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1 Motivation: Collider Physics after the Higgs

Discovery

1.1 Precision phenomenology

What is phenomenology (in physics)? According to Wikipedia:
In physics, phenomenology is the application of theoretical physics to experi-
mental data by making quantitative predictions based upon known theories.

The big questions:

1. Are these “known theories” incomplete?

2. How to distinguish mis-modelling of the data from real “new physics”
effects?

3. How can we profit maximally from the data to find out in which direc-
tion to extend our models?

To answer questions 1) and 2), high precision of the theory predictions as well
as reliable uncertainty estimates are mandatory. To address question 3), it is
necessary to identify observables which are sensitive to particular extensions
of the Standard Model and which can be measured and calculated with small
uncertainties.
Of course, if new particles are produced directly, they can appear as clear
resonances in the data, such that precision is not necessary for the discovery.
This was the case for the Higgs boson discovery, see Fig. 1. However, in the
current situation of particle physics, it looks like new particles (if existent)
are too heavy to be produced directly at present colliders, or too weakly
interacting to have been noticed so far. This is again where precision comes
into play.
It is often said that the Standard Model (SM) is very well tested, however
“very well” often means order 10% deviations from the prediction are accept-
able. With the High-Luminosity-LHC however, the precision of important
SM measurements will be at the few percent level, and if the theory predic-
tions cannot keep up with this, it would be a waste of data and experimental
resources.
What is the status today?
The particle content of the SM is shown in Fig. 2.
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Figure 1: The Higgs boson resonance for H → γγ. Source: CERN Courier

Fig. 3 shows the current status of measurements of SM cross sections. Mea-
surements of couplings of the Higgs boson are shown in Fig. 4.
Higgs bosons can be produced in various ways, the main production channels
at the LHC are shown in Fig. 5.
Persistent deviations from the SM prediction in the decay of B-mesons have
recently been confirmed by the LHCb collaboration [2]. A slide from the talk
at the Moriond 2021 conference by M. Alguero is shown in Fig. 6.
The results, which imply a violation of lepton flavour universality, could be
explained by the existence of so-called “Leptoquarks”, mediating a direct
interaction between quarks and leptons, see Fig. 7, or by the existence of a
a Z ′-boson, see Fig. 8.
If there are additional bosons mediating lepton flavour violating interactions,
they are probably too heavy to be produced directly at the LHC.
Another very recent hint towards physics beyond the SM is the new mea-
surement of the anomalous magnetic moment of the muon at Fermilab [4].
The measured value is 4.2 standard deviations away from the (perturbatively
calculated) SM prediction, see Fig. 9.
For a recent theory review see Ref. [5].
The situation today may be similar to the one before the discovery of the
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Figure 2: The particles of the Standard Model. Source: CERN

W - and Z-bosons (1983). Fig. 10 shows the energy region around the Z-
resonance for the process e+e− →hadrons. For energies below the W+W−

production threshold the amplitude is composed of a diagram with virtual
photon exchange, M (γ∗) ∼ 1/q2 and a diagram with Z-boson exchange,
M (Z) ∼ 1/(q2 −M2

Z) − iMZΓZ . For q2 � M2
Z the virtual photon exchange

diagram dominates and the cross section falls off like 1/s. This is shown
in Fig. 11. At collider energies that do not exceed

√
s ∼ 40 GeV, no sign

of deviation from pure QED can be detected. An interesting region is the
one between 40 GeV .

√
s . 60 GeV, where the energy is not sufficient to

see a resonance, but deviations from the QED prediction can be identified
if the prediction is precise enough. Similar arguments hold for the on-set of
W -boson pair production. Today we may be in a similar situation. As higher
order corrections also tend to enhance the corresponding cross sections, it is
obvious that a reliable estimate of their size is essential before claims of “new
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Figure 3: Summary of SM cross section measurements. Source: Ref. [1]

physics signals” can be made in the absence of direct detection of resonances.

1.2 Perturbative expansions

In perturbative quantum field theory, precision is closely tied to the cal-
culation of higher orders in an expansion in the strong coupling αs or the
electroweak coupling α. For example, the expansion of a cross section can
be expanded in a power series in αs as

σ = σLO + αsσ
NLO + α2

sσ
NNLO + . . . , (1)

where LO means “leading order”, NLO “next-to-leading order”, NNLO
“next-next-to-leading order”, etc. The leading order cross section σLO itself
may contain nonzero powers of αs or α already, however the above power
series indicates the QCD-corrections, which, at NLO, can be classified into
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Figure 4: Comparison of Higgs coupling measurements to the SM expecta-
tion. Source: https://twiki.cern.ch/twiki/bin/view/CMSPublic

real and virtual corrections, where the real corrections implies the radiation of
extra QCD particles (gluons or quarks), while the virtual corrections contain
loops of extra virtual particles with QCD couplings. We will go through
explicit examples in this lecture. Beyond NLO, combinations of virtual and
real corrections will also occur. How important NNLO corrections can be to
describe the data is shown in Fig. 12.
As the value of the strong coupling at the energy scale of the Z-boson mass
is αs(MZ) ' 0.118, while the electroweak (EW) coupling, α(MZ), amounts
to about 1/128, QCD corrections of the same power in the coupling are in
general larger than EW corrections. Rule of thumb:
NLO QCD: O(10%) corrections, NNLO QCD: few % corrections, NLO EW:
few % corrections. However, there are important cases where this rule does
not apply, for example

• Higgs production in gluon fusion: NLO QCD corrections O(100%);

• kinematic regions where EW corrections are enhanced due to large
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Figure 5: Illustrative Feynman diagrams for the main Higgs boson pro-
duction channels (left) and corresponding cross sections (right). Source:
https://twiki.cern.ch/twiki/bin/view/LHCPhysics/LHCHWG

logarithms of the form ln
(
M2
W

ŝ

)
, where ŝ � M2

W , for example weak

boson production;

• kinematic regions dominated by soft and/or collinear radiation (also

called infrared radiation), where large logarithms of the form ln
(
M2

p2⊥

)
occur, for example in the transverse momentum spectrum of a particle
or particle pair at low transverse momentum p⊥. As the infrared be-
haviour of QED and QCD is universal, i.e. process independent, such
logarithmic terms can be predicted and the perturbative series can be
re-organised. This is called resummation;

• mixed QCD ⊗ EW corrections also need to be considered when percent
level precision is aimed at.
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Figure 6: Deviations from the SM in B-decays, talk by M. Alvaro, Moriond
2021, based on Ref. [2].

Figure 7: SM diagram and leptoquark-exchange diagram. Figure from
Ref. [2].
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Figure 8: Z ′-exchange diagram. Figure from Ref. [3].

Figure 9: Measured values of the muon anomalous magnetic moment com-
pared to the SM prediction. Figure from Ref. [4].
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Figure 10: Z-resonance. Figure from Ref. [6].

Figure 11: Z-resonance and cross section from QED only (left) and measure-
ments confirming the QED prediction (right).
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Figure 12: WZ measurement compared to NLO and NNLO predictions.
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2 A theoretical particle physicists’ toolbox

2.1 Factorisation

A typical event at a hadron collider like the LHC is quite complicated, as
sketched in Fig. 13. As the proton is a bound state of quarks and gluons,
non-perturbative aspects play a role in the initial state, and of course also
in the final state, because quarks and gluons hadronize. Only the red blobs
and the yellow parton branchings can be described perturbatively. It is quite
non-trivial that we can describe such complex interactions with high accu-
racy. The fact that we can separate the event into a part that is calculable
in perturbation theory, the hard scattering cross section (also called partonic
cross section), and a non-perturbative part is called factorisation. Factori-
sation would not be possible without asymptotic freedom, the fact that the
strong coupling αs(Q

2) decreases as the energy scale Q2 increases.

Figure 13: Schematic picture of a LHC event. Figure by G. Luisoni

The basic formula for factorisation at hadron colliders is the convolution of
parton distribution functions (PDFs) with the partonic cross section.
For example, the differential cross section for a process like the production
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of a Higgs boson, pa + pb → H +X, has the form

dσpp→H+X =
∑
i,j

∫ 1

0

dx1 fi/pa(x1, αs, µf )

∫ 1

0

dx2 fj/pb(x2, αs, µf )

× dσ̂ij→H+X(x1, x2, αs(µr), µr, µf ) + O
(

Λ

Q

)p
. (2)

Factorisation, shown in Fig. 14, holds up the the so-called power corrections

of order
(

Λ
Q

)p
(the power p is process-dependent, but always positive, Λ '

250 MeV is the scale where non-perturbative effects start to dominate the
behaviour of the strong coupling). Therefore, the larger the energy scale Q2

of the hard process, the smaller the power corrections.

σ̂ab

fa fb

p1 p2

Figure 14: Schematic picture of factorisation in hadron-hadron collisions.

Strictly speaking, the above factorisation is called “collinear factorisation”,
because it assumes that the partons which are coming from the hadrons a
and b have a momentum which is collinear to the parent hadron momentum.
There is also the so-called “transverse momentum dependent (TMD)” factori-
sation, which takes into account that the partons inside the proton can have
a transverse momentum relative to the beam axis. This requires transverse
momentum dependent PDFs, see e.g. Ref. [7] for a review. The TMD effects
can become sizeable for example in Drell-Yan production (pp → V → l+l−)
at very low transverse momenta of the produced vector boson, or in semi-
inclusive DIS (deep-inelastic scattering).
We will discuss the PDFs as well as asymptotic freedom in more detail later,
here we want to stress that without factorisation, it would not be possible
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to produce the high precision predictions as we have them today within a
strongly interacting theory, i.e. QCD.
As the PDFs themselves cannot be calculated from first principles, but need
to be fitted from data, their contribution to the uncertainty budget increases
in relative size the more higher orders in perturbation theory are available
for the partonic cross section. The current situation for the case of Higgs
production in gluon fusion is shown in Fig. 15. Predictions based on different
PDFs for ratios of Drell-Yan measurements are shown in Fig. 16.

Figure 15: Contributions to the total uncertainty for Higgs production in
gluon fusion. Figure from Ref. [8].

-
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Figure 16: Comparison of predictions to recent measurements of fiducial W -
and Z-production cross sections. Figures from Ref. [9].
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2.2 Cross sections

2.2.1 Partonic cross section

The partonic cross section σ̂ij in eq. (2) can be calculated order by order
in perturbation theory. It contains the modulus of the scattering or decay
matrix element, |M|2, which encodes the fundamental interactions derived
from the Lagrangian.
For a reaction pi+pj → p1 + . . .+pn, the reaction rate is calculated according
to Fermi’s golden rule based on the transition matrix element |M|2. We have

dσ̂ =
J

flux
· |M|2 · dΦn , (3)

where

flux = 4
√

(pi · pj)2 −m2
im

2
j .

Assuming massless incoming particles and calculating in the centre-of-mass
frame of pi + pj we therefore have flux = 4pi · pj = 2ŝ, with ŝ = (pi + pj)

2.
The quantity J = 1/j! is a statistical factor to be included for each group
of j identical particles in the final state. The phase space volume spanned
by the final state particles is denoted by dΦn, it will be considered in more
detail in section 2.2.4.
For a decay process Q→ p1 + . . .+ pn we have

dΓ =
J

2
√
Q2
· |M|2 · dΦn . (4)

If the spins of the final state particles are not measured, we sum over all
possible polarisations in the final state. Colour in the final state cannot be
measured, so we also have to sum over all colours in the final state. Further,
we average over colours and polarisations in the initial state. The matrix
element is then given by

|M|2 →
∑
|M|2 =

∏
initial

1

NpolNcol

∑
pol,col

|M|2 (5)

quarks: Ncol = Nc, Npol = 2

gluons: Ncol = N2
c − 1,

Npol =

{
D − 2 in conventional dimensional regularisation

2 other schemes (HV, DRED)
.
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The expression for the gluon polarisations already anticipates that we will
calculate in D = 4 − 2ε dimensions rather than four space-time dimensions
later, in order to regulate the singularities that appear at higher orders in
perturbation theory.
The expression

∑
|M|2 is often just written as |M|2.

