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2 A theoretical particle physicists’ toolbox

2.1 Factorisation

2.2 Cross sections

2.3 Basics of QCD

2.3.1 Colour algebra

2.3.2 QCD Lagrangian

2.3.3 QCD Feynman rules

3 Example: top quark production

4 Higher orders in perturbation theory

4.1 Running coupling and scale dependence

In this section we would like to explain how it arises that theoretical pre-
dictions depend in general on at least one unphysical scale, the so-called
renormalisation scale µ. In the case of hadronic initial state particles, there
is also a factorisation scale µf involved. There can be even more unphysical
scales, like fragmentation scales in the modelling of the fragmentation of fi-
nal state particles into hadrons, parton shower matching scales, resummation
scales, etc.
Let us first motivate how the dependence on a renormalisation scale arises.
We mentioned already that the strong coupling, defined as αs = g2

s/(4π),
is not really a constant. To leading order in the perturbative expansion, it
obeys the relation

αs(Q
2) =

1

b0 log
(
Q2/Λ2

QCD

) , (1)

where ΛQCD is an energy scale below which non-perturbative effects start to
dominate (the scale of bound states formation (hadrons)), and Q2 is a larger
energy scale, for example the centre-of-mass energy s of a scattering process.
The coefficient b0 is given by

b0 =
1

4π

(
11

3
CA −

4

3
TRNf

)
. (2)
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Note that b0 > 0 for Nf < 11/2CA.
Where does the running of the coupling come from? It is closely linked to
renormalisation, which introduces the renormalisation scale µ.
Before we enter into the technicalities, let us look at a physical observable,
for example the R-ratio which we encountered already,

R(s) =
σ(e+e− → hadrons)

σ(e+e− → µ+µ−)
. (3)

We assume that the energy s exchanged in the scattering process is much
larger than ΛQCD.
At leading order in perturbation theory, we have to calculate tree-level dia-
grams for e+e− → ff̄ , which however only represent a crude approximation.
To get a more precise result, we should include quantum corrections, for
example diagrams where virtual gluons are exchanged, such as the ones in
Figs. 1a and 1b, where Fig. 1a shows corrections of order αs and Fig. 1b
shows example diagrams for O(α2

s) corrections. The perturbative expansion
for R can be written as

R(s) = KQCD(s)R0 , R0 = Nc

∑
f

Q2
f θ(s− 4m2

f ) ,

KQCD(s) = 1 +
αs(µ

2)

π
+
∑
n≥2

Cn

(
s

µ2

) (
αs(µ

2)

π

)n
. (4)

The higher the order in αs the harder is the calculation. Meanwhile we know
the Cn up to order α4

s [1, 2].

(a) 1-loop diagram contributing to
e+e− → ff̄ .

(b) 2-loop diagram example contributing
to e+e− → ff̄ .

However, if we try to calculate the loop diagrams, we will realize that some
of the integrals over the loop momentum k are ill-defined. They diverge for
k →∞. This is called an ultraviolet divergence. How to deal with them will
be explained shortly. For the moment we just introduce an arbitrary cutoff
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scale ΛUV for the upper integration boundary. If we carried through the
calculation, we would see that the dependence on the cutoff in diagram 1a
cancels, which is a consequence of the Ward Identity in QED. However, if we
go one order higher in αs, calculating diagrams like the one in Fig. 1b, the
cutoff-dependence does not cancel anymore. We obtain

KQCD(s) = 1 +
αs
π

+
(αs
π

)2
[
c+ b0π log

Λ2
UV

s

]
+O(α3

s) . (5)

It looks like our result is infinite, as we should take the limit ΛUV → ∞.
However, we did not claim that αs is the coupling we measure. In fact, it
is the “bare” coupling, also denoted as α0

s, which appears in Eq. (5), and
we can absorb the infinity in the bare coupling to arrive at the renormalised
coupling, which is the one we measure.
In our case, this looks as follows. Define

αs(µ) = α0
s + b0 log

Λ2
UV

µ2
α2
s , (6)

then replace α0
s by αs(µ) and drop consistently all terms of order α3

s. This
leads to

Kren
QCD(αs(µ), µ2/s) = 1+

αs(µ)

π
+

(
αs(µ)

π

)2 [
c+ b0π log

µ2

s

]
+O(α3

s) . (7)

Kren
QCD is finite, but now it depends on the scale µ, both explicitly and through

αs(µ). However, the hadronic R-ratio is a physical quantity and therefore
cannot depend on the arbitrary scale µ. The dependence of KQCD on µ is
an artefact of the truncation of the perturbative series after the order α2

s.

