Sommersemester 2019-Sheet 3
Release: 13.05.19
Submission: 20.05.19
Prof. Dr. D. Zeppenfeld, Dr. S. Liebler
Tutorial: 22.05.19
Karlsruhe Institute of Technology
Exercises: Stefan Liebler (stefan.liebler@kit.edu) (Office 12/03-Build. 30.23)

Exercise 1: The Lorentz group

$3+3+2+1+2=11$ points
The inhomogeneous Lorentz or Poincaré group includes translations, associated with the generator $\exp \left(-i a^{\mu} P_{\mu}\right)$ with $P_{\mu}=i \partial_{\mu}$ and a vector a^{μ}, and Lorentz transformations, associated with the generator $\exp \left(-\frac{i}{2} \omega^{\mu \nu} M_{\mu \nu}\right)$ with $M_{\mu \nu}=x_{\mu} P_{\nu}-x_{\nu} P_{\mu}$ and a tensor $\omega^{\mu \nu}$. Therein $M_{\mu \nu}$ can additionally include a spin component.
(a) By using the generators $M_{\mu \nu}=i\left(x_{\mu} \partial_{\nu}-x_{\nu} \partial_{\mu}\right)$ determine the Lie algebra of the $\mathrm{SO}(3,1)$, i.e. prove that the $M_{\mu \nu}$ satisfy

$$
\left[M_{\mu \nu}, M_{\rho \sigma}\right]=i\left(g_{\nu \rho} M_{\mu \sigma}-g_{\mu \rho} M_{\nu \sigma}-g_{\nu \sigma} M_{\mu \rho}+g_{\mu \sigma} M_{\nu \rho}\right) .
$$

(b) The generators $M_{\mu \nu}=-M_{\nu \mu}$ can be split into the three generators K^{i} of Lorentz boosts and the three generators J^{i} of rotations as follows

$$
K^{i}=M^{0 i}\left(K^{i}=-M_{0 i}\right) \quad \text { and } \quad J^{i}=\frac{1}{2} \epsilon^{i j k} M_{j k}
$$

with $\epsilon^{i j k}$ being the Levi-Civita tensor (with $\epsilon^{123} \equiv+1$). Prove that the algebra of these generators is given by

$$
\left[K^{i}, K^{j}\right]=-i \epsilon^{i j k} J^{k}, \quad\left[J^{i}, K^{j}\right]=i \epsilon^{i j k} K^{k}, \quad\left[J^{i}, J^{j}\right]=i \epsilon^{i j k} J^{k},
$$

and explain the physical meaning of each of these results.
Hint: In particular for subsequent exercises write $M_{\mu \nu}$ in matrix form.
(c) We define the operators

$$
N^{i}=\frac{1}{2}\left(J^{i}+i K^{i}\right) \quad \text { and } \quad N^{i \dagger}=\frac{1}{2}\left(J^{i}-i K^{i}\right) .
$$

Use the previous subexercise to show that

$$
\left[N^{i}, N^{j \dagger}\right]=0, \quad\left[N^{i}, N^{j}\right]=i \epsilon^{i j k} N^{k}, \quad\left[N^{i \dagger}, N^{j \dagger}\right]=i \epsilon^{i j k} N^{k \dagger} .
$$

The operators N^{i} and $N^{i \dagger}$ thus both fulfill the Lie algebra of $\mathrm{SO}(3)(\cong \mathrm{SU}(2))$.
(d) Investigate the effect of the parity operator $P=\operatorname{diag}(1,-1,-1,-1)$ on $M_{\mu \nu}$. How does P relate N^{i} and $N^{i \dagger}$? Hint: Notice that P is nothing else than the metric tensor. Then perform matrix multiplication using the explicit form of $M_{\mu \nu}$ and check what happens to K^{i} and J^{i}.
(e) We lastly define the Pauli-Lubanski vector for a particle with mass m and momentum P^{μ} through

$$
W^{\mu}=\frac{1}{2} \epsilon^{\mu \nu \rho \sigma} P_{\nu} M_{\rho \sigma}
$$

with the total antisymmetric 4-dimensional Levi-Civita tensor $\epsilon^{\mu \nu \rho \sigma}\left(\right.$ with $\left.\epsilon^{0123}=+1\right)$. Show that $P_{\mu} W^{\mu}=0$ and $\left[W^{\mu}, P^{\nu}\right]=0$. Show that in the rest frame of the particle,
$P_{\nu}=(m, 0,0,0)^{T}$, the Casimir operator of the Poincaré group, being the square of the Pauli-Lubanski vector, takes the form

$$
W^{2}=W^{\mu} W_{\mu}=-m^{2} \vec{J}^{2} \quad \text { with } \quad \vec{J}^{2}=\sum_{i}\left(J^{i}\right)^{2}
$$