2.2.2 Luminosity

If we look at the scattering in a very general way and scatter particles of
type a with particle density na on a fixed target with particle density nb and
depth d, see Fig. 17. If F is the area of the beam and va the velocity of the
beam particles, the flux is given by

flux = na va =
Ṅa

F
, (6)

where Ṅa is the number of particles per time unit [s]. The number of target
particles situated within the beam area is Nb = nb F d, and L = flux · Nb is
called the luminosity. The reaction rate is defined as

R = L · σr ,

where σr is the cross section for reaction r.

Figure 17: Scattering on a fixed target with depth d.

Differential cross sections can be defined for example in terms of the angular
distributions of the scattered particles. The reaction rate per volume element
dΩ is given by

dR(θ, φ)

dΩ
= L

dσ(θ, φ)

dΩ
such that σ =

∫ 2π

0

dφ

∫ 1

−1

d cos θ
dσ(θ, φ)

dΩ
. (7)
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For a circular collider with two bunches crossing each other rather than
hitting a fixed target, we have

L = f · n · NaNb

F
, (8)

where f is the bunch frequency, n is the number of bunches, Na and Nb are
the numbers of particles per bunch, and F is the bunch crossing area. Cross
sections are usually given in units of ‘barn’, where 1 barn ' 10−24cm2. Using
L = 1034cm−2s−1 for the LHC luminosity, for cross sections of O(100) pb (1
picobarn = 10−12 barn) we have a rate of 1 event per second. As an example,
for top quark pair production at 14 TeV we have σtt̄ ' 1000 pb which leads
to ∼ 10 events per second.

2.2.3 Total hadronic cross section

The hadronic cross section σ at a centre-of-mass energy s is often written in
terms of the partonic cross section and a luminosity function

Lij(x1, x2, µf ) = fi/pa(x1, µf )fj/pb(x2, µf ) , (9)

such that

σ(s) =

∫ s

ŝmin

dŝ

∫ 1

0

dx1

∫ 1

0

dx2 δ(ŝ− x1x2s)
∑
i,j

Lij(x1, x2, µf )

∫
dσ̂ij(x1, x2, µr, µf ) ,

(10)

where fi(x, µf ) is the parton distribution function (PDF) of a parton with
momentum fraction x and flavour i (including gluons) and µf is the factori-
sation scale.

2.2.4 Phase space integrals

Phase space integrals in D dimensions

The general formula for a phase space dΦn with n particles in the final state
in D space-time dimensions is given by

dΦn =
n∏
j=1

[ dDpj
(2π)D−1

δ+(p2
j −m2

j)
]
(2π)Dδ

(
Q−

n∑
j=1

pj

)
= (2π)n−D(n−1)

n∏
j=1

[
dDpjδ(p

2
j −m2

j)Θ(Ej)
]
δ
(
Q−

n∑
i=1

pi

)
, (11)
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where Q can be a single particle momentum or Q = q1 + q2 in the 2 → n
scattering case. We use

dDpjδ(p
2
j−mj)Θ(Ej) = dEjd

D−1~pjδ(E
2
j−~p 2

j−m2
j)Θ(Ej) =

1

2Ej
dD−1~pj

∣∣∣
Ej=
√
~p 2
j +m2

j

for j = 1, . . . , n to arrive at

dΦn = (2π)n−D(n−1)

n∏
j=1

dD−1~pj
2Ej

δ
(
Ecm −

n∑
i=1

Ei

)
δ(D−1)

( n∑
i=1

~pi

)
, (12)

We will use the last δ-function to eliminate ~pn. We further use

dD−1~p f(|~p|) = dΩD−2 d|~p| |~p|D−2 f(|~p|) , (13)

where dΩD−2 is the surface element in D − 2 dimensions, V (D − 1) is the
volume of a unit sphere in D − 1 dimensions.∫
SD−2

dΩD−2 = V (D − 1) =
2 π

D−1
2

Γ(D−1
2

)
,

∫
dΩD−2 =

∫
dΩD−3

∫ π

0

dθ(sin θ)D−3 =

∫ π

0

dθ1(sin θ1)D−3

∫ π

0

dθ2(sin θ2)D−4 . . .

∫ 2π

0

dφ

to obtain

dΦn = (2π)n−D(n−1)2−n
n−1∏
j=1

[
dΩ

(j)
D−2

d|~pj|
Ej
|~pj|D−2

]
1

En
δ
(
Ecm −

n∑
i=1

Ei

)
,

(14)

with Ej =
√
~p 2
j +m2

j . Note that in the massless case Ej = |~pj|, such that

the above formula simplifies.
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Phase space for 2→ 2 scattering with massive final state particles

We consider the process p1 + p2 → p3 + p4 with p2
3 = m2

3, p
2
4 = m2

4. Using a
momentum parametrisation in the centre-of-mass frame, we have

p1 =

√
ŝ

2
(1, 0, 0, 1)

p2 =

√
ŝ

2
(1, 0, 0,−1)

p3 = (E3, 0, pf sin θ, pf cos θ)

p4 = (E4, 0,−pf sin θ,−pf cos θ)

where

pf =

√
λ(ŝ, m2

3,m
2
4)

2
√
ŝ

; Ei =
√
m2
i + p2

f (15)

and λ(ŝ, m3
3,m

2
4) = (ŝ− (m3 +m4)2) (ŝ− (m3 −m4)2) is the Källén func-

tion,
λ(x, y, z) = x2 + y2 + z2 − 2(xy + xz + yz) .

Defining m+ = m3 + m4,m− = m3 −m4 and β2 =
(

1− m2
+

s

)(
1− m2

−
ŝ

)
, we

have λ(ŝ, m2
3,m

2
4) = ŝ2β2 and we can write

t̂ = (p2 − p3)2 =
1

2

(
m2

3 +m2
4

)
− ŝ

2
(1 + β cos θ) ,

û = (p1 − p3)2 =
1

2

(
m2

3 +m2
4

)
− ŝ

2
(1− β cos θ) . (16)

As pf must be real we have ŝmin = (m3 +m4)2.
From Eq. (14) the 2→ 2 phase space in the centre-of-mass frame is given by∫

dΦ̂2→2 =
1

(2π)D−2

∫
dΩD−2d|~p3|

|~p3|D−2

2E32E4

δ(Ecm − E3 − E4) . (17)

The δ-constraint can be evaluated to eliminate |~p3| ≡ p:

δ(Ecm − E3 − E4) ≡ δ(f(p)) = δ

(
Ecm −

√
p2 +m2

3 −
√
p2 +m2

4

)
=

(
p

E3

+
p

E4

)−1

δ(p− pf ) , (18)
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where pf is the solution of f(p) = 0, leading to pf = 1
2Ecm

√
λ(E2

cm,m
2
3,m

2
4)

as already given above. Inserting this into Eq. (17) leads to∫
dΦ̂2→2 =

1

(2π)D−2

1

4

∫
dΩD−2

pD−3
f

Ecm

,

dΩD−2 =

∫ 2π

0

dφ

∫ π

0

(sin θ)D−3dθ . (19)

So in 4 dimensions with φ integrated out and covariant notation:∫
dΦ̂2→2 =

1

16π

√
λ

ŝ

∫ 1

−1

d cos θ . (20)

Combined with the integration over the momentum fractions xi from the
convolution with the PDFs, we have∫

dΦ2→2 =
1

16π

∫ 1

0

dx1

∫ 1

0

dx2

∫ s

ŝmin

dŝ δ(ŝ− x1x2 s)

√
λ

ŝ

∫ 1

−1

d cos θ .

Note: The 3-particle phase space dΦ3(Q→ p3 + p4 + p5) can conveniently be
written as the 2-particle phase space for the production of a pseudo-particle
with momentum P34 = p3 +p4, P

2
34 = s34, combined with the phase space for

the subsequent splitting P34 → p3 + p4,

dΦ3(Q→ p3 + p4 + p5) =
ds34

2π
dΦ2(Q→ P34 + p5) dΦ2(P34 → p3 + p4) .

(21)

This procedure can be iterated, viewing the n-particle phase space as a se-
quential decay chain. However this is not always the most efficient phase
space for each topology of Feynman diagrams (and their interferences). Of-
ten done in practice: multi-channelling: write |M|2 as

|M|2 =
|
∑

iMi|2∑
i |Mi|2

∑
i

|Mi|2 (22)

and optimize the phase space for each |Mi|2, using the ratio as a weight.
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Phase space for 1→ 3 processes with massless particles

For n = 3 in Eq. (11) one can choose a coordinate frame such that

Q = (E,~0(D−1))

p1 = E1 (1,~0(D−2), 1)

p2 = E2 (1,~0(D−3), sin θ, cos θ)

p3 = Q− p2 − p1 , (23)

leading to

dΦ1→3 =
1

4
(2π)3−2D dE1dE2dθ1 (E1E2 sin θ)D−3 dΩD−2 dΩD−3

Θ(E1) Θ(E2) Θ(E − E1 − E2) δ((Q− p1 − p2)2) . (24)

A parametrisation in terms of the Mandelstam variables sij = 2 pi ·pj can of-
ten also be useful, therefore we make the transformation E1, E2, θ → s12, s23, s13.
To work with dimensionless variables we define y1 = s12/Q

2, y2 = s13/Q
2,

y3 = s23/Q
2 which leads to

dΦ1→3 = (2π)3−2D 2−1−D(Q2)D−3 dΩD−2 dΩD−3 dy1 dy2 dy3 (25)

(y1 y2 y3)D/2−2 Θ(y1) Θ(y2) Θ(y3) δ(1− y1 − y2 − y3) .

The latter can be derived easily if we relate the Jacobian | det J | to the
determinant of the Gram matrix Gij = 2pi · pj, where Gij can as well be
formed from Q, p1, p2 rather than p1, p2, p3. Using

s12 = 2E1E2 (1− cos θ)

s13 = 2E1(E − E2 (1− cos θ)) = E (E − 2E2)

s23 = 2E2(E − E1 (1− cos θ)) = E (E − 2E1) (26)

the Jacobian for the transformation is

|det J | =
∣∣∣∣det

(
∂(s12, s13, s23)

∂(E1, E2, θ)

)∣∣∣∣ = 8E2E1E2 sin θ . (27)

The Gram matrix is given by

G =

 0 s12 s13

s12 0 s23

s13 s23 0

 (28)
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such that
detG = 2s12s13s23 = 8E2E2

1E
2
2 sin2 θ (29)

and therefore

det J = 2E
√

2 detG = 4E
√
s12s13s23 . (30)

This leads to∫
dθ1dE1dE2 [E1E2 sin θ]D−3 =

∫
dθ1dE1dE2

[
det J

8E2

]D−3

=

∫
ds12ds13ds23 (8E2)3−D (det J)D−4

= E2−D21−D
∫

ds12ds13ds23

(
detG

2

)D−4
2

.

Combining everything and rescaling the Mandelstam invariants with Q2 leads
to Eq. (25) above. This procedure can be generalised to 1→ n phase spaces.

2.3 Basics of QCD

2.3.1 Colour algebra

The strong interactions can be described as an SU(3) local gauge theory,
where the “charges” are denoted as colour, therefore the name “Quantum
Chromodynamics” (QCD). QCD is embedded in the Standard Model with
underlying gauge group structure SU(3) × SU(2)L × U(1)Y . Often the
number of colours in denoted generically by Nc and the colour algebra in
QCD calculations is done for a generic SU(Nc) gauge group (we believe that
in nature Nc = 3, but the concept is more general). Using a generic Nc has
many advantages, for example it allows to divide the amplitudes into simpler
building blocks according to their colour structure.
The group SU(Nc) is an example of so-called Lie groups (Sophus Lie, 1842-
1899), which will be discussed below. For QED the underlying group is U(1).
As we will see, the group structure of SU(Nc) implies that gluons interact
with themselves (while photons do not).