Renormalisation group and asymptotic freedom

Since the hadronic R-ratio Rren = R0K
ren
QCD cannot depend µ, we know

µ2 d

dµ2
Rren(αs(µ), µ2/Q2) = 0 =

(
µ2 ∂

∂µ2
+ µ2∂αs

∂µ2

∂

∂αs

)
Rren(αs(µ), µ2/Q2) .

(8)
Equation (8) is called renormalisation group equation (RGE). Introducing
the abbreviations

t = ln
Q2

µ2
, β(αs) = µ2∂αs

∂µ2
, (9)
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the RGE becomes (
− ∂

∂ t
+ β(αs)

∂

∂αs

)
R = 0 . (10)

This first order partial differential equation can be solved by implicitly defin-
ing a function αs(Q

2), the running coupling, by

t =

∫ αs(Q2)

αs

dx

β(x)
, with αs ≡ αs(µ

2) . (11)

Differentiating Eq. (11) with respect to the variable t leads to

1 =
1

β(αs(Q2))

∂αs(Q
2)

∂ t
, which implies β(αs(Q

2)) =
∂αs(Q

2)

∂ t
.

The derivative of Eq. (11) with respect to αs gives

0 =
1

β(αs(Q2))

∂αs(Q
2)

∂αs
− 1

β(αs)

∂αs
∂αs
⇒ ∂αs(Q

2)

∂αs
=
β(αs(Q

2))

β(αs)
. (12)

It is now easy to prove that the value of R for µ2 = Q2, R(1, αs(Q
2)), solves

Eq. (10):

− ∂

∂ t
R(1, αs(Q

2)) = − ∂ R

∂αs(Q2)

∂αs(Q
2)

∂ t
= −β(αs(Q

2))
∂ R

∂αs(Q2)
(13)

and

β(αs)
∂

∂αs
R(1, αs(Q

2)) = β(αs)
∂αs(Q

2)

∂αs

∂ R

∂αs(Q2)
= β(αs(Q

2))
∂ R

∂ αs(Q2)
.

(14)

This means that the scale dependence in R enters only through αs(Q
2),

and that we can predict the scale dependence of R by solving Eq. (11), or
equivalently,

∂αs
(
Q2
)

∂ t
= β

(
αs
(
Q2
))
. (15)

We can solve Eq. (15) perturbatively using an expansion of the β-function

β(αs) = −b0α
2
s

[
1 +

∞∑
n=1

bn α
n
s

]
, (16)
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where b0 = β0
4π

and b0b1 = β1
(4π)2

, etc. Explicitly, up to NNLO:

µ2 dαs(µ)

dµ2
= −αs(µ)

[
β0

(
αs(µ)

2π

)
+ β1

(
αs(µ)

2π

)2

+ β2

(
αs(µ)

2π

)3

+O(α4
s)

]
.

The first five coefficients are known [3], where the fifth one has been calcu-
lated only recently [4–8]. The first 3 coefficients (MS-scheme) are

β0 =
11CA − 4TRNF

6
,

β1 =
17C2

A − 10CATRNF − 6CFTRNF

6
,

β2 =
1

432

(
2857C3

A + 108C2
FTRNF − 1230CFCATRNF − 2830C2

ATRNF

+264CFT
2
RN

2
F + 316CAT

2
RN

2
F

)
. (17)

Introducing Λ as integration constant with L = log(µ2/Λ2) yields the follow-
ing solution up to order NNLO:

αs(µ) =
4π

β0L

(
1− β1

β2
0

logL

L
+

1

β2
0L

2

(
β2

1

β2
0

(
log2 L− logL− 1

)
+
β2

β0

))
.

(18)
Truncating the series Eq. (16) at leading order leads to the simple solution
Eq. (1), or, without introducing Λ,

Q2 ∂αs
∂ Q2

=
∂αs
∂ t

= −b0α
2
s ⇒ − 1

αs(Q2)
+

1

αs(µ2)
= −b0 t

⇒ αs(Q
2) =

αs(µ
2)

1 + b0 t αs(µ2)
. (19)

Eq. (19) implies that

αs(Q
2)

Q2→∞−→ 1

b0t

Q2→∞−→ 0 . (20)

This behaviour is called asymptotic freedom: the larger Q2, the smaller the
coupling, so at very high energies (small distances), the quarks and gluons
can be treated as if they were free particles. The behaviour of αs as a function
of Q2 is illustrated in Fig. 2 including recent measurements. Note that the
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Figure 2: The running coupling αs(Q
2). Figure from arXiv:1609.05331.

