

Exercises: Stefan Liebler (stefan.liebler@kit.edu) (Office 12/03 - Build. 30.23)

## Exercise 1: The Lorentz group

3+3+2+1+2 = 11 points

The inhomogeneous Lorentz or Poincaré group includes translations, associated with the generator  $\exp(-ia^{\mu}P_{\mu})$  with  $P_{\mu} = i\partial_{\mu}$  and a vector  $a^{\mu}$ , and Lorentz transformations, associated with the generator  $\exp(-\frac{i}{2}\omega^{\mu\nu}M_{\mu\nu})$  with  $M_{\mu\nu} = x_{\mu}P_{\nu} - x_{\nu}P_{\mu}$  and a tensor  $\omega^{\mu\nu}$ . Therein  $M_{\mu\nu}$  can additionally include a spin component.

(a) By using the generators  $M_{\mu\nu} = i(x_{\mu}\partial_{\nu} - x_{\nu}\partial_{\mu})$  determine the Lie algebra of the SO(3, 1), i.e. prove that the  $M_{\mu\nu}$  satisfy

$$[M_{\mu\nu}, M_{\rho\sigma}] = i \left( g_{\nu\rho} M_{\mu\sigma} - g_{\mu\rho} M_{\nu\sigma} - g_{\nu\sigma} M_{\mu\rho} + g_{\mu\sigma} M_{\nu\rho} \right) \,.$$

(b) The generators  $M_{\mu\nu} = -M_{\nu\mu}$  can be split into the three generators  $K^i$  of Lorentz boosts and the three generators  $J^i$  of rotations as follows

$$K^{i} = M^{0i}(K^{i} = -M_{0i})$$
 and  $J^{i} = \frac{1}{2} \epsilon^{ijk} M_{jk}$ ,

with  $\epsilon^{ijk}$  being the Levi-Civita tensor (with  $\epsilon^{123} \equiv +1$ ). Prove that the algebra of these generators is given by

$$\left[K^{i}, K^{j}\right] = -i\epsilon^{ijk}J^{k}, \quad \left[J^{i}, K^{j}\right] = i\epsilon^{ijk}K^{k}, \quad \left[J^{i}, J^{j}\right] = i\epsilon^{ijk}J^{k}$$

and explain the physical meaning of each of these results.

*Hint:* In particular for subsequent exercises write  $M_{\mu\nu}$  in matrix form.

(c) We define the operators

$$N^{i} = \frac{1}{2}(J^{i} + iK^{i})$$
 and  $N^{i\dagger} = \frac{1}{2}(J^{i} - iK^{i})$ .

Use the previous subexercise to show that

$$\left[N^{i}, N^{j\dagger}\right] = 0, \quad \left[N^{i}, N^{j}\right] = i\epsilon^{ijk}N^{k}, \quad \left[N^{i\dagger}, N^{j\dagger}\right] = i\epsilon^{ijk}N^{k\dagger}.$$

The operators  $N^i$  and  $N^{i\dagger}$  thus both fulfill the Lie algebra of SO(3) ( $\cong$ SU(2)).

- (d) Investigate the effect of the parity operator P = diag(1, -1, -1, -1) on  $M_{\mu\nu}$ . How does P relate  $N^i$  and  $N^{i\dagger}$ ? *Hint:* Notice that P is nothing else than the metric tensor. Then perform matrix multiplication using the explicit form of  $M_{\mu\nu}$  and check what happens to  $K^i$  and  $J^i$ .
- (e) We lastly define the Pauli-Lubanski vector for a particle with mass m and momentum  $P^{\mu}$  through

$$W^{\mu} = \frac{1}{2} \epsilon^{\mu\nu\rho\sigma} P_{\nu} M_{\rho\sigma}$$

with the total antisymmetric 4-dimensional Levi-Civita tensor  $\epsilon^{\mu\nu\rho\sigma}$  (with  $\epsilon^{0123} = +1$ ). Show that  $P_{\mu}W^{\mu} = 0$  and  $[W^{\mu}, P^{\nu}] = 0$ . Show that in the rest frame of the particle,  $P_{\nu} = (m, 0, 0, 0)^T$ , the Casimir operator of the Poincaré group, being the square of the Pauli-Lubanski vector, takes the form

$$W^2 = W^{\mu}W_{\mu} = -m^2 \vec{J}^2$$
 with  $\vec{J}^2 = \sum_i (J^i)^2$ .

