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Prof. Dr. D. Zeppenfeld, Dr. S. Liebler

Exercises: Stefan Liebler (stefan.liebler@kit.edu) (Office 12/03 - Build. 30.23)

Exercise 1: Vacuum of the Gupta-Bleuler photon 2+4 = 6 points

In the Gupta-Bleuler formalism of the free photon field the most general vacuum state reads

|φ〉 =
∞∑
n=0

Cn|φn〉 .

The states |φn〉 do not include transverse photons, but exactly n scalar and longitudinal photons.
The additional condition

(a3(k)− a0(k))|φn〉 = 0

makes them physical states. We moreover choose |φ0〉 = |0〉.
(a) Show that the most general form of |φ1〉 is given by

|φ1〉 =

∫
dq̃f(q)

(
a†3(q)− a

†
0(q)

)
|0〉 .

Hint: Make the ansatz |φ1〉 =
∫
dq̃
∑

r=0,3 a
†
r(q)fr(q)|0〉.

(b) Show that the expectation value of the photon field in the above general vacuum state
corresponds to a gauge fixing, i.e.

〈φ|Aµ(x)|φ〉 = ∂µΛ(x) ,

where the function Λ(x) using the explicit polarisation vectors εµ0(k) = nµ and εµ3(k) =
kµ

k·n − n
µ is given by

Λ(x) =

∫
dk̃

k · n
2Re

(
iC∗0C1e

−ik·xf(k)
)
.

Therein f(k) is identical to the one in subexercise (a). The function Λ(x) fulfills �Λ(x) = 0
and can be chosen arbitrarily through the choice of the corresponding vacuum state |φ〉.
Hint: First show that 〈φn|NAµ(x)|φn−1〉 = 〈φn|Aµ(x)|φn−1〉 with

N =

∫
dk̃(a†3(k)a3(k)− a†0(k)a0(k))

counting longitudinal and scalar photons. Thus it yields 〈φn|Aµ(x)|φn−1〉 = 0 for n 6= 1.
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Exercise 2: Massive vector boson 2+3+4 = 9 points

We consider a vector boson with mass m 6= 0, which enters the Lagrangian density as follows

L = −1

4
FµνF

µν +
m2

2
AµA

µ

with Fµν = ∂µAν − ∂νAµ.

(a) Derive the equation of motion for Aµ, that is known as Proca equation. Show that
this equation necessarily implies ∂µA

µ = 0 and that, once this condition is imposed, it
is equivalent to a set of massive Klein-Gordon equations, namely one for each of the
non-vanishing components of Aµ.

(b) We introduce a Fourier decomposition for the massive vector boson in analogy to the
photon field, i.e.

Aµ(x) =

∫
dk̃

3∑
r=0

(
εµr (k)ar(k)e−ik·x + εµ∗r (k)a†r(k)eik·x

)
.

A priori, this includes four polarization vectors εµr (k). Due to ∂µA
µ = 0 and thus∑

r kµε
µ
r (k)ar(k) = 0 only three polarization vectors are physical. Show that a convenient

basis for these polarization vectors, in the reference frame with ~k = (0, 0, |~k|), is given by

ε1 = (0, 1, 0, 0) , ε2 = (0, 0, 1, 0) , ε3 =
1

m
(|~k|, 0, 0, ωk)

for the three physical polarization vectors, which are orthogonal to the unphysical
polarisation vector εµ0 = kµ/m. The physical polarization vectors obey the orthonormality
condition εµr (k)ε∗µs(k) = −δrs. Using these explicit expressions show that the completeness
relation of the physical polarization vectors reads

3∑
r=1

εµr (k)εν∗r (k) = −gµν +
kµkν

m2
.

Hint: In the rest frame of the particle, k′ = (m, 0, 0, 0), we e.g. choose ε′0 = (1,~0) and the
three unit vectors ε′i = (0, ~ei). Then the vectors ε′i automatically fulfill k′µε

′µ
i = 0. Boost

from the rest frame into the above reference frame. Add-on: We showed the completeness
relation in a special frame, but it is actually Lorentz-covariant.

(c) We now impose standard bosonic commutation relations for the surviving operators.
They read

[ar(k), as(k
′)] = [a†r(k), a†s(k

′)] = 0,

[ar(k), a†s(k
′)] = δrs2ωk(2π)3δ(3)(~k − ~k′) .

Verify that the propagator of the massive vector boson takes the form

〈0|TAµ(x)Aν(y)|0〉 =

∫
d4k

(2π)4
i

k2 −m2 + iε

(
−gµν +

kµkν

m2

)
e−ik(x−y) .

Add-on: As the photon has only two rather than three physical degrees of freedom,
the limit m → 0 of this propgator is not well-defined and does not yield the photon
propagator.
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