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2 A theoretical particle physicists’ toolbox

2.1 Factorisation

2.2 Cross sections

2.3 Basics of QCD

2.3.1 Colour algebra

2.3.2 QCD Lagrangian

2.3.3 QCD Feynman rules

3 Example: top quark production

4 Higher orders in perturbation theory

4.1 Running coupling and scale dependence

In this section we would like to explain how it arises that theoretical pre-
dictions depend in general on at least one unphysical scale, the so-called
renormalisation scale µ. In the case of hadronic initial state particles, there
is also a factorisation scale µf involved. There can be even more unphysical
scales, like fragmentation scales in the modelling of the fragmentation of fi-
nal state particles into hadrons, parton shower matching scales, resummation
scales, etc.
Let us first motivate how the dependence on a renormalisation scale arises.
We mentioned already that the strong coupling, defined as αs = g2

s/(4π),
is not really a constant. To leading order in the perturbative expansion, it
obeys the relation

αs(Q
2) =

1

b0 log
(
Q2/Λ2

QCD

) , (1)

where ΛQCD is an energy scale below which non-perturbative effects start to
dominate (the scale of bound states formation (hadrons)), and Q2 is a larger
energy scale, for example the centre-of-mass energy s of a scattering process.
The coefficient b0 is given by

b0 =
1

4π

(
11

3
CA −

4

3
TRNf

)
. (2)
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Note that b0 > 0 for Nf < 11/2CA.
Where does the running of the coupling come from? It is closely linked to
renormalisation, which introduces the renormalisation scale µ.
Before we enter into the technicalities, let us look at a physical observable,
for example the R-ratio which we encountered already,

R(s) =
σ(e+e− → hadrons)

σ(e+e− → µ+µ−)
. (3)

We assume that the energy s exchanged in the scattering process is much
larger than ΛQCD.
At leading order in perturbation theory, we have to calculate tree-level dia-
grams for e+e− → ff̄ , which however only represent a crude approximation.
To get a more precise result, we should include quantum corrections, for
example diagrams where virtual gluons are exchanged, such as the ones in
Figs. 1a and 1b, where Fig. 1a shows corrections of order αs and Fig. 1b
shows example diagrams for O(α2

s) corrections. The perturbative expansion
for R can be written as

R(s) = KQCD(s)R0 , R0 = Nc

∑
f

Q2
f θ(s− 4m2

f ) ,

KQCD(s) = 1 +
αs(µ

2)

π
+
∑
n≥2

Cn

(
s

µ2

) (
αs(µ

2)

π

)n
. (4)

The higher the order in αs the harder is the calculation. Meanwhile we know
the Cn up to order α4

s [1, 2].

(a) 1-loop diagram contributing to
e+e− → ff̄ .

(b) 2-loop diagram example contributing
to e+e− → ff̄ .

However, if we try to calculate the loop diagrams, we will realize that some
of the integrals over the loop momentum k are ill-defined. They diverge for
k →∞. This is called an ultraviolet divergence. How to deal with them will
be explained shortly. For the moment we just introduce an arbitrary cutoff
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scale ΛUV for the upper integration boundary. If we carried through the
calculation, we would see that the dependence on the cutoff in diagram 1a
cancels, which is a consequence of the Ward Identity in QED. However, if we
go one order higher in αs, calculating diagrams like the one in Fig. 1b, the
cutoff-dependence does not cancel anymore. We obtain

KQCD(s) = 1 +
αs
π

+
(αs
π

)2
[
c+ b0π log

Λ2
UV

s

]
+O(α3

s) . (5)

It looks like our result is infinite, as we should take the limit ΛUV → ∞.
However, we did not claim that αs is the coupling we measure. In fact, it
is the “bare” coupling, also denoted as α0

s, which appears in Eq. (5), and
we can absorb the infinity in the bare coupling to arrive at the renormalised
coupling, which is the one we measure.
In our case, this looks as follows. Define

αs(µ) = α0
s + b0 log

Λ2
UV

µ2
α2
s , (6)

then replace α0
s by αs(µ) and drop consistently all terms of order α3

s. This
leads to

Kren
QCD(αs(µ), µ2/s) = 1+

αs(µ)

π
+

(
αs(µ)

π

)2 [
c+ b0π log

µ2

s

]
+O(α3

s) . (7)

Kren
QCD is finite, but now it depends on the scale µ, both explicitly and through

αs(µ). However, the hadronic R-ratio is a physical quantity and therefore
cannot depend on the arbitrary scale µ. The dependence of KQCD on µ is
an artefact of the truncation of the perturbative series after the order α2

s.

Renormalisation group and asymptotic freedom

Since the hadronic R-ratio Rren = R0K
ren
QCD cannot depend µ, we know

µ2 d

dµ2
Rren(αs(µ), µ2/Q2) = 0 =

(
µ2 ∂

∂µ2
+ µ2∂αs

∂µ2

∂

∂αs

)
Rren(αs(µ), µ2/Q2) .

(8)
Equation (8) is called renormalisation group equation (RGE). Introducing
the abbreviations

t = ln
Q2

µ2
, β(αs) = µ2∂αs

∂µ2
, (9)
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the RGE becomes (
− ∂

∂ t
+ β(αs)

∂

∂αs

)
R = 0 . (10)

This first order partial differential equation can be solved by implicitly defin-
ing a function αs(Q

2), the running coupling, by

t =

∫ αs(Q2)

αs

dx

β(x)
, with αs ≡ αs(µ

2) . (11)

Differentiating Eq. (11) with respect to the variable t leads to

1 =
1

β(αs(Q2))

∂αs(Q
2)

∂ t
, which implies β(αs(Q

2)) =
∂αs(Q

2)

∂ t
.

The derivative of Eq. (11) with respect to αs gives

0 =
1

β(αs(Q2))

∂αs(Q
2)

∂αs
− 1

β(αs)

∂αs
∂αs
⇒ ∂αs(Q

2)

∂αs
=
β(αs(Q

2))

β(αs)
. (12)

It is now easy to prove that the value of R for µ2 = Q2, R(1, αs(Q
2)), solves

Eq. (10):

− ∂

∂ t
R(1, αs(Q

2)) = − ∂ R

∂αs(Q2)

∂αs(Q
2)

∂ t
= −β(αs(Q

2))
∂ R

∂αs(Q2)
(13)

and

β(αs)
∂

∂αs
R(1, αs(Q

2)) = β(αs)
∂αs(Q

2)

∂αs

∂ R

∂αs(Q2)
= β(αs(Q

2))
∂ R

∂ αs(Q2)
.