sign of b0 is positive for QCD, while it is negative for QED. It can be proven
that, in 4 space-time dimensions, only non-Abelian gauge theories can be
asymptotically free. For the discovery of asymptotic freedom in QCD [9,10],
Gross, Politzer and Wilczek got the Nobel Prize in 2004.
Note that in the derivation of the RGE above, we have assumed that the
observable R does not depend on other mass scales like quark masses. How-
ever, the renormalisation group equations can be easily extended to include
mass renormalisation, which will lead to running quark masses:(

µ2 ∂

∂µ2
+ β(αs)

∂

∂αs
− γm(αs)m

∂

∂ m

)
R

(
Q2

µ2
, αs,

m

Q

)
= 0 , (21)

where γm is called the mass anomalous dimension and the minus sign before
γm is a convention. In a perturbative expansion we can write the mass
anomalous dimension as γm(αs) = c0 αs (1 +

∑
n cnα

n
s ) . The coefficients

are known up to c4 [11–14].

Scale uncertainties

From the perturbative solution of the RGE we can derive how a physical
quantity O(N)(µ), expanded in αs as O(N)(µ) =

∑N
n=0 Cn(µ)αn+k

s (µ2) and
truncated at order N in perturbation theory (k is the power of αs at leading
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Figure 3: Example H → gg for the reduction of the scale dependence at
higher orders. Figure from Ref. [2], see also [8].

order), changes with the renormalisation scale µ:

d

d log(µ2)
O(N)(µ) ∼ O

(
αs(µ

2)N+1
)
. (22)

Therefore it is clear that, the more higher order coefficients cn we can cal-
culate, the less our result will depend on the unphysical scale µ2. Therefore
the dependence of the scale is used to estimate the uncertainty of a result
calculated to a certain order in perturbation theory. Usually the scale is
varied by a factor of two up and down. An example for the reduction of the
scale dependence at higher orders is shown in Fig. 3.

An expansion up to NNLO of an observable O normalised to the LO cross
section σ0 can be written as

1

σ0

dσ

dO
=

(αs
2π

) dC1

dO
+
(αs

2π

)2 dC2

dO
+
(αs

2π

)3 dC3

dO
+O(α4

s) . (23)
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In terms of the running coupling αs(µ), the NNLO expression becomes

1

σ0

dσ

dO
(s, µ2, O) =(

αs(µ)

2π

)
dC1

dO
+

(
αs(µ)

2π

)2(
dC2

dO
+

dC1

dO
β0 log

µ2

s

)
+

(
αs(µ)

2π

)3(
dC3

dO
+ 2

dC2

dO
β0 log

µ2

s
+

dC1

dO

(
β2

0 log2 µ
2

s
+ β1 log

µ2

s

))
+O(α4

s) . (24)

As an example we consider an observable called thrust, shown in Fig. 4.
Thrust is an example of so-called event-shape observables, which describes
how “pencil-like” an event looks like. Events shapes can be defined based on
hadronic tracks in the detector, avoiding jet definitions, and are particularly
useful in e+e− annihilation, where the total energy of the partonic event is
known. Thrust T is defined by

T = max
~n

∑m
i=1 |~pi · ~n|∑m
i=1 |~pi|

, (25)

where ~n is a three-vector (the direction of the thrust axis) such that T is
maximal. The particle three-momenta ~pi are defined in the e+e− centre-of-
mass frame.
Fig. 4 shows several features: 1. the scale dependence is reduced as the
perturbative order increases, 2. the NNLO curve is closest to the data, 3.
the data are still not well described by NNLO. The reasons for the latter
are well understood: The perturbative prediction for the thrust distribution
becomes singular as T → 1, there is also a logarithmic divergence ∼ ln(1−T ).
The latter is characteristic for events shape distributions. In perturbation
theory at nth order logarithms of the form αns lnm(1/(1 − T )) with m ≤ 2n
appear. These spoil the convergence of the perturbative series and should
be “resummed” if we want to make reliable prediction near the phase space
region where T → 1. Furthermore, the so-called power corrections, the terms

of O
(

Λ
Q

)p
in Eq. (??), play a role for this observable.