*Hint:* Remember the commutation relations of the Lorentz<sup>*i*</sup> group  $[P_{\mu}, P_{\nu}] = 0$  and  $[M_{\mu\nu}, P_{\rho}] = -ig_{\mu\rho}P_{\nu} + ig_{\nu\rho}P_{\mu}$ . Add-on: Since  $W^2$  as well as  $P^2 = P^{\mu}P_{\mu}$  are Lorentz-invariant by construction, they can be used with e.g.  $P^{\mu}$  to form a complete set of observables under the Lorentz group which identifies a particle's behavior. For a massless particle we cannot find a Lorentz transformation into its rest frame. One can show that in this case  $W^{\mu} = \lambda P^{\mu}$  with the helicity  $\lambda$  from sheet 2.

## **Exercise 2:** Weyl and Dirac spinors

1+0.5+2.5 = 4 points

We continue with the previous exercise and want to introduce and investigate the behavior of left- and right-chiral spinors under Lorentz transformations more closely. *Hint:* For (a) and (c) feel free to use a computer (e.g. for performing matrix multiplications). Pay attention to upper and lower indices. Then add a printout of the results to your solution.

(a) We now decompose the Lorentz transformation  $M_{\mu\nu}$ . Show that

$$U(\Lambda) = \exp\left(-\frac{i}{2}\omega_{\mu\nu}M^{\mu\nu}\right) = \underbrace{\exp\left(-i(\vec{\omega} - i\vec{\nu})\vec{N}\right)}_{=U_L(\Lambda)} \underbrace{\exp\left(-i(\vec{\omega} + i\vec{\nu})\vec{N^{\dagger}}\right)}_{=U_R(\Lambda)}$$

by identifying  $\omega_{ij} = \epsilon_{ijk}\omega_k$  and  $\omega_{0i} = \nu_i \ (\omega_{\mu\nu} = -\omega_{\nu\mu}).$ 

- (b) We identified  $N^i$  and  $N^{i\dagger}$  to follow the Lie algebra of SU(2). A possible  $(2 \times 2)$  matrix representation of the operators is thus given by the Pauli matrices  $\frac{1}{2}\sigma_i$ . Spin $-\frac{1}{2}$  fields that transform with  $U_L(\Lambda)$ , thus transforming in the (1/2, 0) representation with  $N^i = \frac{1}{2}\sigma_i$ ,  $N^{i\dagger} = 0$ , are named left-chiral Weyl spinors  $\psi_L$ , spin $-\frac{1}{2}$  fields that transform with  $U_R(\Lambda)$ and thus are in the (0, 1/2) representation with  $N^i = 0$ ,  $N^{i\dagger} = \frac{1}{2}\sigma_i$  are right-chiral Weyl spinors  $\psi_R$ . Of which dimensionality (in this matrix representation!) are thus the associated Weyl spinors? Add-on: Often  $\psi_L$  and  $\psi_R$  are named left- and right-handed rather than left- and right-chiral. Parity maps an element of the (1/2, 0) representation to an element of (0, 1/2) representation and thus into a different vector space. It is therefore sensible to consider the (reducible) representation of the Lorentz algebra  $(1/2, 0) \bigoplus (0, 1/2)$ , which results in the Dirac spinor.
- (c) A Dirac spinor combines the two Weyl spinors  $\psi_L$  and  $\psi_R$  to a four-dimensional spinor and transforms (in the matrix representation of the previous subexercise) as follows

$$\Psi = \begin{pmatrix} \psi_L \\ \psi_R \end{pmatrix} \longmapsto \Psi' = \exp\left(-\frac{i}{2}\omega_{\mu\nu}S^{\mu\nu}\right)\Psi$$

Therein we used  $S^{\mu\nu} = \frac{i}{4} [\gamma^{\mu}, \gamma^{\nu}]$  with the Dirac matrices in the chiral Weyl representation. Insert the definitions of  $\omega_{\mu\nu}$  from (a) and the  $\gamma$  matrices in the Weyl representation to show that indeed the transformation is a  $(4 \times 4)$  matrix, that decomposes as expected

$$-\frac{i}{2}\omega_{\mu\nu}S^{\mu\nu} = \begin{pmatrix} -\frac{i}{2}(\vec{\omega} - i\vec{\nu})\vec{\sigma} & 0\\ 0 & -\frac{i}{2}(\vec{\omega} + i\vec{\nu})\vec{\sigma} \end{pmatrix}$$

*Add-on:* The choice of a 4-dimensional representation for the Dirac spinor is not related to Minkowski space!