(14)

This means that the scale dependence in R enters only through αs(Q
2),

and that we can predict the scale dependence of R by solving Eq. (11), or
equivalently,

∂αs
(
Q2
)

∂ t
= β

(
αs
(
Q2
))
. (15)

We can solve Eq. (15) perturbatively using an expansion of the β-function

β(αs) = −b0α
2
s

[
1 +

∞∑
n=1

bn α
n
s

]
, (16)
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where b0 = β0
4π

and b0b1 = β1
(4π)2

, etc. Explicitly, up to NNLO:

µ2 dαs(µ)

dµ2
= −αs(µ)

[
β0

(
αs(µ)

2π

)
+ β1

(
αs(µ)

2π

)2

+ β2

(
αs(µ)

2π

)3

+O(α4
s)

]
.

The first five coefficients are known [3], where the fifth one has been calcu-
lated only recently [4–8]. The first 3 coefficients (MS-scheme) are

β0 =
11CA − 4TRNF

6
,

β1 =
17C2

A − 10CATRNF − 6CFTRNF

6
,

β2 =
1

432

(
2857C3

A + 108C2
FTRNF − 1230CFCATRNF − 2830C2

ATRNF

+264CFT
2
RN

2
F + 316CAT

2
RN

2
F

)
. (17)

Introducing Λ as integration constant with L = log(µ2/Λ2) yields the follow-
ing solution up to order NNLO:

αs(µ) =
4π

β0L

(
1− β1

β2
0

logL

L
+

1

β2
0L

2

(
β2

1

β2
0

(
log2 L− logL− 1

)
+
β2

β0

))
.

(18)
Truncating the series Eq. (16) at leading order leads to the simple solution
Eq. (1), or, without introducing Λ,

Q2 ∂αs
∂ Q2

=
∂αs
∂ t

= −b0α
2
s ⇒ − 1

αs(Q2)
+

1

αs(µ2)
= −b0 t

⇒ αs(Q
2) =

αs(µ
2)

1 + b0 t αs(µ2)
. (19)

Eq. (19) implies that

αs(Q
2)

Q2→∞−→ 1

b0t

Q2→∞−→ 0 . (20)

This behaviour is called asymptotic freedom: the larger Q2, the smaller the
coupling, so at very high energies (small distances), the quarks and gluons
can be treated as if they were free particles. The behaviour of αs as a function
of Q2 is illustrated in Fig. 2 including recent measurements. Note that the
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Figure 2: The running coupling αs(Q
2). Figure from arXiv:1609.05331.

sign of b0 is positive for QCD, while it is negative for QED. It can be proven
that, in 4 space-time dimensions, only non-Abelian gauge theories can be
asymptotically free. For the discovery of asymptotic freedom in QCD [9,10],
Gross, Politzer and Wilczek got the Nobel Prize in 2004.
Note that in the derivation of the RGE above, we have assumed that the
observable R does not depend on other mass scales like quark masses. How-
ever, the renormalisation group equations can be easily extended to include
mass renormalisation, which will lead to running quark masses:(

µ2 ∂

∂µ2
+ β(αs)

∂

∂αs
− γm(αs)m

∂

∂ m

)
R

(
Q2

µ2
, αs,

m

Q

)
= 0 , (21)

where γm is called the mass anomalous dimension and the minus sign before
γm is a convention. In a perturbative expansion we can write the mass
anomalous dimension as γm(αs) = c0 αs (1 +

∑
n cnα

n
s ) . The coefficients

are known up to c4 [11–14].

Scale uncertainties

From the perturbative solution of the RGE we can derive how a physical
quantity O(N)(µ), expanded in αs as O(N)(µ) =

∑N
n=0 Cn(µ)αn+k

s (µ2) and
truncated at order N in perturbation theory (k is the power of αs at leading

10



Figure 3: Example H → gg for the reduction of the scale dependence at
higher orders. Figure from Ref. [2], see also [8].

order), changes with the renormalisation scale µ:

d

d log(µ2)
O(N)(µ) ∼ O

(
αs(µ

2)N+1
)
. (22)

Therefore it is clear that, the more higher order coefficients cn we can cal-
culate, the less our result will depend on the unphysical scale µ2. Therefore
the dependence of the scale is used to estimate the uncertainty of a result
calculated to a certain order in perturbation theory. Usually the scale is
varied by a factor of two up and down. An example for the reduction of the
scale dependence at higher orders is shown in Fig. 3.

An expansion up to NNLO of an observable O normalised to the LO cross
section σ0 can be written as

1

σ0

dσ

dO
=

(αs
2π

) dC1

dO
+
(αs

2π

)2 dC2

dO
+
(αs

2π

)3 dC3

dO
+O(α4

s) . (23)
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In terms of the running coupling αs(µ), the NNLO expression becomes

1

σ0

dσ

dO
(s, µ2, O) =(

αs(µ)

2π

)
dC1

dO
+

(
αs(µ)

2π

)2(
dC2

dO
+

dC1

dO
β0 log

µ2

s

)
+

(
αs(µ)

2π

)3(
dC3

dO
+ 2

dC2

dO
β0 log

µ2

s
+

dC1

dO

(
β2

0 log2 µ
2

s
+ β1 log

µ2

s

))
+O(α4

s) . (24)

As an example we consider an observable called thrust, shown in Fig. 4.
Thrust is an example of so-called event-shape observables, which describes
how “pencil-like” an event looks like. Events shapes can be defined based on
hadronic tracks in the detector, avoiding jet definitions, and are particularly
useful in e+e− annihilation, where the total energy of the partonic event is
known. Thrust T is defined by

T = max
~n

∑m
i=1 |~pi · ~n|∑m
i=1 |~pi|

, (25)

where ~n is a three-vector (the direction of the thrust axis) such that T is
maximal. The particle three-momenta ~pi are defined in the e+e− centre-of-
mass frame.
Fig. 4 shows several features: 1. the scale dependence is reduced as the
perturbative order increases, 2. the NNLO curve is closest to the data, 3.
the data are still not well described by NNLO. The reasons for the latter
are well understood: The perturbative prediction for the thrust distribution
becomes singular as T → 1, there is also a logarithmic divergence ∼ ln(1−T ).
The latter is characteristic for events shape distributions. In perturbation
theory at nth order logarithms of the form αns lnm(1/(1 − T )) with m ≤ 2n
appear. These spoil the convergence of the perturbative series and should
be “resummed” if we want to make reliable prediction near the phase space
region where T → 1. Furthermore, the so-called power corrections, the terms

of O
(

Λ
Q

)p
in Eq. (??), play a role for this observable.