In hadronic collisions there is another scale, the factorisation scale µf , which
needs to be taken into account when assessing the uncertainty of the theoreti-
cal prediction. Varying both µr and µf simultaneously in the same directions
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Figure 4: One minus thrust distribution at different orders in perturbation
theory, including scale uncertainty bands. Figure from Ref. [15].
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can lead to accidental cancellations and hence underestimation of the per-
turbative uncertainties. Therefore, in the presence of both µr and µf , often
so-called 7-point scale variations are performed, which means µr,f = cr,fµ0,
where cr, cf ∈ {2, 1, 0.5} and where the extreme variations (cr, cf ) = (2, 0.5)
and (cr, cf ) = (0.5, 2) have been omitted.
Still, the question remains what to choose for the central scale µ0. A con-
venient choice is a scale where the higher order corrections are small, i.e. a
scale showing good “perturbative stability”. In Fig. 3, a good choice would
be µ0 ≈ 150 GeV.
Let us now see a few examples where such scale variations do not capture
the true uncertainties. First some prelimiary remarks, along the lines of
Ref. [16]. If there is only one scale µr involved, the the scale dependence
of an observable is given through αs(µr), and we can use the beta-function,
resp. Eq. (18), to move from a result at a scale µ0 to a result at a different
scale. For an observable O, known to order αNs ,

O =
N∑
n=0

Cn(µr)α
n+k
s (µr); ,

where k is the power of αs at leading order, we therefore have (this time not
normalised to the LO cross section)

O = C0α
k
s(µr) +

(
C1 + b0C0 ln

(
µ2
r

µ2
0

))
αk+1
s (µr) +O(αk+2

s ) . (26)

Variations of µr will change the C0-part of the O(αk+2
s ) term, however the

magnitude of C1 can only be known by direct calculation.
To illustrate the improvement in scale uncertainty that may occur at NNLO,
let us consider the corrections up to (N)NLO for an observable as for example
a jet cross section as a function of transverse energy, where k = 2. The
renormalisation scale dependence is entirely predictable,

dσ

dET
= α2

s(µr)C0

+ α3
s(µr) (C1 + 2b0LC0)

+ α4
s(µr)

(
C2 + 3b0LC1 + (3b2

0L
2 + 2b1L)C0

)
(27)

with L = ln(µr/ET ). C0 and C1 are the known LO and NLO coefficients.
Now assume that C2 is an unknown NNLO term (note however that C2 is
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known meanwhile [17,18]). Fig. 5 shows that the scale dependence is system-
atically reduced by increasing the number of terms in the perturbative exp
nsion. At NLO, there is always a turning point where the prediction is insen-
sitive to small changes in µr. If this occurs at a scale far from the typically
chosen values of µr, the NLO K-factor (defined as K = 1 + αs(µr)C1/C0)
will be large. At NNLO the scale dependence is clearly significantly reduced.
However, a more quantitative statement requires knowledge of C2.

Figure 5: Single jet inclusive distribution at ET = 100 GeV and 0.1 < |η| <
0.7 at

√
s = 1800 GeV at LO (green), NLO (blue) and NNLO (red). The solid

and dashed red lines show the NNLO prediction if C2 = 0, C2 = ±C2
1/C0

respectively. Figure from Ref. [16].

For some processes, C1 (and C2) turned out to be pretty large, and the
scale uncertainty bands obtained form 7-point scale variations do not (fully)
overlap between the different orders. One such example is Higgs production
in gluon fusion, known to order N3LO. Fig. 6 shows a very nice stabilisation
of the scale dependence, however the higher order corrections are very large.
The standard scale uncertainty bands are shown in Fig. 7. Among the reasons
for the large K-factors, in particular the NLO K-factor, are large colour
factors and new partonic channels opening up.
In Fig. 8 the µf and µr dependence is shown separately. Usually one can see
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Figure 6: Higgs production in gluon fusion, stabilisation of the scale depen-
dence. Figure from Ref. [19].

that the perturbative series stabilises at latest between NNLO and N3LO.
However, for charged current Drell-Yan production and a central scale of
Q = 100 GeV, shown in Fig. 9, the NNLO and N3LO uncertainty bands do
not overlap.
Looking at the µf dependence separately, one can see that the NNLO band
is accidentally small, see Fig. 10.
Furthermore, the behaviour of the scale uncertainty bands can depend sensi-
tively on the definition of the central scale, see Fig. 11. The different central
scale choices are

• the individual jet transverse momentum pT . This however can lead to
the scale being set to values that are not representative of the scale of
the underlying hard scattering process.

• The leading-jet transverse momentum pT,1, This scale uses the trans-
verse momentum of the hardest jet in the event, which is a better proxy
for the scale of the hard interaction compared to the µ = pT choice.

• The scalar sum of the transverse momenta of all reconstructed jets HT ,
HT =

∑
i∈jets pT,i.

15



Figure 7: Scale uncertainty bands for Higgs production in gluon fusion. Fig-
ure from Ref. [20].

