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Exercise 1: Momentum operator and charge of the Dirac field 0 points

The solution of the Dirac equation can be expanded in plain waves as follows

ψ(x) =

∫
dp̃
∑
λ=±

[
cλ(p)u(p, λ)e−ip·x + d†λ(p)v(p, λ)eip·x

]
.

Therein u(p, λ) and v(p, λ) are Dirac spinors associated with positive and negative ener-
gies, respectively. They obey relations as shown on sheet 2, i.e. u†(p, λ)u(p, λ′) = 2ωpδλλ′ ,

v†(p, λ)v(p, λ′) = 2ωpδλλ′ , u
†(p̃, λ)v(p, λ′) = v†(p̃, λ)u(p, λ′) = 0 with p̃ = (ωp,−~p)T . A priori c

(†)
λ

and d
(†)
λ are plain coefficients, which we assume to be not-nessesarily anti-commuting.

(a) Show that the componenents T 0µ of the energy-momentum tensor are given by T 0µ =
ψ†i∂µψ. Express the four-momentum of the Dirac field

P µ =

∫
d3xT 0µ

in terms of cλ(p), c
†
λ(p), dλ(p) and d†λ(p).

(b) The charge of the Dirac field is given by

Q =

∫
d3xψ(x)γ0ψ(x) .

Express the charge again through the coefficients cλ(p), c
†
λ(p), dλ(p) and d†λ(p).

(c) For both subexercises (a) and (b) argue why having anti-commutation relations for d
and d† leads to physically sensible results.

Solution of exercise 1

(a) We start with the discussion of the energy-momentum tensor, which is defined by

T µν =
∂L

∂(∂µψ)
∂νψ + (∂νψ)

∂L
∂(∂µψ)

− gµνL .

The Lagrangian of the free Dirac field is given by

L = ψ(i/∂ −m)ψ ,

such that the second term of T µν does not contribute and we obtain

T µν = ψiγµ∂νψ + 0− gµνψ(iγρ∂ρ −m)ψ

= ψiγµ∂νψ .
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Therein we used the Dirac equation (iγρ∂ρ −m)ψ = 0. For the four-momentum we need

T 0µ = ψiγ0∂µψ = ψ†i∂µψ ,

where we used (γ0)2 = 14×4. We insert the expression into the four-momentum and
expand the Dirac field following the instructions given in the exercise:

P µ =

∫
d3xT 0µ =

∫
d3xψ†i∂µψ

=

∫
d3x

∫
dp̃

[∑
λ=±

c†λ(p)u
†(p, λ)eip·x + dλ(p)v

†(p, λ)e−ip·x

]

· i∂µ
∫
dq̃

[∑
λ′=±

cλ′(q)u(q, λ′)e−iq·x + d†λ′(q)v(q, λ′)eiq·x

]

=

∫
d3x

∫
dp̃

∫
dq̃
∑
λ=±

∑
λ′=±

·
(
c†λ(p)cλ′(q)q

µu†(p, λ)u(q, λ′)ei(p−q)·x + dλ(p)d
†
λ′(q)(−q

µ)v†(p, λ)v(q, λ′)e−i(p−q)·x

+c†λ(p)d
†
λ′(q)(−q

µ)u†(p, λ)v(q, λ′)ei(p+q)·x + dλ(p)cλ′(q)q
µv†(p, λ)u(q, λ′)e−i(p+q)·x

)
.

We now perform the integration over the three-dimensional space and therein identify
the Fourier transform of the δ distribution∫

d3xeis·x = eiωst(2π)3δ(3)(~s) .

We thus obtain either ~q = ~p or ~q = −~p. In both cases we obtain ωp = ωq as ωq =√
|~q|2 +m2. Using the identities provided in the exercise, we are left with the first two

terms with ~p = ~q and thus obtain

P µ =

∫
dp̃

1

2ωp

∑
λ=±

(
c†λ(p)cλ(p)p

µ2ωp + dλ(p)d
†
λ(p)(−p

µ)2ωp + 0 + 0
)

=

∫
dp̃pµ

∑
λ=±

(
c†λ(p)cλ(p)− dλ(p)d

†
λ(p)

)
.

Before we continue with subexercise (b) we want to motivate the relations provided in
the exercise for the Dirac spinors. We make use of the explicit form of the Dirac spinors
in terms of Weyl spinors provided on sheet 2 and obtain

u†(p, λ)u(p, λ′) =
√
E − λ|~p|χ†λ(p)

√
E − λ′|~p|χλ′(p) +

√
E + λ|~p|χ†λ(p)

√
E + λ′|~p|χλ′(p)

=
(√

E − λ|~p|
√
E − λ′|~p|+

√
E + λ|~p|

√
E + λ′|~p|

)
χ†λ(p)χλ′(p)

= (E − λ|~p|+ E + λ|~p|)δλλ′ = 2Eδλλ′ .

Therein and in the next relation we use χ†λ(p)χλ′(p) = χ†−λ(p)χ−λ′(p) = δλλ′ , see sheet 2.
Similarly we obtain

v†(p, λ)v(p, λ′) = (−λ)
√
E + λ|~p|χ†−λ(p)(−λ

′)
√
E + λ′|~p|χ−λ′(p)

+ λ
√
E − λ|~p|χ†−λ(p)λ

′
√
E − λ′|~p|χ−λ′(p)

= λλ′(
√
E + λ|~p|

√
E + λ′|~p|+

√
E − λ|~p|

√
E − λ′|~p|)χ†−λ(p)χ−λ′(p)

= 2Eδλλ′ .
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Next we want to calculate

u†(p, λ)v(p̃, λ′) = u(pλ)γ0v(p̃, λ′) =
1

m
u(p, λ)mγ0v(p̃, λ′) =

1

m
u(p, λ)pµγ

µγ0v(̃,λ′)

=
1

m
u(p, λ)γ0(p0γ

0 − p1γ1 − p2γ2 − p3γ3)v(p̃, λ′)

=
1

m
u(p, λ)γ0/̃pv(p̃, λ′) = −u†(p, λ)v(p̃, λ′) .

We made use of the Dirac equations (/̃p + m)v(p̃, λ′) = 0 and u(p, λ)(/p −m) = 0. We
conclude that u†(p, λ)v(p̃, λ′) = 0. Alternatively this last relation can also be shown using
the explicit form of the Dirac spinors in terms of Weyl spinors.

(b) As the conserved charge is given by

Q =

∫
d3xψ(x)γ0ψ(x) =

∫
d3xψ†(x)ψ(x)

the calculation is identical with the one of the previous subexercise setting i∂µ → 1. We
therefore obtain

Q =

∫
dp̃
∑
λ=±

(
c†λ(p)cλ(p) + dλ(p)d

†
λ(p)

)
.

(c) We want both P µ and Q to be normal ordered. Only if we demand anti-commuting
relations in the form {dλ(p), d†λ′(p′)} = (2π)32ωpδλλ′δ(~p− ~p′) we get the expected signs

for the four-momentum and the charge. As c†λ(p) generates fermions with charge +1

and d†λ(p) fermions with charge −1 we can define the particle number density operators

N c
λ(p) = c†λ(p)cλ(p) and Nd

λ(p) = d†λ(p)dλ(p). The four-momentum (neglecting an overall
constant) is then proportional to

∑
λN

c
λ(p) +Nd

λ(p) and the charge is proportional to∑
λN

c
λ(p)−Nd

λ(p).
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