In hadronic collisions there is another scale, the factorisation scale µf , which
needs to be taken into account when assessing the uncertainty of the theoreti-
cal prediction. Varying both µr and µf simultaneously in the same directions
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Figure 4: One minus thrust distribution at different orders in perturbation
theory, including scale uncertainty bands. Figure from Ref. [15].
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can lead to accidental cancellations and hence underestimation of the per-
turbative uncertainties. Therefore, in the presence of both µr and µf , often
so-called 7-point scale variations are performed, which means µr,f = cr,fµ0,
where cr, cf ∈ {2, 1, 0.5} and where the extreme variations (cr, cf ) = (2, 0.5)
and (cr, cf ) = (0.5, 2) have been omitted.
Still, the question remains what to choose for the central scale µ0. A con-
venient choice is a scale where the higher order corrections are small, i.e. a
scale showing good “perturbative stability”. In Fig. 3, a good choice would
be µ0 ≈ 150 GeV.
Let us now see a few examples where such scale variations do not capture
the true uncertainties. First some prelimiary remarks, along the lines of
Ref. [16]. If there is only one scale µr involved, the the scale dependence
of an observable is given through αs(µr), and we can use the beta-function,
resp. Eq. (18), to move from a result at a scale µ0 to a result at a different
scale. For an observable O, known to order αNs ,

O =
N∑
n=0

Cn(µr)α
n+k
s (µr); ,

where k is the power of αs at leading order, we therefore have (this time not
normalised to the LO cross section)

O = C0α
k
s(µr) +

(
C1 + b0C0 ln

(
µ2
r

µ2
0

))
αk+1
s (µr) +O(αk+2

s ) . (26)

Variations of µr will change the C0-part of the O(αk+2
s ) term, however the

magnitude of C1 can only be known by direct calculation.
To illustrate the improvement in scale uncertainty that may occur at NNLO,
let us consider the corrections up to (N)NLO for an observable as for example
a jet cross section as a function of transverse energy, where k = 2. The
renormalisation scale dependence is entirely predictable,

dσ

dET
= α2

s(µr)C0

+ α3
s(µr) (C1 + 2b0LC0)

+ α4
s(µr)

(
C2 + 3b0LC1 + (3b2

0L
2 + 2b1L)C0

)
(27)

with L = ln(µr/ET ). C0 and C1 are the known LO and NLO coefficients.
Now assume that C2 is an unknown NNLO term (note however that C2 is
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known meanwhile [17,18]). Fig. 5 shows that the scale dependence is system-
atically reduced by increasing the number of terms in the perturbative exp
nsion. At NLO, there is always a turning point where the prediction is insen-
sitive to small changes in µr. If this occurs at a scale far from the typically
chosen values of µr, the NLO K-factor (defined as K = 1 + αs(µr)C1/C0)
will be large. At NNLO the scale dependence is clearly significantly reduced.
However, a more quantitative statement requires knowledge of C2.

Figure 5: Single jet inclusive distribution at ET = 100 GeV and 0.1 < |η| <
0.7 at

√
s = 1800 GeV at LO (green), NLO (blue) and NNLO (red). The solid

and dashed red lines show the NNLO prediction if C2 = 0, C2 = ±C2
1/C0

respectively. Figure from Ref. [16].

For some processes, C1 (and C2) turned out to be pretty large, and the
scale uncertainty bands obtained form 7-point scale variations do not (fully)
overlap between the different orders. One such example is Higgs production
in gluon fusion, known to order N3LO. Fig. 6 shows a very nice stabilisation
of the scale dependence, however the higher order corrections are very large.
The standard scale uncertainty bands are shown in Fig. 7. Among the reasons
for the large K-factors, in particular the NLO K-factor, are large colour
factors and new partonic channels opening up.
In Fig. 8 the µf and µr dependence is shown separately. Usually one can see
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Figure 6: Higgs production in gluon fusion, stabilisation of the scale depen-
dence. Figure from Ref. [19].

that the perturbative series stabilises at latest between NNLO and N3LO.
However, for charged current Drell-Yan production and a central scale of
Q = 100 GeV, shown in Fig. 9, the NNLO and N3LO uncertainty bands do
not overlap.
Looking at the µf dependence separately, one can see that the NNLO band
is accidentally small, see Fig. 10.
Furthermore, the behaviour of the scale uncertainty bands can depend sensi-
tively on the definition of the central scale, see Fig. 11. The different central
scale choices are

• the individual jet transverse momentum pT . This however can lead to
the scale being set to values that are not representative of the scale of
the underlying hard scattering process.

• The leading-jet transverse momentum pT,1, This scale uses the trans-
verse momentum of the hardest jet in the event, which is a better proxy
for the scale of the hard interaction compared to the µ = pT choice.

• The scalar sum of the transverse momenta of all reconstructed jets HT ,
HT =

∑
i∈jets pT,i.

16



Figure 7: Scale uncertainty bands for Higgs production in gluon fusion. Fig-
ure from Ref. [20].

• The scalar sum of the transverse momenta of all partons ĤT : the trans-
verse momentum sum is not based on the reconstructed jets, but instead
obtained as the transverse momentum sum of all partons in the event:
ĤT =

∑
i∈partons pT,i. This scale choice also has the advantage of being

insensitive to the jet reconstruction applied in the analysis and is an
infrared-safe event shape variable.
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Figure 8: Higgs production in bottom quark fusion. Figure from Ref. [21].

Figure 9: Charged current Drell-Yan production, pp → W−. Figure from
Ref. [22].
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Figure 10: Charged current Drell-Yan production, µf -dependence. Figure
from Ref. [22].

Figure 11: Inclusive jet pT spectrum integrated over rapidity at LO (green),
NLO (blue) and NNLO (red) normalised to the NLO prediction as a function
of the central scale choice for cone size R = 0.4. Figure from Ref. [23].
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4.2 Loops and divergences

4.2.1 Dimensional regularisation

Tree level results in QCD are mostly not accurate enough to match the cur-
rent experimental precision and suffer from large scale uncertainties. When
calculating higher orders, we encounter singularities: ultraviolet (UV) sin-
gularities, and infrared (IR) singularities due to soft or collinear massless
particles. Therefore the introduction of a regulator is necessary.
Let us first have a look at UV singularities: The expression for the one-loop
two-point function shown below naively would be

Figure 12: One-loop two-point function (“bubble”).