• The scalar sum of the transverse momenta of all partons ĤT : the trans-
verse momentum sum is not based on the reconstructed jets, but instead
obtained as the transverse momentum sum of all partons in the event:
ĤT =

∑
i∈partons pT,i. This scale choice also has the advantage of being

insensitive to the jet reconstruction applied in the analysis and is an
infrared-safe event shape variable.
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Figure 8: Higgs production in bottom quark fusion. Figure from Ref. [21].

Figure 9: Charged current Drell-Yan production, pp → W−. Figure from
Ref. [22].
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Figure 10: Charged current Drell-Yan production, µf -dependence. Figure
from Ref. [22].

Figure 11: Inclusive jet pT spectrum integrated over rapidity at LO (green),
NLO (blue) and NNLO (red) normalised to the NLO prediction as a function
of the central scale choice for cone size R = 0.4. Figure from Ref. [23].
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4.2 Loops and divergences

4.3 Dimensional regularisation

Tree level results in QCD are mostly not accurate enough to match the cur-
rent experimental precision and suffer from large scale uncertainties. When
calculating higher orders, we encounter singularities: ultraviolet (UV) sin-
gularities, and infrared (IR) singularities due to soft or collinear massless
particles. Therefore the introduction of a regulator is necessary.
Let us first have a look at UV singularities: The expression for the one-loop
two-point function shown below naively would be

Figure 12: One-loop two-point function (“bubble”).

I2 =

∫ ∞
−∞

d4k

(2π)4

1

[k2 −m2 + iδ][(k + p)2 −m2 + iδ]
. (28)

If we are only interested in the behaviour of the integral for |k| → ∞ we can
neglect the masses, transform to polar coordinates and obtain

I2 ∼
∫

dΩ3

∫ ∞
0

d|k| |k|
3

|k|4
. (29)

This integral is clearly not well-defined. If we introduce an upper cutoff Λ
(and a lower limit |k|min because we neglected the masses and p2, which would
serve as an IR regulator), it is regulated:

I2 ∼
∫ Λ

|k|min

d|k| 1

|k|
∼ log

(
Λ

|k|min

)
. (30)

The integral has a logarithmic UV divergence for Λ → ∞. The problem
with cut-off regularisation with a regulator Λ is that it is neither a Lorentz
invariant nor a gauge invariant way to regulate integrals over loop momenta.
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A regularisation method which preserves the symmetries is dimensional reg-
ularisation.
Dimensional regularisation has been introduced in 1972 by ‘t Hooft and Velt-
man [24] (and by Bollini and Giambiagi [25]) as a method to regularise UV
divergences in a gauge invariant way, thus completing the proof of renormal-
isability.
The idea is to work in D = 4 − 2ε space-time dimensions. Divergences for
D → 4 will appear as poles in 1/ε. This means that the Lorentz algebra ob-
jects (momenta, polarisation vectors, metric tensor) live in a D-dimensional
space. The γ-algebra also has to be extended to D dimensions. How to
treat internal and external Lorentz vectors and the γ-algebra is not unique.
There are several regularisation schemes within dimensional regularisation.
For example, when doing a calculation in supersymmetry, you may not want
to use a scheme where massless bosons have D − 2 polarisation states while
massless fermions have 2 polarisation states. Of course the different schemes
must lead to the same result for physical quantities.
An important feature of dimensional regularisation is that it regulates IR
singularities, i.e. divergences occurring when massless particles become soft
and/or collinear, as well. Ultraviolet divergences occur for loop momenta
k →∞, so in general the UV behaviour becomes better for ε > 0, while the
IR behaviour becomes better for ε < 0. Certainly we cannot have D < 4 and
D > 4 at the same time. What is formally done is to first assume the IR
divergences are regulated in some other way, e.g. by assuming all external
legs are off-shell or by introducing a small mass for all massless particles.
In this case all poles in 1/ε will be of UV nature and renormalisation can
be performed. Then we can analytically continue to the whole complex
D-plane, in particular to Re(D) > 4. If we now remove the auxiliary IR
regulator, the IR divergences will show up as 1/ε poles. (This is however not
done in practice, where all poles just show up as 1/ε poles, and after UV
renormalisation, the remaining poles must be of IR nature.)

Naive degree of divergence

The naive degree of UV divergence ω of an integral can be determined by
power counting: if we work in D dimensions at L loops, and consider an
integral with P propagators and nl factors of the loop momentum belonging
to loop l ∈ {1, . . . , L} in the numerator, we have ω = DL−2P+2

∑
l bnl/2c,

where bnl/2c is the nearest integer less or equal to nl/2. We have logarith-
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mic, linear, quadratic,. . . overall divergences for ω = 0, 1, 2, . . . and no UV
divergence for ω < 0. This means that in 4 dimensions at one loop, we have
UV divergences in all two-point functions, three-point functions with rank
≥ 2 and four-point functions with rank ≥ 4.
These considerations do not take into account UV subdivergences of multi-
loop integrals, or a reduction of the degree of divergence due to gauge can-
cellations. Therefore ω is called naive or superficial degree of divergence.