Groups

A group G is a set of elements g with a multiplication G × G → G which
satisfies:
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• there is a unit element e with g ◦ e = e ◦ g = g,

• for each g an inverse exists g−1 with g ◦ g−1 = g−1 ◦ g = e,

• associativity g1 ◦ (g2 ◦ g3) = (g1 ◦ g2) ◦ g3 .

For Abelian groups: g1 ◦ g2 = g2 ◦ g1. (Niels Henrik Abel, 1802-1829).
We will deal with compact Lie groups, which are groups whose elements de-
pend analytically on a finite number of continuous parameters. The group
SU(N) is a Lie group whose representations are unitary matrices with de-
terminant one.

SU(N)representations :
{
U ∈ CN×N |UU † = 1 ∧ detU = 1

}
. (31)

Each U ∈ SU(N) can be written as

U = exp {i θaT a} , θa ∈ R, (32)

from UU † = 1 it follows that T a = (T a)†, from detU = 1 (with detU =
eTr(lnU)) follows Tr(T a) = 0 .
Other examples of Lie groups are the orthogonal groups SO(N), e.g. the
rotation group SO(3), the symplectic groups Sp(N) and the special groups
G2, F4, E6, E7, E8.

Representations

A representation of a group is a mapping of the group elements onto matri-
ces, where the group multiplication laws translate to matrix multiplication
(preserving the group multiplication laws), i.e. linear algebra can be used.
Any group element which can be obtained from the identity by continuous
changes in the parameters can be written as exp (iT aθa) where θa are real
parameters and T a are linearly independent hermitian operators. The set of
all linear combinations T aθa is a vector space and the T a form a basis in that
space. Therefore they are also called the generators of the group.
For the generators T a, the commutation relation

[T a, T b] = i fabc T c (33)

holds, independent of the representation, defining an algebra associated with
the group. The fabc are called structure constants. For Abelian groups the
structure constants are zero.
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Further, the generators satisfy the Jacobi identity

[T a, [T b, T c]] + [T b, [T c, T a]] + [T c, [T a, T b]] = 0 , (34)

wich translates into a relation between structure constants.
The generators are normalised such that

Trace(T aT b) = TR δ
ab . (35)

Usually one chooses TR = 1/2 for the fundamental representation, which we
will also do.
While the (totally antisymmetric) structure constants are given in terms of
generators by

fabc = −2iTrace(T a[T b, T c]) , (36)

we can also define totally symmetric constants by

dabc = 2 Trace(T a
{
T b, T c

}
) . (37)

For us, two representations of SU(N) will be important:
1. the fundamental representation: the generators are N ×N matrices,
2. the adjoint representation: the generators of this representation are
(N2− 1)× (N2− 1)-matrices, i.e. the indices run over the same range as the
number of generators (the number of generators is called the dimension of the
group). So in the adjoint representation the dimension of the vector space
in which the representation matrices act equals the dimension of the group.
Therefore the generators in the adjoint representation can be expressed in
terms of structure constants:

T abc =
adj

(F a)bc =: −i fabc , a, b, c = 1 . . . N2 − 1 . (38)

The generators of SU(3) in the fundamental representation are usually de-
fined as taij = λaij/2, where the λaij are also called Gell-Mann matrices. They
are traceless and hermitian and can be considered as the SU(3) analogues
of the Pauli-matrices for SU(2) (in fact, the first three λi generate an SU(2)
subgroup of SU(3)).

λ1 =

 0 1 0
1 0 0
0 0 0

 , λ2 =

 0 −i 0
i 0 0
0 0 0

 , λ3 =

 1 0 0
0 −1 0
0 0 0

 ,
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λ4 =

 0 0 1
0 0 0
1 0 0

 , λ5 =

 0 0 −i
0 0 0
i 0 0

 , λ6 =

 0 0 0
0 0 1
0 1 0

 ,

λ7 =

 0 0 0
0 0 −i
0 i 0

 , λ8 =
1√
3

 1 0 0
0 1 0
0 0 −2

 .

Colour in QCD

Quarks are in the fundamental representation of SU(3). Therefore the Feyn-
man rules for the quark-gluon vertex involve taij where i, j = 1 . . . Nc run over
the colours of the quarks (the degree of the group), while a = 1 . . . N2

c −1 runs
over the dimension of the group. Gluons are in the adjoint representation of
SU(3), which we denote by the matrices (F a)bc = −i fabc.

The gluons can be regarded as a combination of two coloured lines, as de-
picted in Fig. 18, or, more precisely, as a combination of colour and anti-
colour. Contracting colour indices is graphically equivalent to connecting the

Figure 18: Representation of the gluon as a double colour line. Picture from
Ref. [10].

respective colour (or anticolour) lines. The representation of the quark-gluon
vertex in Fig. 18 embodies colour conservation, whereby the colour-anticolour
quantum numbers carried by the qq̄ pair are transferred to the gluon. The
eight gluons can be regarded as all possible colour-anticolour combinations,
where the combination corresponding to λ8 would be 1√

6
(rr̄+gḡ−2bb̄) (with

r: red, g: green, b: blue). Note that the singlet combination 1√
3
(rr̄+gḡ+ bb̄)

does not occur for the gluon because it cannot mediate colour.
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From a group theory point of view, we have an octet and a singlet when
forming the product of the fundamental representations [3] and [3̄] for quarks
and antiquarks, respectively: [3] ⊗ [3̄] = [8] ⊕ [1], and the gluons belong to
the [8].

The sums
∑

a,j t
a
ijt

a
jk and

∑
a,d F

a
bdF

a
dc have two free indices in the fundamental

and adjoint representation, respectively. One can show that these sums are
invariant under SU(N) transformations, and therefore must be proportional
to the unit matrix:∑

j,a

taijt
a
jk = CF δik ,

∑
a,d

F a
bdF

a
dc = CA δbc . (39)

The constants CF and CA are the eigenvalues of the quadratic Casimir opera-
tor in the fundamental and adjoint representation, respectively. The Casimirs
can be expressed in terms of the number of colours Nc as

CF = TR
N2
c − 1

Nc

, CA = 2TRNc . (40)

The commutation relation (33) in the fundamental representation can be
represented graphically by

a b ab a b

tatb − tbta = i fabc tc

Multiplying this commutator first with another colour charge operator, sum-
ming over the fermion index and then taking the trace over the fermion line
(i.e. multiplying with δik) we obtain the representation of the three-gluon
vertex as traces of products of colour charges:

a b

c

a b

c

TR

Trace(tatbtc)− Trace(tctbta) = i TRf
abc (41)
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In the exercises we will see some examples of how to compute the colour
algebra structure of a QCD diagram, independent of the kinematics. For
example, taking the trace of the identity (δij resp. δab) in the fundamental
resp. in the adjoint representation we obtain

= Nc , = N2
c − 1 ,

respectively. Then, using the expressions for the fermion and gluon propa-
gator insertions, we find

= CF Nc , = CA (N2
c − 1) .

There is also a very useful identity for the product of two colour matrices
in the fundamental representation, occurring when a gluon is exchanged be-
tween two quark lines, and following from representing the gluon as a double
quark line,

corresponding to

taijt
a
kl = TR

(
δilδkj −

1

Nc

δijδkl

)
. (42)

The second term ∼ 1/Nc implements the condition that the generators are
traceless, and the picture indicates that a gluon which mediates between
quarks of the same colour does not exist, because it would be a colour singlet.

Colour decomposition

From eq. (41) it is clear that any tree level diagram for n-gluon scattering can
be expressed in terms of traces over generators taij only, as depicted in Fig. 19.
This observation leads to the so-called colour decomposition of amplitudes,
which allows to separate the colour information from the kinematic part of
an amplitude. An amplitude for n-gluon scattering can be written as
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Figure 19: Colour decomposition of tree-level gluon amplitudes. Figure from
Ref. [11].

Atree
n ({ki, λi, ai}) = gn−2

s

∑
σ∈Sn/Zn

Tr (taσ(1) · · · taσ(n)) Atree
n (σ(1λ1), . . . , σ(nλn)) ,

(43)
where ki, λi are the gluon momenta and helicities, ai the colour indices and
Atree
n (1λ1 , . . . , nλn) are the partial amplitudes, which contain all the kinematic

information. Sn is the set of all permutations of n objects, while Zn is
the subset of cyclic permutations, which preserves the trace; the latter are
excluded in the sum over the set Sn/Zn.
The advantage of this representation is that the partial amplitudes Atree

n are
simpler to calculate than the full amplitude because they are colour-ordered:
they only receive contributions from diagrams with a particular cyclic or-
dering of the gluons. This implies that the infrared singularities (related
to external massless particles becoming collinear, see later) of the partial
amplitudes can only occur in a subset of momentum channels, those with
cyclically adjacent momenta. For example, the five-point partial amplitudes
Atree

5 (1λ1 , 2λ2 , 3λ3 , 4λ4 , 5λ5) can only have poles in s12, s23, s34, s45, and s51,
and not in s13, s24, s35, s41, or s52, where sij ≡ (ki + kj)

2.
The colour decomposition is not limited to gluons only, it also can be applied
when quarks are involved. For example, a tree amplitude with a qq̄ pair and
otherwise gluons can be written as

Atree
n = gn−2

s

∑
σ∈Sn−2

(taσ(3) · · · taσ(n))j1i2 A
tree
n (1λ1q̄ , 2

λ2
q , σ(3λ3), . . . , σ(nλn)),

(44)
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where numbers without subscripts refer to gluons.

Using eq.(42), there is yet another possibility to perform the colour decom-
position, based on Kronecker δij’s only, also called colour flow decomposi-
tion [12], because it relies on representing all gluons as a double colour line.
The computational gain when using colour decomposition to calculated am-
plitudes with n gluons is illustrated in Fig. 20. At loop level, colour decom-

Figure 20: Number of diagrams for tree-level n-gluon amplitudes. Table from
Ref. [12].

position can also be performed [11,13].
Another advantage of colour decomposition is the possibility to approximate
complex calculations by the leading colour approximation, which is a very
good approxiamtion for example in the case of di-jet production at NNLO
(see Fig. 23).

2.3.2 Experimental evidence for the existence of colour

The colour factors CF and CA can indirectly be measured at colliders, for
example from jet production cross sections. Jets can be pictured as clusters
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of particles (usually hadrons) which are close to each other in phase space,
resp. in the detector.

Figure 21: Example of a 6-Jet event measured by CMS. Source: CERN
Courier.

Fig. 21 shows a 6-jet event measured by CMS, Fig. 22 illustrates how jets at
different levels are described, from the partonic interaction to the hadrons
seen in the detector.
As the theory predictions for the jet cross sections depend on Nc, these
measurements confirm that the number of colours is three.

Figure 22: Projections to a 2-jet event at various stages of the theoretical
description. Figure by Gavin Salam.
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As an example, the leading colour contribution to the squared n-gluon matrix
elements summed over colours (and helicities) is given by

|Mn|2 =
(
g2Nc

)n−2
(N2

c − 1)
∑

σ∈Sn/Zn

{
|An(σ(1), · · · , σ(n))|2 +O

(
1

N2
c

)}
,

so if Nc was different, the jet cross sections would change drastically. How
well they agree with recent measurements is shown in Fig. 23.

Figure 23: Triple differential two-jet cross sections at NNLO compared to
CMS data. Figure from Ref. [14].