I2 =

∫ ∞
−∞

d4k

(2π)4

1

[k2 −m2 + iδ][(k + p)2 −m2 + iδ]
. (28)

If we are only interested in the behaviour of the integral for |k| → ∞ we can
neglect the masses, transform to polar coordinates and obtain

I2 ∼
∫

dΩ3

∫ ∞
0

d|k| |k|
3

|k|4 . (29)

This integral is clearly not well-defined. If we introduce an upper cutoff Λ
(and a lower limit |k|min because we neglected the masses and p2, which would
serve as an IR regulator), it is regulated:

I2 ∼
∫ Λ

|k|min

d|k| 1

|k| ∼ log

(
Λ

|k|min

)
. (30)

The integral has a logarithmic UV divergence for Λ → ∞. The problem
with cut-off regularisation with a regulator Λ is that it is neither a Lorentz
invariant nor a gauge invariant way to regulate integrals over loop momenta.
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A regularisation method which preserves the symmetries is dimensional reg-
ularisation.
Dimensional regularisation has been introduced in 1972 by ‘t Hooft and Velt-
man [24] (and by Bollini and Giambiagi [25]) as a method to regularise UV
divergences in a gauge invariant way, thus completing the proof of renormal-
isability.
The idea is to work in D = 4 − 2ε space-time dimensions. Divergences for
D → 4 will appear as poles in 1/ε. This means that the Lorentz algebra ob-
jects (momenta, polarisation vectors, metric tensor) live in a D-dimensional
space. The γ-algebra also has to be extended to D dimensions. How to
treat internal and external Lorentz vectors and the γ-algebra is not unique.
There are several regularisation schemes within dimensional regularisation.
For example, when doing a calculation in supersymmetry, you may not want
to use a scheme where massless bosons have D − 2 polarisation states while
massless fermions have 2 polarisation states. Of course the different schemes
must lead to the same result for physical quantities.
An important feature of dimensional regularisation is that it regulates IR
singularities, i.e. divergences occurring when massless particles become soft
and/or collinear, as well. Ultraviolet divergences occur for loop momenta
k →∞, so in general the UV behaviour becomes better for ε > 0, while the
IR behaviour becomes better for ε < 0. Certainly we cannot have D < 4 and
D > 4 at the same time. What is formally done is to first assume the IR
divergences are regulated in some other way, e.g. by assuming all external
legs are off-shell or by introducing a small mass for all massless particles.
In this case all poles in 1/ε will be of UV nature and renormalisation can
be performed. Then we can analytically continue to the whole complex
D-plane, in particular to Re(D) > 4. If we now remove the auxiliary IR
regulator, the IR divergences will show up as 1/ε poles. (This is however not
done in practice, where all poles just show up as 1/ε poles, and after UV
renormalisation, the remaining poles must be of IR nature.)

Naive degree of divergence

The naive degree of UV divergence ω of an integral can be determined by
power counting: if we work in D dimensions at L loops, and consider an
integral with P propagators and nl factors of the loop momentum belonging
to loop l ∈ {1, . . . , L} in the numerator, we have ω = DL−2P+2

∑
l bnl/2c,

where bnl/2c is the nearest integer less or equal to nl/2. We have logarith-

21



mic, linear, quadratic,. . . overall divergences for ω = 0, 1, 2, . . . and no UV
divergence for ω < 0. This means that in 4 dimensions at one loop, we have
UV divergences in all two-point functions, three-point functions with rank
≥ 2 and four-point functions with rank ≥ 4.
These considerations do not take into account UV subdivergences of multi-
loop integrals, or a reduction of the degree of divergence due to gauge can-
cellations. Therefore ω is called naive or superficial degree of divergence.

In dimensional regularisation, the only change to the Feynman rules to be
made is to multiply the couplings in the Lagrangian by a factor µε: g → gµε,
where µ is an arbitrary mass scale. This ensures that each term in the
Lagrangian has the correct mass dimension. The momentum integration
involves

∫
dDk

(2π)D
for each loop.

D-dimensional treatment of γ5

Extending the Clifford algebra to D dimensions implies

{γµ, γν} = 2 gµν with gµµ = D , (31)

leading for example to γµ/pγ
µ = (2−D)/p. However, it is not obvious how to

continue the Dirac matrix γ5 to D dimensions. In 4 dimensions it is defined
as

γ5 = i γ0γ1γ2γ3 (32)

which is an intrinsically 4-dimensional definition. In 4 dimensions, γ5 has
the algebraic properties γ2

5 = 1, {γµ, γ5} = 0, Tr (γµγνγργσγ5) = 4iεµνρσ.
However, in D dimensions, the latter two conditions cannot be maintained
simultaneously unless we give up cyclicity of the trace whenever an odd
number of γ5 matrices is present in the trace (see Exercise 7). Remember
εµνρσ = 1 if (µνρσ) is an even permutation of (0123), −1 if (µνρσ) is an odd
permutation of (0123) and 0 otherwise.
Therefore we need a prescription how to deal with γ5 in D dimensions. The
most commonly used prescription [24,26–28] for γ5 is to define

γ5 =
i

4!
εµ1µ2µ3µ4γ

µ1γµ2γµ3γµ4 , (33)

where the Lorentz indices of the “ordinary” γ-matrices will be contracted in
D dimensions. Doing so, Ward identities relying on {γ5, γµ} = 0 break down
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due to an extra (D−4)-dimensional contribution. These need to be repaired
by so-called “finite renormalisation” terms [27]. For practical calculations it
can be convenient to split the other Dirac matrices into a 4-dimensional and
a (D − 4)-dimensional part, γµ = γ̄µ + γ̃µ, where γ̄µ is 4-dimensional and γ̃µ
is (D − 4)-dimensional. The definition (33) implies

{γµ, γ5} =

{
0 µ ∈ {0, 1, 2, 3}
2γ̃µγ5 otherwise.

The second line above can also be read as [γ5, γ̃
µ] = 0, which can be inter-

preted as γ5 acting trivially in the non-physical dimensions. There are other
prescriptions for γ5, which maintain {γ(D)

µ , γ5} = 0, but then have to give up
the cyclicity of the trace [29].

4.2.2 One-loop integrals

Integration in D dimensions

We first consider a scalar one-loop diagram with N external legs and N
propagators, as gien in (34). The case with loop momenta in the numerator
(“tensor integrals”) will be treated later. If k is the loop momentum, the
momenta of the propagators are qa = k+ra, where ra =

∑a
i=1 pi. If we define

all momenta as incoming, momentum conservation implies
∑N

i=1 pi = 0 and
hence rN = 0.

pN−1
pN

p1

p2

Figure 13: Generic one-loop integral
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IDN =

∫ ∞
−∞

dDk

iπ
D
2

1∏N
i=1(q2

i −m2
i + iδ)

. (34)

We use the integration measure dDk/iπ
D
2 ≡ dκ to avoid ubiquitous factors

of iπ
D
2 which will arise upon momentum integration.

Feynman parameters

To combine products of denominators of the type dni
i = [(k+ri)

2−m2
i + iδ]ni

into one single denominator, we can use the identity

1

dn1
1 d

n2
2 . . . dnN

N

=
Γ(
∑N

i=1 ni)∏N
i=1 Γ(ni)

∫ ∞
0

N∏
i=1

dzi z
ni−1
i

δ(1−∑N
j=1 zj)

[z1d1 + z2d2 + . . .+ zNdN ]
∑N

i=1 ni

(35)
The integration parameters zi are called Feynman parameters. For generic
one-loop diagrams we have ni = 1 ∀i. Propagator powers ni different from
one become important when we derive relations between integrals.