In dimensional regularisation, the only change to the Feynman rules to be
made is to multiply the couplings in the Lagrangian by a factor µε: g → gµε,
where µ is an arbitrary mass scale. This ensures that each term in the
Lagrangian has the correct mass dimension. The momentum integration
involves

∫
dDk

(2π)D
for each loop.

4.4 One-loop integrals

Integration in D dimensions

We first consider a scalar one-loop diagram with N external legs and N
propagators, as gien in (31). The case with loop momenta in the numerator
(“tensor integrals”) will be treated later. If k is the loop momentum, the
momenta of the propagators are qa = k+ra, where ra =

∑a
i=1 pi. If we define

all momenta as incoming, momentum conservation implies
∑N

i=1 pi = 0 and
hence rN = 0.

pN−1
pN

p1

p2

Figure 13: Generic one-loop integral
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IDN =

∫ ∞
−∞

dDk

iπ
D
2

1∏N
i=1(q2

i −m2
i + iδ)

. (31)

We use the integration measure dDk/iπ
D
2 ≡ dκ to avoid ubiquitous factors

of iπ
D
2 which will arise upon momentum integration.

Feynman parameters

To combine products of denominators of the type dni
i = [(k+ri)

2−m2
i + iδ]ni

into one single denominator, we can use the identity

1

dn1
1 d

n2
2 . . . dnN

N

=
Γ(
∑N

i=1 ni)∏N
i=1 Γ(ni)

∫ ∞
0

N∏
i=1

dzi z
ni−1
i

δ(1−
∑N

j=1 zj)

[z1d1 + z2d2 + . . .+ zNdN ]
∑N

i=1 ni

(32)
The integration parameters zi are called Feynman parameters. For generic
one-loop diagrams we have ni = 1 ∀i. Propagator powers ni different from
one become important when we derive relations between integrals.

Schwinger parametrisation

An alternative to Feynman parametrisation is the so-called “Schwinger parametri-
sation”, based on

1

dni
i

=
1

Γ(ni)

∫ ∞
0

dααni−1 exp(−α di), Re(di) > 0 , (33)

which can be derived from the definition of the Γ-function

Γ(t) =

∫ ∞
0

dx xt−1 exp(−x), Re(t) > 0 . (34)

The Gaussian integration formula∫ ∞
−∞

dDrE exp(−α r2
E) =

(π
α

)D
2
, α > 0 (35)

can be used to integrate over the momenta (after Wick rotation) in the
Schwinger parametrisation.
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Simple example: one-loop two-point function

For N = 2, (2-point integral), the Feynman parametrisation is given by

I2 =

∫ ∞
−∞

dκ
1

[k2 −m2 + iδ][(k + p)2 −m2 + iδ]

= Γ(2)

∫ ∞
0

dz1dz2

∫ ∞
−∞

dκ
δ(1− z1 − z2)

[z1 (k2 −m2) + z2 ((k + p)2 −m2) + iδ]2

=

∫ 1

0

dx

∫ ∞
−∞

dκ
1

[k2 + 2xk · p+ xp2 −m2 + iδ]2
, (36)

where we have substituted z1 = (1 − x)u, z2 = x before the last line. As
the momentum integral is shift invariant, we can substitute l = k + xp to
eliminate the term linear in the loop momentum, to arrive at

I2 =

∫ 1

0

dx

∫ ∞
−∞

dDl

iπ
D
2

1

[l2 + p2x(1− x)−m2 + iδ]2
. (37)

For integrals with more external legs the linear term can be eliminated by
an analogous shift of the loop momentum. Therefore, the generic form of a
one-loop integral after Feynman parametrisation and after having performed
the shift to achieve a quadratic form in the loop momentum is given by

IDN = Γ(N)

∫ ∞
0

N∏
i=1

dzi δ(1−
N∑
j=1

zj)

∫ ∞
−∞

dDl

iπ
D
2

[
l2 −R2 + iδ

]−N
(38)

where for N = 2 and both propagators massive we have just derived
R = −p2x(1− x) +m2.
For the general case, one finds

R2 = −1

2

N∑
i,j=1

zi zj Sij with (39)

Sij = (ri − rj)2 −m2
i −m2

j ,

N∑
i=1

zi = 1 . (40)

The matrix Sij, sometimes also called Cayley matrix, is the quantity encod-
ing all the kinematic dependence of the integral. It plays a major role in
the algebraic reduction of tensor integrals or integrals with higher N to sim-
pler objects, as well as in the analysis of the kinematic singularities of the
integrand.
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Figure 14: Integration contour after Wick rotation.