A good theoretical description of jets at the LHC is very important. For ex-
ample, jet+X, two-jet or Z+jet data are important to constrain the PDFs [15]
and jet cross sections are used for precision determinations of the strong cou-
pling αs. Furthermore, as jets are originating from massless partons, there is
energy availble to go up to very high values in the jet pT spectrum, (O(1TeV ),
which is a kinematic region sensitive to new physics. Jets in combination with
missing transverse energy (“missing” in the total transverse energy budget)
could be a signal for an unknown heavy particle (for example related to dark
matter) decaying into something not visible in the detector.
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Hadronic R-ratio

Among the historically early evidences for the existence of 3 colour quantum
numbers is the so-called hadronic R-Ratio, the total cross section for the
production of hadrons in electron-positron collisions, divided by the cross
section for the production of a Muon-antimuon pair, as a function of the
centre-of-mass energy s:

R(s) =
σ(e+e− → hadrons)

σ(e+e− → µ+µ−)
. (45)

Hadrons are bound states of quarks and gluons, so for the numerator, at
microscopic level, this means that a fermion-antifermion pair ff̄ is created
as soon as the centre-of-mass energy s is sufficient to produce two quarks of
mass mf .

Figure 24: The production of hadrons in e+e− collisions via virtual photon
exchange.

The interaction proceeds via the exchange of a virtual photon, see Fig. 24
(neglecting Z-boson exchange). The electromagnetic interaction (the pho-
ton) only sees the electromagnetic charge ef of the fermions, be it quarks or
leptons. Therefore one would expect that at large energies

R(s) =

∑
f=u,d,s,c,... σ(e+e− → ff̄)

σ(e+e− → µ+µ−)

s large−→
∑

f=u,d,s,c,...

e2
f θ(s− 4m2

f ) . (46)

However this is not what has been found experimentally! The experimental
results agree with the expression

R(s) −→ Nc

∑
f=u,d,s,c,...

e2
f θ(s− 4m2

f ) , (47)

with Nc = 3.
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Figure 25: R-Ratio vs. center-of-mass energy. Figure from Ref. [16].

Above the bottom quark pair production threshold, we have (mb ' 4.2 GeV)

R(s) = Nc

∑
f=u,d,s,c,b

e2
f θ(s− 4m2

f ) = 3
(

4
9

+ 1
9

+ 1
9

+ 4
9

+ 1
9

)
= 11

3
. (48)

The stepwise increase of the R-ratio can be seen in Fig. 25, even though it is
blurred by the resonances ρ, ω, φ, etc. In Fig. 26 the quark pair production
thresholds without the resonances are shown. The top quark does not show
up here, it is heavier than the Z-boson, mt ' 173 GeV, and it decays before
it hadronizes.
Another example which is often given as an argument for Nc = 3 is the decay
rate of a neutral pion into two photons:

Γ(π0 → γγ) ' α2m
3
π

f 2
π

(e2
u − e2

d)
2N2

c . (49)

Note however that there could be cancellations between Nc and a different de-
nominator in the fractional charges of the quarks, for eu = (1/Nc+1)/2, ed =
(1/Nc − 1)/2 the decay rate would be independent of Nc (and a relation be-
tween Nc and the fractional charges of the quarks also makes sense in view
of anomaly cancellation). Therefore, Eq. (49) alone cannot be seen as a full
proof of Nc being equal to 3.
A more theoretical argument for the existence of a colour quantum number
is given by the fact that bound states consisting of three quarks, e.g. ∆++
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Figure 26: R-ratio without resonance effects. Figure from Ref. [17].
.

consisting of 3 u-quarks, would violate Pauli’s exclusion principle if there was
no additional quantum number (which implies that this state must be totally
antisymmetric in the colour indices).

2.3.3 QCD Lagrangian

An important concept in QCD (and in quantum field theories in general) is
the formulation as a local gauge theory. This means that the gauge transfor-
mation parameter depends itself on x, the position in space-time.

Fermionic part of the QCD Lagrangian

Consider the quark fields qjf (x) for just one quark flavour f . The index j
labels the colour, j = 1, . . . , Nc. Treating the quarks as free Dirac fields, we
have

L(0)
q (qf , mf ) =

Nc∑
j,k=1

q̄jf (x) (i γµ∂
µ −mf )δjk q

k
f (x) , (50)

where the Dirac-matrices γµ satisfy the anti-commutation relation (Clifford
algebra)

{γµ, γν} = 2 gµν . (51)
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Now let us apply a group transformation on the fermion fields. It has the
form

qk → q′k = Ukl q
l , q̄k → q̄ ′k = q̄ lU−1

lk , (52)

with

Ukl = exp

i
N2
c−1∑
a=1

ta θa


kl

≡ exp {i t · θ}kl , (53)

where θa are the group transformation parameters and (ta)kl the generators
of SU(Nc) in the fundamental representation. The Lagrangian of free Dirac
fields remains invariant under this transformation as long as it is a global
transformation, i.e. as long as the θa do not depend on x: L(0)

q (q) = L(0)
q (q′).

However, we aim at local gauge transformations, where the gauge transfor-
mation parameter θ in Eq. (53) depends on x. In QED, where the underlying
gauge group is U(1), a global transformation would just be a phase change.
The requirement of a free electron field to be invariant under local transforma-
tions θ = θ(x) leads to the introduction of a gauge field Aµ, the photon. The
analogous is true for QCD: requiring local gauge invariance under SU(Nc)
leads to the introduction of gluon fields Aaµ.
As the local gauge transformation

U(x) = exp {i t · θ(x)} (54)

depends on x, the derivative of the transformed quark field q′(x) reads

∂µ q
′(x) = ∂µ (U(x)q(x)) = U(x)∂µ q(x) + (∂µU(x)) q(x) . (55)

To keep Lq gauge invariant, we can remedy the situation caused by the second
term above by introducing the coupling to a gauge field which transforms
accordingly. We define a covariant derivative Dµ, depending on Aµa , by

(Dµ[A])ij = δij∂
µ + i gs t

a
ijA

µ
a , (56)

or, without index notation

Dµ[A] = ∂µ + i gsA
µ , (57)

where Aµ = taAµa (sum over a = 1 . . . N2
c − 1 understood). The fields Aµa

are the gluons. The Lagrangian corresponding to this “minimal coupling” of
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a gluon field reads

Lq(qf , mf ) =
Nc∑
j,k=1

q̄jf (x) (i γµD
µ[A]−mf )jk q

k
f (x) . (58)

To keep this Lagrangian invariant under local gauge transformations, we
therefore must have

Dµ[A′]q′(x)
!→ U

(
Dµ[A] q(x)

)
, (59)

where the transformation of the expression Dµ[A]q(x) is given by

(∂µ + igsAµ(x)) q(x)→ (∂µ + igsA
′
µ(x))U q(x) . (60)

Eq.(60) gives a condition on A′µ(x), which can be derived as an exercise.
The result is that the gluon fields need to transform under general SU(Nc)
transformations as follows:

A′µ = U(x)AµU
−1(x) +

i

gs
(∂µU(x))U−1(x) . (61)

Purely gluonic part of the QCD Lagrangian

The purely gluonic part of the QCD Lagrangian can be described by the
so-called Yang-Mills Lagrangian (C. N. Yang, R. Mills, 1954)

LYM = −1

4
F a
µν F

a,µν , (62)

where the non-Abelian field strength tensor F a
µν is given by

F a
µν = ∂µA

a
ν − ∂νAaµ − gs fabcAbµAcν . (63)

We can also express everything in terms of Aµ = taAµa and write the field
strength tensor as

F µν(x) =

N2
c−1∑
a=1

F a
µν(x) ta =

i

gs
[Dµ,Dν ] , (64)

which implies

LYM = −1

4
F a
µν F

a,µν = −1

2
Trace [F µνF

µν ] . (65)
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Note that the term proportional to fabc in the expression for F a
µν , which

reflects the non-Abelian structure and is not present in QED, leads to terms
with 3 or 4 gluon fields in the Lagrangian and therefore to self-interactions
between the gluons.

So finally we obtain for the “classical” QCD Lagrangian

Lc = LYM + Lq

= −1

4
F a
µν F

a,µν +
Nc∑
j,k=1

q̄jf (x) (i γµD
µ[A]−mf )jk q

k
f (x) . (66)

Gauge fixing

We are not quite there yet with the complete QCD Lagrangian. The “classi-
cal” QCD Lagrangian Lc contains degenerate field configurations (i.e. they
are equivalent up to gauge transformations). This leads to the fact that the
bilinear operator in the gluon fields is not invertible, such that it is not possi-
ble to construct a propagator for the gluon fields. The propagator is usually
derived from the bilinear term in the fields in the path integral for free fields,
with the generating functional

Z0[J ] =

∫
DAµ(x) ei

∫
d4x[ 12Aaµ(x)(gµν�−∂µ∂ν)Abν(x)δab+J

a
µA

µ
a] . (67)

In momentum space this leads to the following condition for the propagator
∆µν(p), where we suppress colour indices as the propagator is diagonal in
colour space, i.e. we leave out overall factors δab:

i∆µρ(p)
[
p2gρ ν − pρpν

]
= gνµ . (68)

However, we also have [
p2gρ ν − pρpν

]
pν = 0 , (69)

which means that the matrix [p2gρ ν − pρpν ] is not invertible because it has
at least one eigenvalue equal to zero. We have to remove the physically
equivalent configurations from the classical Lagrangian. This is called gauge
fixing. We can achieve this by imposing a constraint on the fields Aaµ, adding
a term to the Lagrangian with a Lagrange multiplier.
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For example, covariant gauges are defined by the requirement ∂µA
µ (x) = 0

for any x. Adding

LGF = − 1

2λ
(∂µA

µ)2 , λ ∈ R,

to L, the action S remains the same. The bilinear term then has the form

i

(
p2gµν −

(
1− 1

λ

)
pµpν

)
,

with inverse

∆µν(p) =
−i

p2 + i ε

[
gµν − (1− λ)

pµpν
p2

]
. (70)

The so-called i ε prescription (ε > 0) shifts the poles of the propagator slightly
off the real p0-axis (where p0 is the energy component) and will become
important later when we consider loop integrals. It ensures the correct causal
behaviour of the propagators.
Of course, physical results must be independent of λ. Choosing λ = 1 is
called Feynman gauge, λ = 0 is called Landau gauge.
In covariant gauges unphysical degrees of freedom (longitudinal and time-
like polarisations) also propagate. The effect of these unwanted degrees of
freedom is cancelled by the ghost fields, which are coloured complex scalars
obeying Fermi statistics. Unphysical degrees of freedom and the ghost fields
can be avoided by choosing axial gauges (also called physical gauges). The
axial gauge is defined by introducing an arbitrary vector nµ with p · n 6= 0,
to impose the constraint

LGF = − 1

2α
(nµAµ)2 ,

which leads to

∆µν(p, n) =
−i

p2 + i ε

(
gµν −

pµnν + nµpν
p · n

+
n2 pµpν
(p · n)2

)
.

A convenient choice is n2 = 0, called light-cone gauge. Note that we have

∆µν (p, n) pµ = 0 , ∆µν (p, n) nµ = 0 .

Thus, only 2 degrees of freedom propagate (transverse ones in the nµ+pµ rest
frame). The price to pay by choosing an axial gauge instead of a covariant
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one is that the propagator looks more complicated and that it diverges when
pµ becomes parallel to nµ. In the light-cone gauge we have

∆µν(p, n) =
i

p2 + i ε
dµν(p, n)

dµν(p, n) = −gµν +
pµnν + nµpν

p · n
=
∑
λ=1,2

ελµ(p)
(
ελν(p)

)∗
, (71)

where ελµ(p) is the polarisation vector of the gluon field with momentum p and
polarisation λ. This means that only the two physical polarisations (λ = 1, 2)
propagate. In Feynman gauge, we have

3∑
λ=0

ελµ(p)
(
ελν(p)

)∗
= −gµν , (72)

where the polarisation sum also runs over non-transverse gluon polarisations,
which can occur in loops and will be cancelled by the corresponding loops
involving ghost fields.

Faddeev-Popov ghost fields

The introduction of a gauge fixing constraint is achieved by inserting

1 =

∫
Dθ(x) δ(Ga(Aθ)− ha(x)) det

(
δGa(Aθ)

δθ

)
(73)

(where Aθ denotes all fields which are equivalent through a gauge trans-
formation involving the group parameter θ), into the generating functional
Z[J ], for example ha(x) = ∂µAaµ(x) in covariant gauges. The determinant

det
(
δGa(Aθ)

δθ

)
=: ∆FP (A) can be written as functional integral over anti-

commuting fields ηa(x), η̄b(x).