Schwinger parametrisation

An alternative to Feynman parametrisation is the so-called “Schwinger parametri-
sation”, based on

1

dni
i

=
1

Γ(ni)

∫ ∞
0

dααni−1 exp(−α di), Re(di) > 0 , (36)

which can be derived from the definition of the Γ-function

Γ(t) =

∫ ∞
0

dx xt−1 exp(−x), Re(t) > 0 . (37)

The Gaussian integration formula∫ ∞
−∞

dDrE exp(−α r2
E) =

(π
α

)D
2
, α > 0 (38)

can be used to integrate over the momenta (after Wick rotation) in the
Schwinger parametrisation.
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Simple example: one-loop two-point function

For N = 2, (2-point integral), the Feynman parametrisation is given by

I2 =

∫ ∞
−∞

dκ
1

[k2 −m2 + iδ][(k + p)2 −m2 + iδ]

= Γ(2)

∫ ∞
0

dz1dz2

∫ ∞
−∞

dκ
δ(1− z1 − z2)

[z1 (k2 −m2) + z2 ((k + p)2 −m2) + iδ]2

=

∫ 1

0

dx

∫ ∞
−∞

dκ
1

[k2 + 2xk · p+ xp2 −m2 + iδ]2
, (39)

where we have substituted z1 = (1 − x)u, z2 = x before the last line. As
the momentum integral is shift invariant, we can substitute l = k + xp to
eliminate the term linear in the loop momentum, to arrive at

I2 =

∫ 1

0

dx

∫ ∞
−∞

dDl

iπ
D
2

1

[l2 + p2x(1− x)−m2 + iδ]2
. (40)

For integrals with more external legs the linear term can be eliminated by
an analogous shift of the loop momentum. Therefore, the generic form of a
one-loop integral after Feynman parametrisation and after having performed
the shift to achieve a quadratic form in the loop momentum is given by

IDN = Γ(N)

∫ ∞
0

N∏
i=1

dzi δ(1−
N∑
j=1

zj)

∫ ∞
−∞

dDl

iπ
D
2

[
l2 −R2 + iδ

]−N
(41)

where for N = 2 and both propagators massive we have just derived
R = −p2x(1− x) +m2.
For the general case, one finds

R2 = −1

2

N∑
i,j=1

zi zj Sij with (42)

Sij = (ri − rj)2 −m2
i −m2

j ,

N∑
i=1

zi = 1 . (43)

The matrix Sij, sometimes also called Cayley matrix, is the quantity encod-
ing all the kinematic dependence of the integral. It plays a major role in
the algebraic reduction of tensor integrals or integrals with higher N to sim-
pler objects, as well as in the analysis of the kinematic singularities of the
integrand.
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Figure 14: Integration contour after Wick rotation.

Momentum integration for scalar one-loop N-point integrals

Now we perform the momentum integration for an integral of the form
Eq. (41). Remember that we are in Minkowski space, where l2 = l20 − ~l2,
so temporal and spatial components are not on equal footing. The poles
of the denominator in Eq. (41) are located at l20 = R2 + ~l2 − iδ ⇒ l±0 '
±
√
R2 +~l2 ∓ i δ. Thus the iδ term shifts the poles away from the real axis

in the l0-plane.
For the integration over the loop momentum, we better work in Euclidean
space where l2E =

∑D
i=1 l

2
i . Hence we make the transformation l0 → i l4,

such that l2 → −l2E = l24 + ~l2, which implies that the integration contour in
the complex l0-plane is rotated by 90◦ such that the contour in the complex
l4-plane looks as shown below. This is called Wick rotation. We see that the
iδ prescription is exactly such that the contour does not enclose any poles.
Therefore the integral over the closed contour is zero, and we can use the
identity

∞∫
−∞

dl0f(l0) = i

∞∫
−∞

dl4f(l4) (44)

Our integral now reads

IDN = (−1)NΓ(N)

∫ ∞
0

N∏
i=1

dzi δ(1−
N∑
l=1

zl)

∫ ∞
−∞

dDlE

π
D
2

[
l2E +R2 − iδ

]−N
(45)

Now we can introduce polar coordinates in D dimensions to evaluate the

26



momentum integral.∫ ∞
−∞

dDlE =

∫ ∞
0

dr rD−1

∫
dΩD−1 , r =

√
l2E =

(
4∑
i=1

l2i

) 1
2

(46)

∫
dΩD−1 = V (D) =

2π
D
2

Γ(D
2

)
(47)

where V (D) is the volume of a unit sphere in D dimensions, which we encoun-
tered already in the context of D-dimensional phase space integrals. Thus
we have

IDN = 2(−1)N
Γ(N)

Γ(D
2

)

∫ ∞
0

N∏
i=1

dzi δ(1−
N∑
l=1

zl)

∫ ∞
0

dr rD−1 1

[r2 +R2 − iδ]N

Substituting r2 = x:∫ ∞
0

dr rD−1 1

[r2 +R2 − iδ]N =
1

2

∫ ∞
0

dx xD/2−1 1

[x+R2 − iδ]N (48)

Now the substitution x = zR2 can be done to arrive at

1

2

∫ ∞
0

dx xD/2−1 1

[x+R2 − iδ]N =
1

2

[
R2 − iδ

]D
2
−N
∫ ∞

0

dz zD/2−1 [1 + z]−N .

(49)
Note that we still carry along the−iδ term because it can be useful to indicate
the direction of the analytic continuation when performing the integrals over
the Feynman parameters. As it only indicates an infinitesimal shift, we can
always rescale δ by a positive quantity. The z-integral can be identified as
the Euler Beta-function B(a, b), defined as

B(a, b) =

∫ ∞
0

dz
za−1

(1 + z)a+b
=

∫ 1

0

dy ya−1(1− y)b−1 =
Γ(a)Γ(b)

Γ(a+ b)
, (50)

to finally arrive at

IDN = (−1)NΓ(N − D

2
)

∫ ∞
0

N∏
i=1

dzi δ(1−
N∑
l=1

zl)
[
R2 − iδ

]D
2
−N

. (51)

The integration over the Feynman parameters remains to be done, but for
one-loop applications, the integrals we need to know explicitly have maxi-
mally N = 4 external legs. Integrals with N > 4 can be expressed in terms
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of boxes, triangles, bubbles and tadpoles (in the case of massive propaga-
tors). The analytic expressions for these “master integrals” are well-known.
The most complicated analytic functions which can appear at one loop are
dilogarithms.