Momentum integration for scalar one-loop N-point integrals

Now we perform the momentum integration for an integral of the form
Eq. (38). Remember that we are in Minkowski space, where l2 = l20 − ~l2,
so temporal and spatial components are not on equal footing. The poles
of the denominator in Eq. (38) are located at l20 = R2 + ~l2 − iδ ⇒ l±0 '
±
√
R2 +~l2 ∓ i δ. Thus the iδ term shifts the poles away from the real axis

in the l0-plane.
For the integration over the loop momentum, we better work in Euclidean
space where l2E =

∑D
i=1 l

2
i . Hence we make the transformation l0 → i l4,

such that l2 → −l2E = l24 + ~l2, which implies that the integration contour in
the complex l0-plane is rotated by 90◦ such that the contour in the complex
l4-plane looks as shown below. This is called Wick rotation. We see that the
iδ prescription is exactly such that the contour does not enclose any poles.
Therefore the integral over the closed contour is zero, and we can use the
identity

∞∫
−∞

dl0f(l0) = i

∞∫
−∞

dl4f(l4) (41)

Our integral now reads

IDN = (−1)NΓ(N)

∫ ∞
0

N∏
i=1

dzi δ(1−
N∑
l=1

zl)

∫ ∞
−∞

dDlE

π
D
2

[
l2E +R2 − iδ

]−N
(42)

Now we can introduce polar coordinates in D dimensions to evaluate the
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momentum integral.∫ ∞
−∞

dDlE =

∫ ∞
0

dr rD−1

∫
dΩD−1 , r =

√
l2E =

(
4∑
i=1

l2i

) 1
2

(43)

∫
dΩD−1 = V (D) =

2π
D
2

Γ(D
2

)
(44)

where V (D) is the volume of a unit sphere in D dimensions, which we encoun-
tered already in the context of D-dimensional phase space integrals. Thus
we have

IDN = 2(−1)N
Γ(N)

Γ(D
2

)

∫ ∞
0

N∏
i=1

dzi δ(1−
N∑
l=1

zl)

∫ ∞
0

dr rD−1 1

[r2 +R2 − iδ]N

Substituting r2 = x:∫ ∞
0

dr rD−1 1

[r2 +R2 − iδ]N
=

1

2

∫ ∞
0

dx xD/2−1 1

[x+R2 − iδ]N
(45)

Now the substitution x = zR2 can be done to arrive at

1

2

∫ ∞
0

dx xD/2−1 1

[x+R2 − iδ]N
=

1

2

[
R2 − iδ

]D
2
−N
∫ ∞

0

dz zD/2−1 [1 + z]−N .

(46)
Note that we still carry along the−iδ term because it can be useful to indicate
the direction of the analytic continuation when performing the integrals over
the Feynman parameters. As it only indicates an infinitesimal shift, we can
always rescale δ by a positive quantity. The z-integral can be identified as
the Euler Beta-function B(a, b), defined as

B(a, b) =

∫ ∞
0

dz
za−1

(1 + z)a+b
=

∫ 1

0

dy ya−1(1− y)b−1 =
Γ(a)Γ(b)

Γ(a+ b)
, (47)

to finally arrive at

IDN = (−1)NΓ(N − D

2
)

∫ ∞
0

N∏
i=1

dzi δ(1−
N∑
l=1

zl)
[
R2 − iδ

]D
2
−N

. (48)

The integration over the Feynman parameters remains to be done, but for
one-loop applications, the integrals we need to know explicitly have maxi-
mally N = 4 external legs. Integrals with N > 4 can be expressed in terms
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of boxes, triangles, bubbles and tadpoles (in the case of massive propaga-
tors). The analytic expressions for these “master integrals” are well-known.
The most complicated analytic functions which can appear at one loop are
dilogarithms.