∆FP (A) =

∫
Dη̄Dη ei

∫
d4xd4y η̄a(x)Mab(x,y) ηb(y)

with Mab(x, y) =
δGa(Aθ(x))

δθb(y)
. (74)

The fields η̄a(x), ηb(x) are the so-called Faddeev-Popov-fields or ghost fields,
they are complex scalar fields, which however obey Fermi-statistics, so they
anti-commute, and cannot occur as external states.

41



The additional term in the Lagrangian as a result of the procedure sketched
above reads

LFP = η̄aM
ab ηb . (75)

In Feynman gauge, the operator Mab (also called Faddeev-Popov matrix) is
given by

Mab
Feyn = δab ∂µ∂

µ + gs f
abcAcµ∂

µ . (76)

Here we can see that in QED (or another Abelian gauge theory) the second
term is absent, such that the Faddeev-Popov determinant detM does not
depend on any field and therefore can be absorbed into the normalisation
of the path integral, such that no ghost fields are needed in Abelian gauge
theories.
In the light-cone gauge, the Faddeev-Popov matrix becomes

Mab
LC = δab nµ∂

µ + gs f
abc nµA

µ
c , (77)

such that, due to the gauge fixing condition n · A = 0, the matrix is again
independent of the gauge field and therefore can be absorbed into the nor-
malisation, such that no ghost fields propagate.

So finally we have derived the full QCD Lagrangian

LQCD = LYM + Lq + LGF + LFP . (78)

2.3.4 QCD Feynman rules

Feynman rules are something like a Lego play box containing pieces that
can be assembled to an expression describing a particle process, like the
scattering of elementary particles or the decay of a particle. The arise from
the interaction terms in the action, resp. the Lagrangian. There are also
automated tools that can derive Feynman rules from a given Lagrangian, see
e.g. [18].
We will not derive the QCD Feynman rules from the action, but just state
them below. (The pictures are partly taken from Ref. [19]).

Propagators: (iε prescription understood)

gluon propagator: ∆ab
µν(p) = δab ∆µν(p)

a, µ b, ν

p

quark propagator: ∆ij
q (p) = δij i /p+m

p2−m2

i j
p

ghost propagator: ∆ab (p) = δab i
p2

a b
p
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Vertices:
quark-gluon: Γµ, agqq̄ = −i gs (ta)ijγ

µ j i

a , µ

three-gluon: Γabcαβγ(p, q, r) = −i gs (F a)bc Vαβγ(p, q, r)
b, β c, γ

a, α

q

p

r

Vαβγ(p, q, r) = (p− q)γgαβ + (q − r)αgβγ + (r − p)βgαγ , pα + qα + rα = 0

four-gluon: Γabcdαβγδ = −i g2
s

 +fxac fxbd (gαβgγδ − gαδgβγ)
+fxad fxcb (gαγgβδ − gαβgγδ)
+fxab fxdc (gαδgβγ − gαγgβδ)


a, α

c, γ

b, β

d, δ

ghost-gluon: Γµ, agηη̄ = −i gs (F a)bc p
µ

a, µ

bc
pµ

The four-gluon vertex differs from the rest of the Feynman rules in the sense
that it is not in a factorised form of a colour factor and a kinematic part
carrying the Lorentz indices. This is an inconvenient feature because it pre-
vents the separate summation over colour and Lorentz indices and compli-
cates automation. We can however circumvent this problem by introducing
an auxiliary field with propagator

a b
γ δ

α β
= − i

2
δab(gαβgγδ − gαδgβγ) ,

that couples only to the gluon with vertex

a, α

c, γ

x
ξ

ζ
= i
√

2gs f
xacgαξgγζ .

We can check that a single four-gluon vertex can be written as a sum of three
graphs as shown below, for which the summations over colour and Lorentz
indices factorize.

Finally, we have to supply the following factors for incoming and outgoing
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particles (see Fig. 27)

• outgoing fermion: ū(p) • outgoing antifermion: v(p)

• incoming fermion: u(p) • incoming antifermion: v̄(p)
• outgoing vector boson: ελµ(p)∗ • incoming vector boson: ελµ(p) .

Figure 27: Conventions for spinors with momentum p and spin s and polar-
isation vectors εµ(p).

3 Example: top quark production

3.1 Phenomenology

The top quark is special because it is so much heavier than the other quarks
(mt ' 173 GeV, mb ' 4.2 GeV). Therefore the top quark decays before it
hadronizes, almost entirely by t→ Wb.
The phenomenological importance of top quarks has many aspects:

• The top quark mass enters many observables and is important to study
the vacuum stability of the universe, see Figs. 29, 30.

• It has a large coupling to the Higgs boson, therefore tt̄H and tH pro-
duction are important processes to constrain the Higgs-top Yukawa
coupling and to measure the CP properties of the coupling.
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Figure 28: Example Feynman diagram for top quark pair production and
decay at the Tevatron (pp̄ collisions), where the top quark has been discovered
1995. Source: https://www-d0.fnal.gov/Run2Physics/top/

• Inclusion of top quark pair production data in PDF fits reduce the
uncertainties on the gluon PDF significantly.

• Physics beyond the SM is likely to manifest itself in the third genera-
tion.

45



Figure 29: Dependence of vacuum stability on the top quark and Higgs
masses. Figures from Ref. [20].

Figure 30: Running of the Higgs quartic self-coupling. Figure from Ref. [20].
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3.2 Top quark pair production

The LO Feynman diagrams contribution to top quark pair production are
shown in Fig. 31.

Figure 31: LO Feynman diagrams for top quark pair production.

Top quark pair production is measured at the LHC in several channels: each
W -boson can decay both leptonically or hadronically, therefore the signature
for top quark pair production consists of two b-jets plus either of the following

(a) two leptons, ∼9%

(b) lepton+jets, ∼46%

(c) all hadronic, ∼45% .

The leptonic decay is also characterised by missing ET , as the neutrinos
escape undetected.
The top quark width is given at LO by

Γt =
GFm

3
t

8π
√

2

[
(1− β2)2 + ω2(1 + β2)− 2ω4

] √
λ(1, β2, ω2) ' 1.5 GeV ,

β = mb/mt , ω = mW/mt . (79)

It is important to note that most theoretical descriptions of top quark pair
production use the so-called narrow width approximation (NWA), which
separates the calculation into tt̄ production and subsequent decay of each
top quark. However, considering for example the dilepton channel, pp →
W+W−bb̄ → (e+νe) (µ−ν̄µ) bb̄, the final state of two leptons and two b-jets
can also originate form processes that do not proceed via the production of
a top quark pair, see Fig. 32. Processes involving two resonant top quarks
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Figure 32: Representative LO Feynman diagrams for (a) resonant, (b) singly
resonant and (c) non-resonant contributions. Figure from [21].

are called “doubly resonant”, those involving one top decaying into Wb are
called “singly resonant” and there are also non-resonant diagrams. At NLO,
there can be also non-factorising contributions, see Fig. 33 (b).
The narrow width approximation (NWA) is motivated by the fact that, in the
limit Γt → 0, the denominator of the top quark propagator can be written
as

lim
Γt→0

1

(p2
t −m2

t )
2 +m2

tΓ
2
t

=
π

mtΓt
δ(p2

t −m2
t ) +O

(
Γt
mt

)
. (80)

Since this approximation introduces a factor of 1/Γt for each top quark reso-
nance, singly resonant and non-resonant contributions are suppressed in the
Γt → 0 limit. Consequently, one only keeps the Feynman diagrams where
two top quarks can become resonant, because only those are proportional to
1/Γ2

t . In the Γt → 0 limit, the full process therefore factorizes into top quark
pair production and decay, i.e. pp→ tt̄→ W+b W−b̄.
Experimentally, one tries to suppress the unwanted contributions by so-called
kinematic cuts, for example requiring plbT > 120 GeV, where plbT denotes the
mean transverse momentum of the two lepton–b-quark systems, and a sepa-
ration between the leptons and the jets.
Fig. 34 shows the difference in the distribution of the invariant mass of a
lepton and a b-jet, mlb = (pl + pb jet)

2 for various theoretical descriptions.

3.3 Higgs plus top quarks

The process tt̄H is particularly interesting due to its direct sensitivity to the
top-Yukawa coupling yt. However, this process suffers from large system-
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Figure 33: Representative NLO Feynman diagrams for (a) non-resonant, and
(b) non-factorising contributions. Figure from Ref. [22].

atic uncertainties due to the very complicated final states. Currently the
combination with H → γγ is the most promising channel [23], however the
H → bb̄ channel is of increasing importance as deep learning methods gain
momentum as a way to improve the signal-to-background ratio.
The H → γγ decay channel of the tt̄H process is particularly well suited
to measure a possible CP-violating phase of the top Yukawa coupling and
experimental constraints are already available [24, 25].
Using single top plus Higgs production to probe the CP-properties of the
top Yukawa coupling is important to determine the sign of the (potentially
anomalous) coupling.

3.4 New Physics effects (effective field theory)

Assuming that the SM Lagrangian is only the leading approximation of a
more complete theory, consisting of operators up to dimension 4, one can
parametrise the effects of interactions taking place at higher energy scales
by an effective field theory (EFT) that also includes higher-dimensional op-
erators. It is based on the assumption that a more complete theory involves
particles that are much heavier than the electroweak scale (v ∼ 250 GeV),
and therefore the heavy degrees of freedom can be parametrised by opera-
tors of mass dimension larger that four, in a systematic expansion in inverse
powers of a dimensionful scale Λ, the scale where New Physics effects become
dominant.
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Figure 34: Normalised differential cross sections for the invariant mass mlb
at the 13 TeV LHC for four different theoretical descriptions. Figure from
Ref. [22].

We may write the Standard Model Effective Field Theory (SMEFT) La-
grangian as

LSMEFT = LSM +
∑
i

C
(6)
i

Λ2
Odim6
i +O(

1

Λ3
) , (81)

where Ci are dimensionless Wilson coefficients, and we have omitted the
contribution at dimension 5, which can only be a lepton number-violating
operator, Ldim5 ' L̄iφc (φcLj)

†
. The Lagrangian LSMEFT is not renormalis-

able in the strict sense (which means, the theory is determined by a fixed
number of renormalisation parameters), however the requirement that the
EFT is closed under renormalisation order by order in the asymptotic ex-
pansion, still can be fulfilled, even though the number of counterterms will
grow with the order.
The upper limit of the sum in Eq. (81) is 2499 if no assumptions on flavour-
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Figure 35: Examples of dimension 6 operators. Figure from Viviana Cava-
lieri, talk at KITP2021.

symmetries of the New Physics sector are made. If the flavour symmetry
of the SM is assumed, the number of operators reduces to about 70. Some
dimension-6 operators Oi in the so-called Warsaw basis are given in Fig. 35
(adapted from Ref. [26]).
Examples of operators mediating interactions not present in the SM in tt̄H
production are shown in Fig. 36.
Figs. 37 and 38 show how a combined fit based on several processes can
help to constrain the higher dimensional operators. Note that processes like
pp → H, pp → H j and pp → HH, also involve Higgs-top and Higgs-gluon
operators.