Hint: Remember the commutation relations of the Lorentz ${ }^{2}$ group $\left[P_{\mu}, P_{\nu}\right]=0$ and $\left[M_{\mu \nu}, P_{\rho}\right]=-i g_{\mu \rho} P_{\nu}+i g_{\nu \rho} P_{\mu}$. Add-on: Since W^{2} as well as $P^{2}=P^{\mu} P_{\mu}$ are Lorentzinvariant by construction, they can be used with e.g. P^{μ} to form a complete set of observables under the Lorentz group which identifies a particle's behavior. For a massless particle we cannot find a Lorentz transformation into its rest frame. One can show that in this case $W^{\mu}=\lambda P^{\mu}$ with the helicity λ from sheet 2 .

Exercise 2: Weyl and Dirac spinors

$$
1+0.5+2.5=4 \text { points }
$$

We continue with the previous exercise and want to introduce and investigate the behavior of left- and right-chiral spinors under Lorentz transformations more closely. Hint: For (a) and (c) feel free to use a computer (e.g. for performing matrix multiplications). Pay attention to upper and lower indices. Then add a printout of the results to your solution.
(a) We now decompose the Lorentz transformation $M_{\mu \nu}$. Show that

$$
\begin{aligned}
& \qquad U(\Lambda)=\exp \left(-\frac{i}{2} \omega_{\mu \nu} M^{\mu \nu}\right)=\underbrace{\exp (-i(\vec{\omega}-i \vec{\nu}) \vec{N})}_{=U_{L}(\Lambda)} \underbrace{\exp \left(-i(\vec{\omega}+i \vec{\nu}) \vec{N}^{\dagger}\right)}_{=U_{R}(\Lambda)} \\
& \text { by identifying } \omega_{i j}=\epsilon_{i j k} \omega_{k} \text { and } \omega_{0 i}=\nu_{i}\left(\omega_{\mu \nu}^{\left.=-\omega_{\nu \mu}\right) .}\right.
\end{aligned}
$$

(b) We identified N^{i} and $N^{i \dagger}$ to follow the Lie algebra of $\mathrm{SU}(2)$. A possible (2×2) matrix representation of the operators is thus given by the Pauli matrices $\frac{1}{2} \sigma_{i}$. Spin- $\frac{1}{2}$ fields that transform with $U_{L}(\Lambda)$, thus transforming in the $(1 / 2,0)$ representation with $N^{i}=\frac{1}{2} \sigma_{i}$, $N^{i \dagger}=0$, are named left-chiral Weyl spinors ψ_{L}, spin $-\frac{1}{2}$ fields that transform with $U_{R}(\Lambda)$ and therefore are in the $(0,1 / 2)$ representation with $N^{i}=0, N^{i \dagger}=\frac{1}{2} \sigma_{i}$ are right-chiral Weyl spinors ψ_{R}. Of which dimensionality (in this matrix representation!) are the associated Weyl spinors? Add-on: Often ψ_{L} and ψ_{R} are named left- and right-handed rather than left- and right-chiral. Parity maps an element of the $(1 / 2,0)$ representation to an element of $(0,1 / 2)$ representation and thus into a different vector space. It is therefore sensible to consider the (reducible) representation of the Lorentz algebra $(1 / 2,0) \bigoplus(0,1 / 2)$, which results in the Dirac spinor.
(c) A Dirac spinor combines the two Weyl spinors ψ_{L} and ψ_{R} to a four-dimensional spinor and transforms (in the matrix representation of the previous subexercise) as follows

$$
\Psi=\binom{\psi_{L}}{\psi_{R}} \longmapsto \Psi^{\prime}=\exp \left(-\frac{i}{2} \omega_{\mu \nu} S^{\mu \nu}\right) \Psi .
$$

Therein we used $S^{\mu \nu}=\frac{i}{4}\left[\gamma^{\mu}, \gamma^{\nu}\right]$ with the Dirac matrices in the chiral Weyl representation. Insert the definitions of $\omega_{\mu \nu}$ from (a) and the γ matrices in the Weyl representation to show that indeed the transformation is a (4×4) matrix, that decomposes as expected

$$
-\frac{i}{2} \omega_{\mu \nu} S^{\mu \nu}=\left(\begin{array}{cc}
-\frac{i}{2}(\vec{\omega}-i \vec{\nu}) \vec{\sigma} & 0 \\
0 & -\frac{i}{2}(\vec{\omega}+i \vec{\nu}) \vec{\sigma}
\end{array}\right) .
$$

Add-on: The choice of a 4-dimensional representation for the Dirac spinor is not related to Minkowski space!