The generic form of the derivation above makes clear that we do not have to
go through the procedure of Wick rotation explicitly each time. All we need
(for scalar integrals) is to use the following general formula for D-dimensional
momentum integration (in Minkowski space, and after having performed the
shift to have a quadratic form in the denominator):∫

dDl

iπ
D
2

(l2)r

[l2 −R2 + iδ]N
= (−1)N+rΓ(r + D

2
)Γ(N − r − D

2
)

Γ(D
2

)Γ(N)

[
R2 − iδ

]r−N+D
2

(49)

Example one-loop two-point function

Applying the above procedure to our two-point function, we obtain

I2 = Γ(2− D

2
)

∫ 1

0

dx [−p2 x (1− x) +m2 − iδ ]
D
2
−2 . (50)

For m2 = 0, the result can be expressed in terms of Γ-functions:

I2 =
(
−p2

)D
2
−2

Γ(2−D/2)B(D/2− 1, D/2− 1) , (51)

where the B(a, b) is defined in Eq. (47). The two-point function has an UV
pole which is contained in

Γ(2−D/2) = Γ(ε) =
1

ε
− γE +O(ε) , (52)

where γE is “Euler’s constant”, γE = lim
n→∞

(
n∑
j=1

1
j
− lnn

)
= 0.5772156649 . . ..

Including the factor g2µ2ε which usually comes with the loop, and multiplying

by iπ
D
2

(2π)D
for the normalisation conventions, we obtain

g2µ2ε iπ
D
2

(2π)D
I2 = (4π)ε i

g2

(4π)2 Γ(ε)
(
−p2/µ2

)−ε
B(1− ε, 1− ε) . (53)

Remarks:
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• As the combination ∆ = 1
ε
− γE + ln(4π) always occurs in combina-

tion with a pole, in the so-called MS subtraction scheme (“modified
Minimal Subtraction”), the whole combination ∆ is subtracted in the
renormalisation procedure.

• Scaleless integrals (i.e. integrals containing no dimensionful scale like
masses or external momenta) are zero in dimensional regularisation, we
use ∫ ∞

−∞

dDk

k2ρ
= 0 . (54)

Tensor integrals

If we have loop momenta in the numerator, the integration procedure is essen-
tially the same, except for combinatorics and additional Feynman parameters
in the numerator. The substitution k = l − Q introduces terms of the form
(l − Q)µ1 . . . (l − Q)µr into the numerator of eq. (38). As the denominator
is symmetric under l → −l, only the terms with even numbers of lµ in the
numerator will give a non-vanishing contribution upon l-integration. We can
use a form factor representation of a tensor integral, where the Lorentz struc-
ture has been extracted, each Lorentz tensor multiplying a scalar quantity,
the form factor.
Historically, tensor integrals occurring in one-loop amplitudes were reduced
to scalar integrals using so-called Passarino-Veltman reduction [26]. It is
based on the fact that at one loop, scalar products of loop momenta with
external momenta can always be expressed as combinations of propagators.
The problem with Passarino-Veltman reduction is that it introduces powers
of inverse Gram determinants 1/(detG)r for the reduction of a rank r tensor
integral. This can lead to numerical instabilities upon phase space integration
in kinematic regions where detG→ 0.

Example for Passarino-Veltman reduction:
Consider the form factor representation of a rank one three-point integral

ID,µ3 =

∫ ∞
−∞

dκ
kµ

[k2 + iδ][(k + p1)2 + iδ][(k + p1 + p2)2 + iδ]
= A1 r

µ
1 + A2 r

µ
2

r1 = p1 , r2 = p1 + p2 .
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Contracting with r1 and r2 and using the identities

k · ri =
1

2

[
(k + ri)

2 − k2 − r2
i

]
, i ∈ {1, 2}

we obtain, after cancellation of numerators(
2 r1 · r1 2 r1 · r2

2 r2 · r1 2 r2 · r2

)(
A1

A2

)
=

(
R1

R2

)
(55)

R1 = ID2 (r2)− ID2 (r2 − r1)− r2
1I3(r1, r2)

R2 = ID2 (r1)− ID2 (r2 − r1)− r2
2I3(r1, r2) .

Solving for the form factors A1 and A2 we see that the solution involves the
inverse of the Gram matrix Gij = 2 ri · rj.

Libraries where the scalar integrals and tensor one-loop form factors can be
obtained numerically:

• LoopTools [27, 28]

• OneLoop [29]

• golem95 [30–32]

• Collier [33]

• Package-X [34]

Scalar integrals only: QCDLoop [35, 36].

The calculation of one-loop amplitudes with many external legs is most ef-
ficiently done using “unitarity-cut-inspired” methods, for a review see e.g.
Ref. [37]. One of the advantages is that it allows (numerical) reduction at in-
tegrand level (rather than integral level), which helps to avoid the generation
of spurious terms which can blow up intermediate expressions.
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4.5 Cancellation of infrared singularities

4.6 Parton evolution

5 Example: Higgs production

5.1 Higgs boson production in gluon fusion

5.2 Higgs boson pair production

5.3 Asymptotic expansions
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