Sommersemester 2019 - Sheet 5
Release: 27.05.19
Submission: 03.06.19
Prof. Dr. D. Zeppenfeld, Dr. S. Liebler

Exercise 1: Dilatation involving a real scalar field

We consider again the Lagrangian of a real scalar field given by

$$
\mathcal{L}=\frac{1}{2}\left(\partial_{\mu} \phi\right)\left(\partial^{\mu} \phi\right)-\frac{1}{2} m^{2} \phi^{2}-\frac{1}{4} \lambda \phi^{4} .
$$

(a) Derive the equation of motion for ϕ and the energy-momentum tensor $T^{\mu \nu}$ defined through

$$
T^{\mu \nu}=\frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \phi\right)}\left(\partial^{\nu} \phi\right)-g^{\mu \nu} \mathcal{L} .
$$

(b) Show that the the action $S=\int d^{4} x \mathcal{L}$ is invariant under dilatations for $m=0$, i.e. under the transformations

$$
x_{\mu}^{\prime}=e^{-\alpha} x_{\mu}, \quad \phi^{\prime}\left(x^{\prime}\right)=e^{\alpha} \phi(x) .
$$

(c) Show that for $m=0$ the Noether current for the dilatation given in the previous subexercise is given by

$$
j^{\mu}=T^{\mu \alpha} x_{\alpha}+\frac{1}{2} \partial^{\mu} \phi^{2} .
$$

(d) Use the energy-momentum tensor and the equation of motion to show that in the massive case only the mass term breaks the invariance under dilatations, i.e. $\partial_{\mu} j^{\mu}=m^{2} \phi^{2}$.

Exercise 2: Quantization of the complex scalar field

We close up with classical fields and move towards field operators, i.e. second quantization. Consider a complex scalar field ϕ, that can be split into the components

$$
\phi=\frac{1}{\sqrt{2}}\left(\phi_{1}+i \phi_{2}\right), \quad \phi^{\dagger}=\frac{1}{\sqrt{2}}\left(\phi_{1}-i \phi_{2}\right) .
$$

Both are quantized canonically, i.e.

$$
\left[\phi_{i}(t, \vec{x}), \partial_{0} \phi_{j}(t, \vec{y})\right]=i \delta_{i j} \delta^{(3)}(\vec{x}-\vec{y}),
$$

which allows to introduce creation and annihilation operators as follows

$$
\phi_{i}=\int d \tilde{k}\left(a_{i}(\vec{k}) e^{-i k \cdot x}+a_{i}^{\dagger}(\vec{k}) e^{i k \cdot x}\right) \quad \text { with } \quad d \tilde{k}=\frac{d^{3} k}{(2 \pi)^{3} 2 \omega_{k}}, \omega_{k}=\sqrt{\vec{k}^{2}+m^{2}} .
$$

(a) Express ϕ and ϕ^{\dagger} in terms of creation and annihilation operators using

$$
a(\vec{k})=\frac{1}{\sqrt{2}}\left(a_{1}(\vec{k})+i a_{2}(\vec{k})\right) \quad \text { and } \quad b(\vec{k})=\frac{1}{\sqrt{2}}\left(a_{1}(\vec{k})-i a_{2}(\vec{k})\right)
$$

(b) Derive the commutation relations $\left[a(\vec{k}), a^{\dagger}(\vec{p})\right],\left[b(\vec{k}), b^{\dagger}(\vec{p})\right]$ and $\left[a(\vec{k}), b^{\dagger}(\vec{p})\right]$ from the commutation relations of $a_{i}(\vec{k})$ and $a_{i}^{\dagger}(\vec{p})$.
Add-on: All other commutation relations of these operators vanish.
(c) We have shown on exercise sheet 4 that the complex scalar field is invariant under the transformation $\phi \longrightarrow e^{i \theta} \phi$. Show that the conserved charge can be written in the form

$$
Q=\int d^{3} \vec{x} j^{0}(x)=\int d \tilde{k} i\left(a_{1}^{\dagger}(\vec{k}) a_{2}(\vec{k})-a_{2}^{\dagger}(\vec{k}) a_{1}(\vec{k})\right)=\int d \tilde{k}\left(a^{\dagger}(\vec{k}) a(\vec{k})-b^{\dagger}(\vec{k}) b(\vec{k})\right)
$$

For the charge the advantage of using the operators a and b is apparent: Interpret the two contributions as particle number operators N_{a} and N_{b} and provide a physical interpretation of the creation operators $a^{\dagger}(\vec{k})$ and $b^{\dagger}(\vec{k})$ acting on the vacuum.

Exercise 3: Vacuum fluctuations

We consider a quantized, real scalar field with commutation relations for the creation and annihilation operators. At $t=0$ we average the field within a sphere of radius $R\left(V=\frac{4 \pi}{3} R^{3}\right)$, i.e. we consider

$$
\phi_{R}=\frac{1}{V} \int_{|\vec{x}|<R} d^{3} x \phi(x)
$$

(a) Show that the vacuum expectation value (VEV) of ϕ_{R} vanishes, i.e. $\langle 0| \phi_{R}|0\rangle=0$.
(b) Derive $\langle 0| \phi_{R}^{2}|0\rangle$. Since the VEV of ϕ_{R} vanishes, but not the VEV of ϕ_{R}^{2}, the field ϕ cannot be constant within the sphere of constant radius R, but it has to fluctuate. Consider $m=0$. Do you need to consider larger or smaller values of R to enlarge the fluctuations? Hint: First show that the VEV of ϕ_{R}^{2} is given by

$$
\langle 0| \phi_{R}^{2}|0\rangle=\frac{1}{V^{2}} \int d \tilde{k}\left|\int_{V} d^{3} x e^{-i k \cdot x}\right|^{2} \quad \text { and rewrite } \quad \int_{V} d^{3} x e^{i \vec{k} \cdot \vec{x}}
$$

as one-dimensional integral over the radius of the sphere. Make use of the Bessel function

$$
J_{3 / 2}(x)=\sqrt{\frac{2}{\pi x}}\left(\frac{\sin x}{x}-\cos x\right)
$$

which enters the integral

$$
I(a)=\int_{0}^{\infty} \frac{d y}{y \sqrt{a^{2}+y^{2}}}\left[J_{3 / 2}(y)\right]^{2}
$$

For $m=0$ you will need $I(0)=\frac{1}{2 \pi}$.