The generic form of the derivation above makes clear that we do not have to
go through the procedure of Wick rotation explicitly each time. All we need
(for scalar integrals) is to use the following general formula for D-dimensional
momentum integration (in Minkowski space, and after having performed the
shift to have a quadratic form in the denominator):∫

dDl

iπ
D
2

(l2)r

[l2 −R2 + iδ]N
= (−1)N+rΓ(r + D

2
)Γ(N − r − D

2
)

Γ(D
2

)Γ(N)

[
R2 − iδ

]r−N+D
2

(52)

Example one-loop two-point function

Applying the above procedure to our two-point function, we obtain

I2 = Γ(2− D

2
)

∫ 1

0

dx [−p2 x (1− x) +m2 − iδ ]
D
2
−2 . (53)

For m2 = 0, the result can be expressed in terms of Γ-functions:

I2 =
(
−p2

)D
2
−2

Γ(2−D/2)B(D/2− 1, D/2− 1) , (54)

where the B(a, b) is defined in Eq. (50). The two-point function has an UV
pole which is contained in

Γ(2−D/2) = Γ(ε) =
1

ε
− γE +O(ε) , (55)

where γE is “Euler’s constant”, γE = lim
n→∞

(
n∑
j=1

1
j
− lnn

)
= 0.5772156649 . . ..

Including the factor g2µ2ε which usually comes with the loop, and multiplying

by iπ
D
2

(2π)D
for the normalisation conventions, we obtain

g2µ2ε iπ
D
2

(2π)D
I2 = (4π)ε i

g2

(4π)2 Γ(ε)
(
−p2/µ2

)−ε
B(1− ε, 1− ε) . (56)

Remarks:
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• As the combination ∆ = 1
ε
− γE + ln(4π) always occurs in combina-

tion with a pole, in the so-called MS subtraction scheme (“modified
Minimal Subtraction”), the whole combination ∆ is subtracted in the
renormalisation procedure.

• Scaleless integrals (i.e. integrals containing no dimensionful scale like
masses or external momenta) are zero in dimensional regularisation, we
use ∫ ∞

−∞

dDk

k2ρ
= 0 . (57)

Tensor integrals

If we have loop momenta in the numerator, the integration procedure is essen-
tially the same, except for combinatorics and additional Feynman parameters
in the numerator. The substitution k = l − Q introduces terms of the form
(l − Q)µ1 . . . (l − Q)µr into the numerator of eq. (41). As the denominator
is symmetric under l → −l, only the terms with even numbers of lµ in the
numerator will give a non-vanishing contribution upon l-integration. We can
use a form factor representation of a tensor integral, where the Lorentz struc-
ture has been extracted, each Lorentz tensor multiplying a scalar quantity,
the form factor.
Historically, tensor integrals occurring in one-loop amplitudes were reduced
to scalar integrals using so-called Passarino-Veltman reduction [30]. It is
based on the fact that at one loop, scalar products of loop momenta with
external momenta can always be expressed as combinations of propagators.
The problem with Passarino-Veltman reduction is that it introduces powers
of inverse Gram determinants 1/(detG)r for the reduction of a rank r tensor
integral. This can lead to numerical instabilities upon phase space integration
in kinematic regions where detG→ 0.

Example for Passarino-Veltman reduction:
Consider the form factor representation of a rank one three-point integral

ID,µ3 =

∫ ∞
−∞

dκ
kµ

[k2 + iδ][(k + p1)2 + iδ][(k + p1 + p2)2 + iδ]
= A1 r

µ
1 + A2 r

µ
2

r1 = p1 , r2 = p1 + p2 .
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Contracting with r1 and r2 and using the identities

k · ri =
1

2

[
(k + ri)

2 − k2 − r2
i

]
, i ∈ {1, 2}

we obtain, after cancellation of numerators(
2 r1 · r1 2 r1 · r2

2 r2 · r1 2 r2 · r2

)(
A1

A2

)
=

(
R1

R2

)
(58)

R1 = ID2 (r2)− ID2 (r2 − r1)− r2
1I3(r1, r2)

R2 = ID2 (r1)− ID2 (r2 − r1)− r2
2I3(r1, r2) .

Solving for the form factors A1 and A2 we see that the solution involves the
inverse of the Gram matrix Gij = 2 ri · rj.
Libraries where the scalar integrals and tensor one-loop form factors can be
obtained numerically:

• LoopTools [31, 32]

• OneLoop [33]

• golem95 [34–36]

• Collier [37]

• Package-X [38]

Scalar integrals only: QCDLoop [39, 40].

The calculation of one-loop amplitudes with many external legs is most ef-
ficiently done using “unitarity-cut-inspired” methods, for a review see e.g.
Ref. [41]. One of the advantages is that it allows (numerical) reduction at in-
tegrand level (rather than integral level), which helps to avoid the generation
of spurious terms which can blow up intermediate expressions.

4.3 Cancellation of infrared singularities

4.3.1 Structure of NLO calculations

Next-to-leading order calculations consist of several parts, which can be clas-
sified as virtual corrections (containing usually one loop), real corrections
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(radiation of extra particles relative to the leading order) and subtraction
terms to deal with singularities. In the following we will assume that the
virtual corrections already include UV renormalisation, such that the sub-
traction terms only concern the subtraction of the infrared (IR) singularities.
IR singularities occur when a massless particle becomes soft (low energy) or
when two massless particles become collinear to each other.
We will consider “NLO” as next-to-leading order in an expansion in the
strong coupling constant αs. The general structure is very similar for elec-
troweak corrections. The real and virtual contributions to the simple example
γ∗ → qq̄ are shown in Fig. 15.

+ + virtual

+ real

Figure 15: The real and virtual NLO contributions to γ∗ → qq̄.

IfM0 is the leading order (LO) amplitude (also called Born amplitude) and
Mvirt,Mreal are the virtual and real NLO amplitudes as shown in Fig. 15,
the corresponding cross section is given by

σNLO =

∫
dφ2 |M0|2︸ ︷︷ ︸
σLO

+

∫
R

dφ3 |Mreal|2 +

∫
V

dφ2 2Re (MvirtM∗
0) . (59)

The sum of the integrals
∫
R

and
∫
V

above is finite. However, this is not true
for the individual contributions. The real part contains divergences due to
soft and collinear radiation of massless particles. While Mreal itself is a tree
level amplitude and thus finite, the divergences show up upon integration
over the phase space dΦ3. In

∫
V

, the phase space is the same as for the Born
amplitude, but the loop integrals in Mvirt contain IR singularities.
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Let us anticipate the answer, which we will (partly) calculate later. We find:

σR = σBornH(ε)CF
αs
2π

(
2

ε2
+

3

ε
+

19

2
− π2

)
, (60)

σV = σBornH(ε)CF
αs
2π

(
− 2

ε2
− 3

ε
− 8 + π2

)
,

where H(ε) = 1 + O(ε), and the exact form is irrelevant here, because the
poles in ε all cancel! This must be the case according to the KLN theorem
(Kinoshita-Lee-Nauenberg) [42,43]. It says that

IR singularities must cancel when summing the transition rate over all de-
generate (initial and final) states.

