around the vacuum state

In the unitary gauge we have

Q̄′ i
L Φ d

′ j
R =

(

ū′ i
L d̄′ i

L

)





0

v+H√
2



 d
′ j
R =

v + H√
2

d̄′ i
L d

′ j
R

Q̄′ i
L Φc u

′ j
R =

(

ū′ i
L d̄′ i

L

)





v+H√
2

0



 u
′ j
R =

v + H√
2

ū′ i
L u

′ j
R

and we obtain

LYukawa = −Γ i j
d

v + H√
2

d̄′ i
L d

′ j
R − Γ i j

u
v + H√

2
ū′ i

L u
′ j
R − Γ i j

e
v + H√

2
ēi

L e
j
R + h.c.

= −
[

M
i j
u ū′ i

L u
′ j
R + M

i j
d d̄′ i

L d
′ j
R + M

i j
e ēi

L e
j
R + h.c.

]

(

1 +
H

v

)

with mass matrices Mi j = Γ i j v√
2
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Diagonalizing M f

It is always possible to diagonalize M
i j
f ( f = u, d, e) with a bi-unitary transformation (U

f

L/R
must

be unitary in order to preserve the form of the kinetic terms in the Lagrangian)

f ′Li =
(

U
f
L

)

i j
fL j

f ′Ri =
(

U
f
R

)

i j
fR j

with U
f
L and U

f
R chosen such that

(

U
f
L

)†
M f U

f
R = diagonal

For example:

(Uu
L)

† MuUu
R =









mu 0 0

0 mc 0

0 0 mt









(

Ud
L

)†
MdUd

R =









md 0 0

0 ms 0

0 0 mb








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Mass terms

LYukawa = − ∑
f ′ ,i, j

M
i j
f f̄ ′ i

L f
′ j
R

(

1 +
H

v

)

+ h.c.

= − ∑
f ,i, j

f̄ i
L

[

(

U
f
L

)†
M f U

f
R

]

i j

f
j
R

(

1 +
H

v

)

+ h.c.

= −∑
f

m f

(

f̄L fR + f̄R fL

)

(

1 +
H

v

)

We succeed in producing fermion masses and we got a fermion-antifermion-Higgs coupling

proportional to the fermion mass.

The Higgs Yukawa couplings are flavor diagonal: no flavor changing Higgs interactions.
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Mass diagonalization and charged current interaction

The charged current interaction is given by

e√
2 sinθW

ū′ i
L /W+ d′ i

L + h.c.

After the mass diagonalization described previously, this term becomes

e√
2 sinθW

ūi
L

[

(Uu
L)

† Ud
L

]

i j
/W+d

j
L + h.c.

and we define the Cabibbo-Kobayashi-Maskawa matrix VCKM

VCKM = (Uu
L)

† Ud
L

•• VCKM is not diagonal and then it mixes the flavors of the different quarks.

•• It is a unitary matrix and the values of its entries must be determined from experiments.
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Higgs boson couplings

We have identified the relevant terms in the SM Lagrangian for Higgs boson couplings

to gauge bosons:

LΦkin = (DµΦ)† DµΦ =
1

2
∂µH∂µH +

[

m2
WWµ+W−

µ +
1

2
m2

ZZµZµ

] (

1 +
H

v

)2

which produces the HVV coupling term

2m2
V

v
VµVµH =

2m2
V

v
gµνVµVνH

to fermions:

LYukawa = −∑
f

m f f̄ f

(

1 +
H

v

)

= −∑
f

m f f̄ f −∑
f

m f

v
H f̄ f

and the Higgs self-couplings

LV = −1

2
(2λv2)H2 − λvH3 − λ

4
H4 = −1

2
m2

H H2 − m2
H

2v
H3 − m2

H

8v2
H4

Note that the Higgs couplings increase with the mass of particles the Higgs boson couples to.
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Feynman rules for Higgs couplings

H

f

f

−i
m f

v

H

Wµ
+

Wν
-

ig mW gµν

H

Zµ

Zν

i g 1
cosθW

mZ gµν

Within the Standard Model, the Higgs couplings are completely constrained since the masses of

all SM particlesa have been measured.

aexcept neutrinos