51



Figure 36: Operators involved in tt̄H production. Figure from Ref. [27].
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Figure 37: Allowed region in the Ctφ-CφG plane at 95% confidence level, where
Ctφ and CφG denote the Wilson coefficients of the top-Higgs and Higgs-gluon
operators, respectively. Left: current constraints. Right: Projection for
the HL-LHC. The theoretical uncertainties are not included. Figures from
Ref. [27].
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Figure 38: Figure from Ref. [28], shown at SM@LHC2021 by E.Vryonidou.
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Figure 39: Invariant mass distribution of the tt̄ pair measured by CMS com-
pared to SM NNLO QCD+NLO EW predictions and fits to BSM interpre-
tations. Figure from Ref. [28]
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4 Higher orders in perturbation theory

4.1 Running coupling and scale dependence

In this section we would like to explain how it arises that theoretical pre-
dictions depend in general on at least one unphysical scale, the so-called
renormalisation scale µ. In the case of hadronic initial state particles, there
is also a factorisation scale µf involved. There can be even more unphysical
scales, like fragmentation scales in the modelling of the fragmentation of fi-
nal state particles into hadrons, parton shower matching scales, resummation
scales, etc.
Let us first motivate how the dependence on a renormalisation scale arises.
We mentioned already that the strong coupling, defined as αs = g2

s/(4π),
is not really a constant. To leading order in the perturbative expansion, it
obeys the relation

αs(Q
2) =

1

b0 log
(
Q2/Λ2

QCD

) , (82)

where ΛQCD is an energy scale below which non-perturbative effects start to
dominate (the scale of bound states formation (hadrons)), and Q2 is a larger
energy scale, for example the centre-of-mass energy s of a scattering process.
The coefficient b0 is given by

b0 =
1

4π

(
11

3
CA −

4

3
TRNf

)
. (83)

Note that b0 > 0 for Nf < 11/2CA.
Where does the running of the coupling come from? It is closely linked to
renormalisation, which introduces the renormalisation scale µ.
Before we enter into the technicalities, let us look at a physical observable,
for example the R-ratio which we encountered already,

R(s) =
σ(e+e− → hadrons)

σ(e+e− → µ+µ−)
. (84)

We assume that the energy s exchanged in the scattering process is much
larger than ΛQCD.
At leading order in perturbation theory, we have to calculate tree-level dia-
grams for e+e− → ff̄ , which however only represent a crude approximation.
To get a more precise result, we should include quantum corrections, for
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example diagrams where virtual gluons are exchanged, such as the ones in
Figs. 40a and 40b, where Fig. 40a shows corrections of order αs and Fig. 40b
shows example diagrams for O(α2

s) corrections. The perturbative expansion
for R can be written as

R(s) = KQCD(s)R0 , R0 = Nc

∑
f

Q2
f θ(s− 4m2

f ) ,

KQCD(s) = 1 +
αs(µ

2)

π
+
∑
n≥2

Cn

(
s

µ2

) (
αs(µ

2)

π

)n
. (85)

The higher the order in αs the harder is the calculation. Meanwhile we know
the Cn up to order α4

s [29, 30].

(a) 1-loop diagram contributing to
e+e− → ff̄ .

(b) 2-loop diagram example contributing
to e+e− → ff̄ .

However, if we try to calculate the loop diagrams, we will realize that some
of the integrals over the loop momentum k are ill-defined. They diverge for
k →∞. This is called an ultraviolet divergence. How to deal with them will
be explained shortly. For the moment we just introduce an arbitrary cutoff
scale ΛUV for the upper integration boundary. If we carried through the
calculation, we would see that the dependence on the cutoff in diagram 40a
cancels, which is a consequence of the Ward Identity in QED. However, if we
go one order higher in αs, calculating diagrams like the one in Fig. 40b, the
cutoff-dependence does not cancel anymore. We obtain

KQCD(s) = 1 +
αs
π

+
(αs
π

)2
[
c+ b0π log

Λ2
UV

s

]
+O(α3

s) . (86)

It looks like our result is infinite, as we should take the limit ΛUV → ∞.
However, we did not claim that αs is the coupling we measure. In fact, it
is the “bare” coupling, also denoted as α0

s, which appears in Eq. (86), and
we can absorb the infinity in the bare coupling to arrive at the renormalised
coupling, which is the one we measure.
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In our case, this looks as follows. Define

αs(µ) = α0
s + b0 log

Λ2
UV

µ2
α2
s , (87)

then replace α0
s by αs(µ) and drop consistently all terms of order α3

s. This
leads to

Kren
QCD(αs(µ), µ2/s) = 1 +

αs(µ)

π
+

(
αs(µ)

π

)2 [
c+ b0π log

µ2

s

]
+O(α3

s) .

(88)
Kren
QCD is finite, but now it depends on the scale µ, both explicitly and through

αs(µ). However, the hadronic R-ratio is a physical quantity and therefore
cannot depend on the arbitrary scale µ. The dependence of KQCD on µ is
an artefact of the truncation of the perturbative series after the order α2

s.

Renormalisation group and asymptotic freedom

Since the hadronic R-ratio Rren = R0K
ren
QCD cannot depend µ, we know

µ2 d

dµ2
Rren(αs(µ), µ2/Q2) = 0 =

(
µ2 ∂

∂µ2
+ µ2∂αs

∂µ2

∂

∂αs

)
Rren(αs(µ), µ2/Q2) .

(89)
Equation (89) is called renormalisation group equation (RGE). Introducing
the abbreviations

t = ln
Q2

µ2
, β(αs) = µ2∂αs

∂µ2
, (90)

the RGE becomes (
− ∂

∂ t
+ β(αs)

∂

∂αs

)
R = 0 . (91)

This first order partial differential equation can be solved by implicitly defin-
ing a function αs(Q

2), the running coupling, by

t =

∫ αs(Q2)

αs

dx

β(x)
, with αs ≡ αs(µ

2) . (92)

Differentiating Eq. (92) with respect to the variable t leads to

1 =
1

β(αs(Q2))

∂αs(Q
2)

∂ t
, which implies β(αs(Q

2)) =
∂αs(Q

2)

∂ t
.
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The derivative of Eq. (92) with respect to αs gives

0 =
1

β(αs(Q2))

∂αs(Q
2)

∂αs
− 1

β(αs)

∂αs
∂αs
⇒ ∂αs(Q

2)

∂αs
=
β(αs(Q

2))

β(αs)
. (93)

It is now easy to prove that the value of R for µ2 = Q2, R(1, αs(Q
2)), solves

Eq. (91):

− ∂

∂ t
R(1, αs(Q

2)) = − ∂ R

∂αs(Q2)

∂αs(Q
2)

∂ t
= −β(αs(Q

2))
∂ R

∂αs(Q2)
(94)

and

β(αs)
∂

∂αs
R(1, αs(Q

2)) = β(αs)
∂αs(Q

2)

∂αs

∂ R

∂αs(Q2)
= β(αs(Q

2))
∂ R

∂ αs(Q2)
.

(95)

This means that the scale dependence in R enters only through αs(Q
2),

and that we can predict the scale dependence of R by solving Eq. (92), or
equivalently,

∂αs
(
Q2
)

∂ t
= β

(
αs
(
Q2
))
. (96)

We can solve Eq. (96) perturbatively using an expansion of the β-function

β(αs) = −b0α
2
s

[
1 +

∞∑
n=1

bn α
n
s

]
, (97)

where b0 = β0
4π

and b0b1 = β1
(4π)2

, etc. Explicitly, up to NNLO:

µ2 dαs(µ)

dµ2
= −αs(µ)

[
β0

(
αs(µ)

2π

)
+ β1

(
αs(µ)

2π

)2

+ β2

(
αs(µ)

2π

)3

+O(α4
s)

]
.

The first five coefficients are known [31], where the fifth one has been calcu-
lated only recently [32–36]. The first 3 coefficients (MS-scheme) are

β0 =
11CA − 4TRNF

6
,

β1 =
17C2

A − 10CATRNF − 6CFTRNF

6
,

β2 =
1

432

(
2857C3

A + 108C2
FTRNF − 1230CFCATRNF − 2830C2

ATRNF

+264CFT
2
RN

2
F + 316CAT

2
RN

2
F

)
. (98)
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Introducing Λ as integration constant with L = log(µ2/Λ2) yields the follow-
ing solution up to order NNLO:

αs(µ) =
4π

β0L

(
1− β1

β2
0

logL

L
+

1

β2
0L

2

(
β2

1

β2
0

(
log2 L− logL− 1

)
+
β2

β0

))
.

(99)
Truncating the series Eq. (97) at leading order leads to the simple solution
Eq. (82), or, without introducing Λ,

Q2 ∂αs
∂ Q2

=
∂αs
∂ t

= −b0α
2
s ⇒ − 1

αs(Q2)
+

1

αs(µ2)
= −b0 t

⇒ αs(Q
2) =

αs(µ
2)

1 + b0 t αs(µ2)
. (100)

Eq. (100) implies that

αs(Q
2)

Q2→∞−→ 1

b0t

Q2→∞−→ 0 . (101)

This behaviour is called asymptotic freedom: the larger Q2, the smaller the
coupling, so at very high energies (small distances), the quarks and gluons
can be treated as if they were free particles. The behaviour of αs as a function
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Figure 41: The running coupling αs(Q
2). Figure from arXiv:1609.05331.

of Q2 is illustrated in Fig. 41 including recent measurements. Note that the

59



sign of b0 is positive for QCD, while it is negative for QED. It can be proven
that, in 4 space-time dimensions, only non-Abelian gauge theories can be
asymptotically free. For the discovery of asymptotic freedom in QCD [37,38],
Gross, Politzer and Wilczek got the Nobel Prize in 2004.
Note that in the derivation of the RGE above, we have assumed that the
observable R does not depend on other mass scales like quark masses. How-
ever, the renormalisation group equations can be easily extended to include
mass renormalisation, which will lead to running quark masses:(

µ2 ∂

∂µ2
+ β(αs)

∂

∂αs
− γm(αs)m

∂

∂ m

)
R

(
Q2

µ2
, αs,

m

Q

)
= 0 , (102)

where γm is called the mass anomalous dimension and the minus sign before
γm is a convention. In a perturbative expansion we can write the mass
anomalous dimension as γm(αs) = c0 αs (1 +

∑
n cnα

n
s ) . The coefficients

are known up to c4 [39–42].

Scale uncertainties

From the perturbative solution of the RGE we can derive how a physical
quantity O(N)(µ), expanded in αs as O(N)(µ) =

∑N
n=0 Cn(µ)αn+k

s (µ2) and
truncated at order N in perturbation theory (k is the power of αs at leading
order), changes with the renormalisation scale µ:

d

d log(µ2)
O(N)(µ) ∼ O

(
αs(µ

2)N+1
)
. (103)

Therefore it is clear that, the more higher order coefficients cn we can cal-
culate, the less our result will depend on the unphysical scale µ2. Therefore
the dependence of the scale is used to estimate the uncertainty of a result
calculated to a certain order in perturbation theory. Usually the scale is
varied by a factor of two up and down. An example for the reduction of the
scale dependence at higher orders is shown in Fig. 42.

An expansion up to NNLO of an observable O normalised to the LO cross
section σ0 can be written as

1

σ0

dσ

dO
=

(αs
2π

) dC1

dO
+
(αs

2π

)2 dC2

dO
+
(αs

2π

)3 dC3

dO
+O(α4

s) . (104)
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Figure 42: Example H → gg for the reduction of the scale dependence at
higher orders. Figure from Ref. [30], see also [36].

In terms of the running coupling αs(µ), the NNLO expression becomes

1

σ0

dσ

dO
(s, µ2, O) =(

αs(µ)

2π

)
dC1

dO
+

(
αs(µ)

2π

)2(
dC2

dO
+

dC1

dO
β0 log

µ2

s

)
+

(
αs(µ)

2π

)3(
dC3

dO
+ 2

dC2

dO
β0 log

µ2

s
+

dC1

dO

(
β2

0 log2 µ
2

s
+ β1 log

µ2

s

))
+O(α4

s) . (105)

As an example we consider an observable called thrust, shown in Fig. 43.
Thrust is an example of so-called event-shape observables, which describes
how “pencil-like” an event looks like. Events shapes can be defined based on
hadronic tracks in the detector, avoiding jet definitions, and are particularly
useful in e+e− annihilation, where the total energy of the partonic event is
known. Thrust T is defined by

T = max
~n

∑m
i=1 |~pi · ~n|∑m
i=1 |~pi|

, (106)
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Figure 43: One minus thrust distribution at different orders in perturbation
theory, including scale uncertainty bands. Figure from Ref. [43].

where ~n is a three-vector (the direction of the thrust axis) such that T is
maximal. The particle three-momenta ~pi are defined in the e+e− centre-of-
mass frame.
Fig. 43 shows several features: 1. the scale dependence is reduced as the
perturbative order increases, 2. the NNLO curve is closest to the data, 3.
the data are still not well described by NNLO. The reasons for the latter
are well understood: The perturbative prediction for the thrust distribution
becomes singular as T → 1, there is also a logarithmic divergence ∼ ln(1−T ).
The latter is characteristic for events shape distributions. In perturbation
theory at nth order logarithms of the form αns lnm(1/(1 − T )) with m ≤ 2n
appear. These spoil the convergence of the perturbative series and should
be “resummed” if we want to make reliable prediction near the phase space
region where T → 1. Furthermore, the so-called power corrections, the terms

of O
(

Λ
Q

)p
in Eq. (2), play a role for this observable.