In our example, we do not have initial state singularities. However, in the
final state we can have a massless quark accompanied by a soft gluon, or a
collinear quark-gluon pair. Such a state cannot be distinguished from just
a quark state, and therefore is “degenerate”. Only when summing over all
the final state multiplicities contributing to the cross section at a given order
in αs, the divergences cancel. Another way of stating this is by looking
at the squared amplitude at order αs and considering all cuts, see Fig. 16
(contributions which are zero for massless quarks are not shown). The KLN
theorem states that the sum of all cuts leading to physical final states is free
of IR poles.

+ + +

Figure 16: The sum over cuts of the amplitude squared shown above is finite
according to the KLN theorem.

The cancellations between
∫
R

and
∫
V

in Eq. (59) are non-trivial, because the
phase space integrals contain a different number of particles in the final state.
Methods trying to exploit the KLN-cancellations at integrand level, mostly
based on loop-tree-duality [44,45], also exist. They rely on numerical integrals
over 4-dimensional momenta, arranging the loop momentum integration such
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that it can be combined with the phase space integration over the real radi-
ation, in a way that enforces the cancellations of the IR singularities locally.
However these methods are numerically very challenging.

Infrared safety

If we want to calculate a prediction for a certain observable, based on an
n-particle final state, we need to multiply the amplitude by a measurement
function J(p1 . . . pn). The measurement function can contain for example a
jet definition, or the definition of thrust, or it defines the transverse momen-
tum distribution of a final state particle. Schematically, the structure of the
NLO cross section then is the following. In the real radiation part, we have
n+ 1 particles in the final state. Therefore the measurement function in the
real radiation part must depend on n+ 1 particles. Let us consider the case
where we have an IR pole if the variable x, denoting for example the energy
of an extra gluon with momentum pn+1 in the real radiation part, goes to
zero. If we define

Bn =

∫
dφn |M0|2 =

∫
dφnBn

Vn =

∫
dφn 2Re (MvirtM∗

0) =

∫
dφn

Vn
ε

Rn =

∫
dφn+1 |Mreal|2 =

∫
dφn

∫ 1

0

dx x−1−εRn(x) (61)

and a measurement function J(p1 . . . pn, pn+1) we have

σNLO =

∫
dφn

{(
Bn +

Vn
ε

)
J(p1 . . . pn, 0) +

∫ 1

0

dx x−1−εRn(x) J(p1 . . . pn+1)

}
.

(62)

In the inclusive case (calculation of the total cross section) we have J ≡ 1.
The integration over x leads to the explicit 1/ε poles which must cancel with
the virtual part:∫ 1

0

dx x−1−εRn(x) = −Rn(0)

ε
+

∫ 1

0

dx x−ε
Rn(x)−Rn(0)

x
(63)

The cancellation of the poles between Vn
ε

and Rn(0)
ε

in the non-inclusive case
will only work if

lim
pn+1→0

J(p1 . . . pn, pn+1) = J(p1 . . . pn, 0) . (64)
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This is a non-trivial condition for the definition of an observable, for exam-
ple a jet algorithm, and is called infrared safety. The formulation above is
taylored to the soft limit where all components of pn+1 go to zero, however
an analogous condition must hold if two momenta become collinear.
As mentioned above, the measurement function is also important if we define
differential cross sections dσ/dX (also called distributions), for example the
transverse momentum distribution dσ/dpT of one of the final state particles.
In this case we have J(p1 . . . pn) = δ(X − χn(pi)), where χn(pi) is the defi-
nition of the observable, based on n partons. Again, infrared safety requires
χn+1(pi) → χn if one of the pi becomes soft or two of the momenta become
collinear to each other.

4.3.2 Soft gluon emission

Soft gluon emission is very important in QCD. In contrast to the collinear
case, soft gluons are insensitive to the spin of the partons. The only feature
they are sensitive to is the colour charge.
To see this, consider the amplitude for the second line in Fig. 15, with mo-
mentum k and colour index a for the gluon, and momenta and colour indices
p, i (p̄, j) for the quark (antiquark). The amplitude for massless quarks is
given by

Ma,µ
ij = taij gs µ

εū(p) 6 ε(k)
6 p+ 6 k

(p+ k)2
Γµv(p̄)− taij gs µεū(p)Γµ

6 p̄+ 6 k
(p̄+ k)2

6 ε(k)v(p̄) ,

(65)

where Γµ describes a general interaction vertex with the photon, in our case
Γµ = γµ. Now we take the soft limit, which means that all components of k
are much smaller than p and p̄, thus neglecting factors of 6 k in the numerator
and k2 in the denominator. Using the Dirac equation leads to

Ma,µ
ij,soft = gs µ

ε taij ū(p) Γµ v(p̄)

(
2ε(k) · p

2p · k − 2ε(k) · p̄
2p̄ · k

)
= gs µ

ε Ja,νij (k)εν(k)Mµ
Born , Mµ

Born = ū(p)Γµv(p̄) . (66)

We see that the amplitude factorises completely into the product of the Born
amplitude and the soft gluon current

Ja,νij (k) =
∑
r=p,p̄

T̃ aij
rν

r · k , (67)
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In our example T̃ aij = taij for r = p and T̃ aij = −taij for r = p̄. This type of
factorisation actually holds for an arbitrary number of soft gluon emissions,
and can be obtained using the “soft Feynman rules” shown in Fig. 17.

a, µ

p, j p, i
= gs taij 2p

µ

a, µ

c, ν b, ρ
i gs f abc 2pµ gνρ=

Figure 17: The Feynman rules for gluon emission in the soft limit.

