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Exercise 1: Real corrections to e−µ+ scattering 1+2+2 = 5 points

We consider the scattering process of an electron with a heavy antilepton of charge +1, the
muon µ+. The Feynman rules for muons are identical with those of electrons, we just need
to replace the mass me with the mass mµ in propagators (and external spin sums). Mixed
propagators 〈0|Tψeψ̄µ|0〉 do not exist. The lowest-order process e−µ+ → e−µ+ only has a single
Feynman diagram involving a photon exchange between the lepton lines. We consider the
process

e−(p1)µ+(p2)→ e−(p′1)µ+(p′2)γ(k) ,

that involves the radiation of an additional photon. Add-on: This process is needed to cancel
infrared divergences in higher-order corrections to the process e−µ+ → e−µ+.

(a) Draw all four Feynman diagrams. Determine and label all momenta, that flow through
internal propagators.

(b) Use the Feynman rules of QED to write down the amplitude. Hint: Keep the rather
unpleasent long expression.

(c) The structure of the amplitude is such thatM = εµ(k)Mµ, where εµ(k) is the polarization
vector of the photon. Gauge invariance implies the so-called Ward identity, which claims
that kµMµ = 0, where kµ is the momentum of the photon. Show explicitly, that this
relation holds for the amplitude in subexercise (b). Hint: Pair up the amplitudes of two
of the diagrams and therein “massage” the numerator of the Feynman propagators such
that you can use Dirac’s equation, e.g. (/p1 −me)u(p1) = 0 and ū(p′1)(/p′1 −me) = 0. The
remaining terms should cancel between the two diagrams.

Exercise 2: Trace identities in 4 dimensions 2+3 = 5 points

In the evaluation of amplitudes for scattering processes involving fermions we need to determine
traces over γ matrices, which come from fermionic propagators and spin sums of external fermions.
Independent of any representation, the Dirac matrices γµ in 4 space-time dimensions, see also
sheet 1, obey the Clifford algebra {γµ, γν} = 2gµν . The γµ can always be chosen to be unitary
so that (γµ)† = (γµ)−1 holds.

(a) Prove the following Dirac algebra relations by using the unitarity and anti-commutation
relations of the Dirac matrices only (i.e. do not use the explicit representations of the
Dirac matrices from sheet 1):

(γµ)† = γ0γµγ0 ,

γµγ
µ = 4 · 14×4 ,

γµγ
αγµ = −2γα ,

γµγ
αγβγµ = 4gαβ .
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(b) Prove the following trace identities by using the anti-commutation relations of the Dirac
matrices and the general properties of a matrix trace only:

tr (γµ) = 0 , tr (γµγνγρ) = 0 ,

tr (γµγν) = 4gµν ,

tr (γµγνγργσ) = 4 (gµνgρσ − gµρgνσ + gµσgνρ) .

Add-on: Any combination of an odd number of γ matrices vanishes as long as γ5 is not
involved. Specific rules involving γ5 can be found in the literature. Regularization in
higher-order calculations can e.g. be performed by calculating in d rather than in 4
dimensions. In that case d-dimensional identities need to be used, see TTP2!

Exercise 3: Higgs-boson decay into bottom quarks 4+1 = 5 points

We want to discuss a simple 1→ 2 decay, namely the decay of the Higgs boson of the Standard
Model (SM) of particle physics into a pair of fermions. We consider the most dominant decay
mode into two b-quarks, H(p)→ b(p1)b̄(p2), which is apart from a color factor identical to the
calculation H → e−e+. Though we have not dicussed the SM in all its details yet, we only need
one Feynman rule for the vertex compared to the QED Feynman rules. It is given by

H

b̄

b

= −imb

√√
2GF ,

and has in particular no Lorentz structure as the Higgs boson is a scalar particle (in contrast to
the photon-electron-positron vertex, which is proportional to γµ). The Higgs boson has a mass
of mH , the bottom quark b and the corresponding anti-quark b̄ have both a mass of mb = mb̄.
GF is Fermi’s constant.

(a) Determine the matrix element iM of the decay, which only involves spinors and the
above vertex. Show that the partial decay width, which is defined by

dΓ(H → bb̄) =
1

2mH

dΦ2

∑
spins

∑
color

|M|2

results in

Γ(H → bb̄) =

(
1

16πmH

βb

)(
6m2

b

√
2GFm

2
Hβ

2
b

)
with βb =

√
1− 4m2

b

m2
H

.

Hint: For the phase space you can use the result for dΦ2 from sheet 9. The sum over spins is
carried out by the replacements

∑
s us(p1)ūs(p1) = /p1 +mb and

∑
s vs(p2)v̄s(p2) = /p2−mb.

Then use the trace identities derived in exercise 2. Remember that p2 = m2
H , p

2
i = m2

b

and 2p1 · p2 = p2 − p2
1 − p2

2. The sum over color implies a factor of 3, as it sums over the
three colors (associated with the strong interaction, i.e. QCD) of the final state bottom
quarks. The vertex has no color structure, as the Higgs boson is color neutral.

(b) Calculate the partial decay width for a Higgs mass of mH = 125 GeV, the bottom-quark
mass of mb = 4.8 GeV and GF = 1.17 · 10−5 GeV−2. Why does the Higgs boson not decay
into a pair of top quarks with mt = 172 GeV? Why are the decays into lighter quarks of
less relevance than the decay into bottom quarks?
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