In hadronic collisions there is another scale, the factorisation scale µf , which
needs to be taken into account when assessing the uncertainty of the theoreti-
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cal prediction. Varying both µr and µf simultaneously in the same directions
can lead to accidental cancellations and hence underestimation of the per-
turbative uncertainties. Therefore, in the presence of both µr and µf , often
so-called 7-point scale variations are performed, which means µr,f = cr,fµ0,
where cr, cf ∈ {2, 1, 0.5} and where the extreme variations (cr, cf ) = (2, 0.5)
and (cr, cf ) = (0.5, 2) have been omitted.
Still, the question remains what to choose for the central scale µ0. A con-
venient choice is a scale where the higher order corrections are small, i.e. a
scale showing good “perturbative stability”. In Fig. 42, a good choice would
be µ0 ≈ 150 GeV.
Let us now see a few examples where such scale variations do not capture
the true uncertainties. First some prelimiary remarks, along the lines of
Ref. [44]. If there is only one scale µr involved, the the scale dependence
of an observable is given through αs(µr), and we can use the beta-function,
resp. Eq. (99), to move from a result at a scale µ0 to a result at a different
scale. For an observable O, known to order αNs ,

O =
N∑
n=0

Cn(µr)α
n+k
s (µr); ,

where k is the power of αs at leading order, we therefore have (this time not
normalised to the LO cross section)

O = C0α
k
s(µr) +

(
C1 + b0C0 ln

(
µ2
r

µ2
0

))
αk+1
s (µr) +O(αk+2

s ) . (107)

Variations of µr will change the C0-part of the O(αk+2
s ) term, however the

magnitude of C1 can only be known by direct calculation.
To illustrate the improvement in scale uncertainty that may occur at NNLO,
let us consider the corrections up to (N)NLO for an observable as for example
a jet cross section as a function of transverse energy, where k = 2. The
renormalisation scale dependence is entirely predictable,

dσ

dET
= α2

s(µr)C0

+ α3
s(µr) (C1 + 2b0LC0)

+ α4
s(µr)

(
C2 + 3b0LC1 + (3b2

0L
2 + 2b1L)C0

)
(108)
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with L = ln(µr/ET ). C0 and C1 are the known LO and NLO coefficients.
Now assume that C2 is an unknown NNLO term (note however that C2 is
known meanwhile [45, 46]). Fig. 44 shows that the scale dependence is sys-
tematically reduced by increasing the number of terms in the perturbative
exp nsion. At NLO, there is always a turning point where the prediction is in-
sensitive to small changes in µr. If this occurs at a scale far from the typically
chosen values of µr, the NLO K-factor (defined as K = 1 + αs(µr)C1/C0)
will be large. At NNLO the scale dependence is clearly significantly reduced.
However, a more quantitative statement requires knowledge of C2.

Figure 44: Single jet inclusive distribution at ET = 100 GeV and 0.1 < |η| <
0.7 at

√
s = 1800 GeV at LO (green), NLO (blue) and NNLO (red). The solid

and dashed red lines show the NNLO prediction if C2 = 0, C2 = ±C2
1/C0

respectively. Figure from Ref. [44].

For some processes, C1 (and C2) turned out to be pretty large, and the
scale uncertainty bands obtained form 7-point scale variations do not (fully)
overlap between the different orders. One such example is Higgs production
in gluon fusion, known to order N3LO. Fig. 45 shows a very nice stabilisation
of the scale dependence, however the higher order corrections are very large.
The standard scale uncertainty bands are shown in Fig. 46. Among the
reasons for the large K-factors, in particular the NLO K-factor, are large
colour factors and new partonic channels opening up.

64



Figure 45: Higgs production in gluon fusion, stabilisation of the scale depen-
dence. Figure from Ref. [47].

In Fig. 47 the µf and µr dependence is shown separately. Usually one can see
that the perturbative series stabilises at latest between NNLO and N3LO.
However, for charged current Drell-Yan production and a central scale of
Q = 100 GeV, shown in Fig. 48, the NNLO and N3LO uncertainty bands do
not overlap.
Looking at the µf dependence separately, one can see that the NNLO band
is accidentally small, see Fig. 49.
Furthermore, the behaviour of the scale uncertainty bands can depend sensi-
tively on the definition of the central scale, see Fig. 50. The different central
scale choices are

• the individual jet transverse momentum pT . This however can lead to
the scale being set to values that are not representative of the scale of
the underlying hard scattering process.

• The leading-jet transverse momentum pT,1, This scale uses the trans-
verse momentum of the hardest jet in the event, which is a better proxy
for the scale of the hard interaction compared to the µ = pT choice.

• The scalar sum of the transverse momenta of all reconstructed jets HT ,
HT =

∑
i∈jets pT,i.
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Figure 46: Scale uncertainty bands for Higgs production in gluon fusion.
Figure from Ref. [48].

• The scalar sum of the transverse momenta of all partons ĤT : the trans-
verse momentum sum is not based on the reconstructed jets, but instead
obtained as the transverse momentum sum of all partons in the event:
ĤT =

∑
i∈partons pT,i. This scale choice also has the advantage of being

insensitive to the jet reconstruction applied in the analysis and is an
infrared-safe event shape variable.
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Figure 47: Higgs production in bottom quark fusion. Figure from Ref. [49].

Figure 48: Charged current Drell-Yan production, pp → W−. Figure from
Ref. [50].
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Figure 49: Charged current Drell-Yan production, µf -dependence. Figure
from Ref. [50].

Figure 50: Inclusive jet pT spectrum integrated over rapidity at LO (green),
NLO (blue) and NNLO (red) normalised to the NLO prediction as a function
of the central scale choice for cone size R = 0.4. Figure from Ref. [51].
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4.2 Loops and divergences

4.3 Dimensional regularisation

Tree level results in QCD are mostly not accurate enough to match the cur-
rent experimental precision and suffer from large scale uncertainties. When
calculating higher orders, we encounter singularities: ultraviolet (UV) sin-
gularities, and infrared (IR) singularities due to soft or collinear massless
particles. Therefore the introduction of a regulator is necessary.
Let us first have a look at UV singularities: The expression for the one-loop
two-point function shown below naively would be

Figure 51: One-loop two-point function (“bubble”).

I2 =

∫ ∞
−∞

d4k

(2π)4

1

[k2 −m2 + iδ][(k + p)2 −m2 + iδ]
. (109)

If we are only interested in the behaviour of the integral for |k| → ∞ we can
neglect the masses, transform to polar coordinates and obtain

I2 ∼
∫

dΩ3

∫ ∞
0

d|k| |k|
3

|k|4
. (110)

This integral is clearly not well-defined. If we introduce an upper cutoff Λ
(and a lower limit |k|min because we neglected the masses and p2, which would
serve as an IR regulator), it is regulated:

I2 ∼
∫ Λ

|k|min

d|k| 1

|k|
∼ log

(
Λ

|k|min

)
. (111)

The integral has a logarithmic UV divergence for Λ → ∞. The problem
with cut-off regularisation with a regulator Λ is that it is neither a Lorentz
invariant nor a gauge invariant way to regulate integrals over loop momenta.
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A regularisation method which preserves the symmetries is dimensional reg-
ularisation.
Dimensional regularisation has been introduced in 1972 by ‘t Hooft and Velt-
man [52] (and by Bollini and Giambiagi [53]) as a method to regularise UV
divergences in a gauge invariant way, thus completing the proof of renormal-
isability.
The idea is to work in D = 4 − 2ε space-time dimensions. Divergences for
D → 4 will appear as poles in 1/ε. This means that the Lorentz algebra ob-
jects (momenta, polarisation vectors, metric tensor) live in a D-dimensional
space. The γ-algebra also has to be extended to D dimensions. How to
treat internal and external Lorentz vectors and the γ-algebra is not unique.
There are several regularisation schemes within dimensional regularisation.
For example, when doing a calculation in supersymmetry, you may not want
to use a scheme where massless bosons have D − 2 polarisation states while
massless fermions have 2 polarisation states. Of course the different schemes
must lead to the same result for physical quantities.
An important feature of dimensional regularisation is that it regulates IR
singularities, i.e. divergences occurring when massless particles become soft
and/or collinear, as well. Ultraviolet divergences occur for loop momenta
k →∞, so in general the UV behaviour becomes better for ε > 0, while the
IR behaviour becomes better for ε < 0. Certainly we cannot have D < 4 and
D > 4 at the same time. What is formally done is to first assume the IR
divergences are regulated in some other way, e.g. by assuming all external
legs are off-shell or by introducing a small mass for all massless particles.
In this case all poles in 1/ε will be of UV nature and renormalisation can
be performed. Then we can analytically continue to the whole complex
D-plane, in particular to Re(D) > 4. If we now remove the auxiliary IR
regulator, the IR divergences will show up as 1/ε poles. (This is however not
done in practice, where all poles just show up as 1/ε poles, and after UV
renormalisation, the remaining poles must be of IR nature.)

Naive degree of divergence

The naive degree of UV divergence ω of an integral can be determined by
power counting: if we work in D dimensions at L loops, and consider an
integral with P propagators and nl factors of the loop momentum belonging
to loop l ∈ {1, . . . , L} in the numerator, we have ω = DL−2P+2

∑
l bnl/2c,

where bnl/2c is the nearest integer less or equal to nl/2. We have logarith-
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mic, linear, quadratic,. . . overall divergences for ω = 0, 1, 2, . . . and no UV
divergence for ω < 0. This means that in 4 dimensions at one loop, we have
UV divergences in all two-point functions, three-point functions with rank
≥ 2 and four-point functions with rank ≥ 4.
These considerations do not take into account UV subdivergences of multi-
loop integrals, or a reduction of the degree of divergence due to gauge can-
cellations. Therefore ω is called naive or superficial degree of divergence.

In dimensional regularisation, the only change to the Feynman rules to be
made is to multiply the couplings in the Lagrangian by a factor µε: g → gµε,
where µ is an arbitrary mass scale. This ensures that each term in the
Lagrangian has the correct mass dimension. The momentum integration
involves

∫
dDk

(2π)D
for each loop.

4.4 One-loop integrals

Integration in D dimensions

We first consider a scalar one-loop diagram with N external legs and N
propagators, as gien in (112). The case with loop momenta in the numerator
(“tensor integrals”) will be treated later. If k is the loop momentum, the
momenta of the propagators are qa = k+ra, where ra =

∑a
i=1 pi. If we define

all momenta as incoming, momentum conservation implies
∑N

i=1 pi = 0 and
hence rN = 0.

pN−1
pN

p1

p2

Figure 52: Generic one-loop integral
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IDN =

∫ ∞
−∞

dDk

iπ
D
2

1∏N
i=1(q2

i −m2
i + iδ)

. (112)

We use the integration measure dDk/iπ
D
2 ≡ dκ to avoid ubiquitous factors

of iπ
D
2 which will arise upon momentum integration.

