Sommersemester 2019 - Sheet 8
Release: 17.06.19

Exercise 1: Vacuum of the Gupta-Bleuler photon

In the Gupta-Bleuler formalism of the free photon field the most general vacuum state reads

$$
|\phi\rangle=\sum_{n=0}^{\infty} C_{n}\left|\phi_{n}\right\rangle .
$$

The states $\left|\phi_{n}\right\rangle$ do not include transverse photons, but exactly n scalar and longitudinal photons. The additional condition

$$
\left(a_{3}(k)-a_{0}(k)\right)\left|\phi_{n}\right\rangle=0
$$

makes them physical states. We moreover choose $\left|\phi_{0}\right\rangle=|0\rangle$.
(a) Show that the most general form of $\left|\phi_{1}\right\rangle$ is given by

$$
\left|\phi_{1}\right\rangle=\int d \tilde{q} f(q)\left(a_{3}^{\dagger}(q)-a_{0}^{\dagger}(q)\right)|0\rangle .
$$

Hint: Make the ansatz $\left|\phi_{1}\right\rangle=\int d \tilde{q} \sum_{r=0,3} a_{r}^{\dagger}(q) f_{r}(q)|0\rangle$.
(b) Show that the expectation value of the photon field in the above general vacuum state corresponds to a gauge fixing, i.e.

$$
\langle\phi| A_{\mu}(x)|\phi\rangle=\partial_{\mu} \Lambda(x),
$$

where the function $\Lambda(x)$ using the explicit polarization vectors $\varepsilon_{0}^{\mu}(k)=n^{\mu}$ and $\varepsilon_{3}^{\mu}(k)=$ $\frac{k^{\mu}}{k \cdot n}-n^{\mu}$ is given by

$$
\Lambda(x)=\int \frac{d \tilde{k}}{k \cdot n} 2 \operatorname{Re}\left(i C_{0}^{*} C_{1} e^{-i k \cdot x} f(k)\right) .
$$

Therein $f(k)$ is identical to the one in subexercise (a). The function $\Lambda(x)$ fulfills $\square \Lambda(x)=0$ and can be chosen arbitrarily through the choice of the corresponding vacuum state $|\phi\rangle$. Hint: First show that $\left\langle\phi_{n}\right| N A_{\mu}(x)\left|\phi_{n-1}\right\rangle=\left\langle\phi_{n}\right| A_{\mu}(x)\left|\phi_{n-1}\right\rangle$ with

$$
N=\int d \tilde{k}\left(a_{3}^{\dagger}(k) a_{3}(k)-a_{0}^{\dagger}(k) a_{0}(k)\right)
$$

counting longitudinal and scalar photons. Thus it yields $\left\langle\phi_{n}\right| A_{\mu}(x)\left|\phi_{n-1}\right\rangle=0$ for $n \neq 1$.

Exercise 2: Massive vector boson

We consider a vector boson with mass $m \neq 0$, which enters the Lagrangian density as follows

$$
\mathcal{L}=-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}+\frac{m^{2}}{2} A_{\mu} A^{\mu}
$$

with $F_{\mu \nu}=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}$.
(a) Derive the equation of motion for A^{μ}, that is known as Proca equation. Show that this equation necessarily implies $\partial_{\mu} A^{\mu}=0$ and that, once this condition is imposed, it is equivalent to a set of massive Klein-Gordon equations, namely one for each of the non-vanishing components of A^{μ}.
(b) We introduce a Fourier decomposition for the massive vector boson in analogy to the photon field, i.e.

$$
A^{\mu}(x)=\int d \tilde{k} \sum_{r=0}^{3}\left(\varepsilon_{r}^{\mu}(k) a_{r}(k) e^{-i k \cdot x}+\varepsilon_{r}^{\mu *}(k) a_{r}^{\dagger}(k) e^{i k \cdot x}\right)
$$

A priori, this includes four polarization vectors $\varepsilon_{r}^{\mu}(k)$. Due to $\partial_{\mu} A^{\mu}=0$ and thus $\sum_{r} k_{\mu} \varepsilon_{r}^{\mu}(k) a_{r}(k)=0$ only three polarization vectors are physical. Show that a convenient basis for these polarization vectors, in the reference frame with $\vec{k}=(0,0,|\vec{k}|)$, is given by

$$
\varepsilon_{1}=(0,1,0,0), \quad \varepsilon_{2}=(0,0,1,0), \quad \varepsilon_{3}=\frac{1}{m}\left(|\vec{k}|, 0,0, \omega_{k}\right)
$$

for the three physical polarization vectors, which are orthogonal to the unphysical polarization vector $\varepsilon_{0}^{\mu}=k^{\mu} / \mathrm{m}$. The physical polarization vectors obey the orthonormality condition $\varepsilon_{r}^{\mu}(k) \varepsilon_{\mu s}^{*}(k)=-\delta_{r s}$. Using these explicit expressions show that the completeness relation of the physical polarization vectors reads

$$
\sum_{r=1}^{3} \varepsilon_{r}^{\mu}(k) \varepsilon_{r}^{\nu *}(k)=-g^{\mu \nu}+\frac{k^{\mu} k^{\nu}}{m^{2}}
$$

Hint: In the rest frame of the particle, $k^{\prime}=(m, 0,0,0)$, we e.g. choose $\varepsilon_{0}^{\prime}=(1, \overrightarrow{0})$ and the three unit vectors $\varepsilon_{i}^{\prime}=\left(0, \vec{e}_{i}\right)$. Then the vectors ε_{i}^{\prime} automatically fulfill $k_{\mu}^{\prime} \varepsilon_{i}^{\prime \mu}=0$. Boost from the rest frame into the above reference frame. Add-on: We showed the completeness relation in a special frame, but it is actually Lorentz-covariant.
(c) We now impose standard bosonic commutation relations for the surviving operators. They read

$$
\begin{aligned}
& {\left[a_{r}(k), a_{s}\left(k^{\prime}\right)\right]=\left[a_{r}^{\dagger}(k), a_{s}^{\dagger}\left(k^{\prime}\right)\right]=0,} \\
& {\left[a_{r}(k), a_{s}^{\dagger}\left(k^{\prime}\right)\right]=\delta_{r s} 2 \omega_{k}(2 \pi)^{3} \delta^{(3)}\left(\vec{k}-\vec{k}^{\prime}\right) .}
\end{aligned}
$$

Verify that the propagator of the massive vector boson takes the form

$$
\langle 0| T A^{\mu}(x) A^{\nu}(y)|0\rangle=\int \frac{d^{4} k}{(2 \pi)^{4}} \frac{i}{k^{2}-m^{2}+i \epsilon}\left(-g^{\mu \nu}+\frac{k^{\mu} k^{\nu}}{m^{2}}\right) e^{-i k(x-y)} .
$$

Add-on: As the photon has only two rather than three physical degrees of freedom, the limit $m \rightarrow 0$ of this propagator is not well-defined and does not yield the photon propagator.