Feynman parameters

To combine products of denominators of the type dnii = [(k+ri)
2−m2

i + iδ]ni

into one single denominator, we can use the identity

1

dn1
1 d

n2
2 . . . dnNN

=
Γ(
∑N

i=1 ni)∏N
i=1 Γ(ni)

∫ ∞
0

N∏
i=1

dzi z
ni−1
i

δ(1−
∑N

j=1 zj)

[z1d1 + z2d2 + . . .+ zNdN ]
∑N
i=1 ni

(113)
The integration parameters zi are called Feynman parameters. For generic
one-loop diagrams we have ni = 1 ∀i. Propagator powers ni different from
one become important when we derive relations between integrals.

Schwinger parametrisation

An alternative to Feynman parametrisation is the so-called “Schwinger parametri-
sation”, based on

1

dnii
=

1

Γ(ni)

∫ ∞
0

dααni−1 exp(−α di), Re(di) > 0 , (114)

which can be derived from the definition of the Γ-function

Γ(t) =

∫ ∞
0

dx xt−1 exp(−x), Re(t) > 0 . (115)

The Gaussian integration formula∫ ∞
−∞

dDrE exp(−α r2
E) =

(π
α

)D
2
, α > 0 (116)

can be used to integrate over the momenta (after Wick rotation) in the
Schwinger parametrisation.
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Simple example: one-loop two-point function

For N = 2, (2-point integral), the Feynman parametrisation is given by

I2 =

∫ ∞
−∞

dκ
1

[k2 −m2 + iδ][(k + p)2 −m2 + iδ]

= Γ(2)

∫ ∞
0

dz1dz2

∫ ∞
−∞

dκ
δ(1− z1 − z2)

[z1 (k2 −m2) + z2 ((k + p)2 −m2) + iδ]2

=

∫ 1

0

dx

∫ ∞
−∞

dκ
1

[k2 + 2xk · p+ xp2 −m2 + iδ]2
, (117)

where we have substituted z1 = (1 − x)u, z2 = x before the last line. As
the momentum integral is shift invariant, we can substitute l = k + xp to
eliminate the term linear in the loop momentum, to arrive at

I2 =

∫ 1

0

dx

∫ ∞
−∞

dDl

iπ
D
2

1

[l2 + p2x(1− x)−m2 + iδ]2
. (118)

For integrals with more external legs the linear term can be eliminated by
an analogous shift of the loop momentum. Therefore, the generic form of a
one-loop integral after Feynman parametrisation and after having performed
the shift to achieve a quadratic form in the loop momentum is given by

IDN = Γ(N)

∫ ∞
0

N∏
i=1

dzi δ(1−
N∑
j=1

zj)

∫ ∞
−∞

dDl

iπ
D
2

[
l2 −R2 + iδ

]−N
(119)

where for N = 2 and both propagators massive we have just derived
R = −p2x(1− x) +m2.
For the general case, one finds

R2 = −1

2

N∑
i,j=1

zi zj Sij with (120)

Sij = (ri − rj)2 −m2
i −m2

j ,

N∑
i=1

zi = 1 . (121)

The matrix Sij, sometimes also called Cayley matrix, is the quantity encod-
ing all the kinematic dependence of the integral. It plays a major role in
the algebraic reduction of tensor integrals or integrals with higher N to sim-
pler objects, as well as in the analysis of the kinematic singularities of the
integrand.
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Figure 53: Integration contour after Wick rotation.

Momentum integration for scalar one-loop N-point integrals

Now we perform the momentum integration for an integral of the form
Eq. (119). Remember that we are in Minkowski space, where l2 = l20 − ~l2,
so temporal and spatial components are not on equal footing. The poles
of the denominator in Eq. (119) are located at l20 = R2 + ~l2 − iδ ⇒ l±0 '
±
√
R2 +~l2 ∓ i δ. Thus the iδ term shifts the poles away from the real axis

in the l0-plane.
For the integration over the loop momentum, we better work in Euclidean
space where l2E =

∑D
i=1 l

2
i . Hence we make the transformation l0 → i l4,

such that l2 → −l2E = l24 + ~l2, which implies that the integration contour in
the complex l0-plane is rotated by 90◦ such that the contour in the complex
l4-plane looks as shown below. This is called Wick rotation. We see that the
iδ prescription is exactly such that the contour does not enclose any poles.
Therefore the integral over the closed contour is zero, and we can use the
identity

∞∫
−∞

dl0f(l0) = i

∞∫
−∞

dl4f(l4) (122)

Our integral now reads

IDN = (−1)NΓ(N)

∫ ∞
0

N∏
i=1

dzi δ(1−
N∑
l=1

zl)

∫ ∞
−∞

dDlE

π
D
2

[
l2E +R2 − iδ

]−N
(123)

Now we can introduce polar coordinates in D dimensions to evaluate the
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momentum integral.∫ ∞
−∞

dDlE =

∫ ∞
0

dr rD−1

∫
dΩD−1 , r =

√
l2E =

(
4∑
i=1

l2i

) 1
2

(124)

∫
dΩD−1 = V (D) =

2π
D
2

Γ(D
2

)
(125)

where V (D) is the volume of a unit sphere in D dimensions, which we encoun-
tered already in the context of D-dimensional phase space integrals. Thus
we have

IDN = 2(−1)N
Γ(N)

Γ(D
2

)

∫ ∞
0

N∏
i=1

dzi δ(1−
N∑
l=1

zl)

∫ ∞
0

dr rD−1 1

[r2 +R2 − iδ]N

Substituting r2 = x:∫ ∞
0

dr rD−1 1

[r2 +R2 − iδ]N
=

1

2

∫ ∞
0

dx xD/2−1 1

[x+R2 − iδ]N
(126)

Now the substitution x = zR2 can be done to arrive at

1

2

∫ ∞
0

dx xD/2−1 1

[x+R2 − iδ]N
=

1

2

[
R2 − iδ

]D
2
−N
∫ ∞

0

dz zD/2−1 [1 + z]−N .

(127)
Note that we still carry along the−iδ term because it can be useful to indicate
the direction of the analytic continuation when performing the integrals over
the Feynman parameters. As it only indicates an infinitesimal shift, we can
always rescale δ by a positive quantity. The z-integral can be identified as
the Euler Beta-function B(a, b), defined as

B(a, b) =

∫ ∞
0

dz
za−1

(1 + z)a+b
=

∫ 1

0

dy ya−1(1− y)b−1 =
Γ(a)Γ(b)

Γ(a+ b)
, (128)

to finally arrive at

IDN = (−1)NΓ(N − D

2
)

∫ ∞
0

N∏
i=1

dzi δ(1−
N∑
l=1

zl)
[
R2 − iδ

]D
2
−N

.(129)

The integration over the Feynman parameters remains to be done, but for
one-loop applications, the integrals we need to know explicitly have maxi-
mally N = 4 external legs. Integrals with N > 4 can be expressed in terms
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of boxes, triangles, bubbles and tadpoles (in the case of massive propaga-
tors). The analytic expressions for these “master integrals” are well-known.
The most complicated analytic functions which can appear at one loop are
dilogarithms.

The generic form of the derivation above makes clear that we do not have to
go through the procedure of Wick rotation explicitly each time. All we need
(for scalar integrals) is to use the following general formula for D-dimensional
momentum integration (in Minkowski space, and after having performed the
shift to have a quadratic form in the denominator):∫

dDl

iπ
D
2

(l2)r

[l2 −R2 + iδ]N
= (−1)N+rΓ(r + D

2
)Γ(N − r − D

2
)

Γ(D
2

)Γ(N)

[
R2 − iδ

]r−N+D
2

(130)

Example one-loop two-point function

Applying the above procedure to our two-point function, we obtain

I2 = Γ(2− D

2
)

∫ 1

0

dx [−p2 x (1− x) +m2 − iδ ]
D
2
−2 . (131)

For m2 = 0, the result can be expressed in terms of Γ-functions:

I2 =
(
−p2

)D
2
−2

Γ(2−D/2)B(D/2− 1, D/2− 1) , (132)

where the B(a, b) is defined in Eq. (128). The two-point function has an UV
pole which is contained in

Γ(2−D/2) = Γ(ε) =
1

ε
− γE +O(ε) , (133)

where γE is “Euler’s constant”, γE = lim
n→∞

(
n∑
j=1

1
j
− lnn

)
= 0.5772156649 . . ..

Including the factor g2µ2ε which usually comes with the loop, and multiplying

by iπ
D
2

(2π)D
for the normalisation conventions, we obtain

g2µ2ε iπ
D
2

(2π)D
I2 = (4π)ε i

g2

(4π)2 Γ(ε)
(
−p2/µ2

)−ε
B(1− ε, 1− ε) . (134)

Remarks:
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• As the combination ∆ = 1
ε
− γE + ln(4π) always occurs in combina-

tion with a pole, in the so-called MS subtraction scheme (“modified
Minimal Subtraction”), the whole combination ∆ is subtracted in the
renormalisation procedure.

• Scaleless integrals (i.e. integrals containing no dimensionful scale like
masses or external momenta) are zero in dimensional regularisation, we
use ∫ ∞

−∞

dDk

k2ρ
= 0 . (135)

Tensor integrals

If we have loop momenta in the numerator, the integration procedure is essen-
tially the same, except for combinatorics and additional Feynman parameters
in the numerator. The substitution k = l − Q introduces terms of the form
(l − Q)µ1 . . . (l − Q)µr into the numerator of eq. (119). As the denominator
is symmetric under l → −l, only the terms with even numbers of lµ in the
numerator will give a non-vanishing contribution upon l-integration. We can
use a form factor representation of a tensor integral, where the Lorentz struc-
ture has been extracted, each Lorentz tensor multiplying a scalar quantity,
the form factor.
Historically, tensor integrals occurring in one-loop amplitudes were reduced
to scalar integrals using so-called Passarino-Veltman reduction [54]. It is
based on the fact that at one loop, scalar products of loop momenta with
external momenta can always be expressed as combinations of propagators.
The problem with Passarino-Veltman reduction is that it introduces powers
of inverse Gram determinants 1/(detG)r for the reduction of a rank r tensor
integral. This can lead to numerical instabilities upon phase space integration
in kinematic regions where detG→ 0.

Example for Passarino-Veltman reduction:
Consider the form factor representation of a rank one three-point integral

ID,µ3 =

∫ ∞
−∞

dκ
kµ

[k2 + iδ][(k + p1)2 + iδ][(k + p1 + p2)2 + iδ]
= A1 r

µ
1 + A2 r

µ
2

r1 = p1 , r2 = p1 + p2 .
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Contracting with r1 and r2 and using the identities

k · ri =
1

2

[
(k + ri)

2 − k2 − r2
i

]
, i ∈ {1, 2}

we obtain, after cancellation of numerators(
2 r1 · r1 2 r1 · r2

2 r2 · r1 2 r2 · r2

)(
A1

A2

)
=

(
R1

R2

)
(136)

R1 = ID2 (r2)− ID2 (r2 − r1)− r2
1I3(r1, r2)

R2 = ID2 (r1)− ID2 (r2 − r1)− r2
2I3(r1, r2) .

Solving for the form factors A1 and A2 we see that the solution involves the
inverse of the Gram matrix Gij = 2 ri · rj.

Libraries where the scalar integrals and tensor one-loop form factors can be
obtained numerically:

• LoopTools [55, 56]

• OneLoop [57]

• golem95 [58–60]

• Collier [61]

• Package-X [62]

Scalar integrals only: QCDLoop [63, 64].

The calculation of one-loop amplitudes with many external legs is most ef-
ficiently done using “unitarity-cut-inspired” methods, for a review see e.g.
Ref. [65]. One of the advantages is that it allows (numerical) reduction at in-
tegrand level (rather than integral level), which helps to avoid the generation
of spurious terms which can blow up intermediate expressions.
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4.5 Cancellation of infrared singularities

4.6 Parton evolution

5 Example: Higgs production

5.1 Higgs boson production in gluon fusion

5.2 Higgs boson pair production

5.3 Asymptotic expansions
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