Following the standards set by Refs. [46, 47], the soft gluon current is more
conveniently expressed in terms of colour charge operators Ti, where i now
labels the parton i emitting a gluon (not its colour index). The action of T i

onto the colour space is defined by

〈a1, . . . , ai, . . . , am, a |T i|b1, . . . , bi, . . . , bm〉 = δa1b1 ....T
a
aibi

. . . δambm , (68)

where T akl ≡ takl (SU(3) generator in the fundamental representation) if the
emitting particle i is a quark. In the case of an emitting antiquark T akl ≡
t̄akl = −talk. If the emitting particle i is a gluon, T abc ≡ −ifabc (SU(3) generator
in the adjoint representation).
Then we can write down the universal behaviour of the matrix element
M(k, p1, . . . , pm) in the limit where the momentum k of the gluon becomes
soft. Denoting by a and εµ(k) the colour and the polarisation vector of the
soft gluon, the matrix element fulfils the following factorisation formula:

Ma(k, p1, . . . , pm) ' gs µ
εεµ(k) Jaµ(k)M(p1, . . . , pm) , (69)

where Ma(p1, . . . , pm) is obtained from the original matrix element by re-
moving the soft gluon k. The factor Jµ(k) is the soft-gluon current

Jµ(k) =
m∑
i=1

T i
pµi
pi · k

, (70)

which depends on the momenta and colour charges of the hard partons in the
matrix element on the right-hand side of Eq. (69). The symbol ‘' ’ means
that on the right-hand side we have neglected contributions that are less
singular than 1/|k| in the soft limit k → 0.
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Squaring Eq. (69) and summing over the gluon polarisations leads to the
universal soft-gluon factorisation formula at O(αs) for the squared ampli-
tude [46]

|M(k, p1, . . . , pm)|2 ' −g2
s µ

2ε 2
m∑

i,j=1

Sij(k) |M(i,j)(p1, . . . , pm)|2 , (71)

where the factor

Sij(ps) =
pi · pj

2 (pi · ps) (pj · ps)
=

sij
sis sjs

(72)

is called Eikonal factor. It can be generalised to the emission of n soft gluons
and plays an important role in resummation.
The colour correlations produced by the emission of a soft gluon are taken
into account by the square of the colour-correlated amplitude |M(i,j)|2, given
by

|M(i,j)(p1, . . . , pm)|2 (73)

≡ 〈M(p1, . . . , pm) |T i · T j |M(p1, . . . , pm)〉
=
(
Mc1..bi...bj ...cm(p1, . . . , pm)

)∗
T abidi T

a
bjdj
Mc1..di...dj ...cm(p1, . . . , pm) .

The angular brackets in the second line denote a basis in colour space.

4.3.3 Collinear singularities

Let us come back to the amplitude for the real radiation given in Eq. (65).
In a frame where p = Ep(1,~0

(D−2), 1) and k = k0(1,~0(D−3) sin θ, cos θ), the
denominator (p+ k)2 is given by

(p+ k)2 = 2k0Ep (1− cos θ) → 0 for

{
k0 → 0 (soft)
θ → 0 (collinear)

(74)

Note that if the quark line was massive, p2 = m2, we would have

(p+ k)2 −m2 = 2k0Ep (1− β cos θ) , β =
√

1−m2/E2
p

and thus the collinear singularity would be absent. This is why it is sometines
also called mass singularity, since the propagator only can become collinear
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⊗=⇒ a

b

c

Figure 18: Factorisation in the collinear limit.

divergent if the partons are all massless, while the soft singularity is present
irrespective of the quark mass.
The important point to remember is that in the collinear limit, we also have
a form of factorisation, shown schematically in Fig. 18.
The universal factorisation behaviour can be described as

|Mm+1|2 dΦm+1 → |Mm|2dΦm
αs
2π

dk2
⊥

k2
⊥

dφ

2π
dz Pa→bc(z) . (75)

The function Pa→bc(z) is the so-called Altarelli-Parisi splitting function de-
scribing the splitting of parton a into partons b and c, and z is the momentum
fraction of the original parton a taken away by parton b after emission of c.
For example, consider collinear gluon emission off a quark:

θ
p

(1 − z) p

z p

Figure 19: Gluon emission leading to Pq→qg(z).

The corresponding Altarelli-Parisi splitting function for z < 1 is given by

Pq→qg(z) = CF
1 + z2

1− z , (76)

and is often just denoted as Pqq(z). The other possible splitting functions
have the following form:

Pq→gq(z) = CF
1 + (1− z)2

z
, (77)

Pg→qq̄(z) = TR
(
z2 + (1− z)2

)
, Pg→gg(z) = CA

(
z (1− z) +

z

1− z +
1− z
z

)
.
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We will come back to them later when we discuss parton distribution func-
tions.

To see how the factorisation formula Eq. (75) comes about, a convenient
parametrisation of the gluon momentum k is the so-called Sudakov parametri-
sation:

kµ = (1− z) pµ + β nµ + kµ⊥ , (78)

k+ = k · n = (1− z) p · n , k− = k · p = − k2
⊥

2(1− z)
,

where nµ is a light-like vector with p · n 6= 0 and k⊥ · n = 0, and β can be
determined by the requirement that k must be light-like:

k2 = 0 = 2(1− z) β p · n+ k2
⊥ ⇒ β = − k2

⊥
2 p · n (1− z)

, (79)

and therefore (p− k)2 = k2
⊥/(1− z). The part of the phase space due to the

gluon emission then reads (in 4 dimensions, for D dimensions see below)

dΦk ≡
d4k

(2π)3
δ(k2) =

1

8π2

dφ

2π

dk+

2k+
dk2
⊥ =

1

16π2

dz

(1− z)
dk2
⊥ . (80)

In this parametrisation, the soft gluon limit is z → 1, the collinear singularity
occurs for k2

⊥ → 0.

4.4 Example: e+e− → qq̄ at NLO

Now let us see explicitly in the e+e− → qq̄ example how the singularities
manifest themselves as 1/ε poles when we integrate over the D-dimensional
phase space.
Using

dΦ1→3 = (2π)3−2D 2−1−D(Q2)D−3 dΩD−2 dΩD−3 dy1 dy2 dy3 (81)

(y1 y2 y3)D/2−2 Θ(y1) Θ(y2) Θ(y3) δ(1− y1 − y2 − y3)

we are in the position to calculate the full real radiation contribution. The
matrix element (for one quark flavour with charge Qf ) in the variables defined
above Eq. (??), where p3 in our case is the gluon, is given by

|M|2real = CF e
2Q2

fg
2
s 8 (1− ε)

{
2

y2y3

+
−2 + (1− ε)y3

y2

+
−2 + (1− ε)y2

y3

− 2ε

}
.

(82)
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In our variables, soft singularities mean gluon momentum p3 → 0 and there-
fore both y2 and y3 → 0. p3 ‖ p1 means y2 → 0 and p3 ‖ p2 means y3 → 0.

Combined with the factors (y2 y3)D/2−2 from the phase space it is clear that
the first term in the bracket of Eq. (82) will lead to a 1/ε2 pole, coming
from the region in phase space where soft and collinear limits coincide. To
eliminate the δ-distribution, we make the substitutions

y1 = 1− z1, y2 = z1z2, y3 = z1(1− z2) , det J = z1

to arrive at∫
dΦ3|M|2real = αCF

αs
π
Q2
f H̃(ε) (Q2)1−2ε

∫ 1

0

dz1

∫ 1

0

dz2 z
−2ε
1

(
z2(1− z1)(1− z2)

)−ε
{

2

z1z2(1− z2)
+
−2 + (1− ε)z1(1− z2)

z2

+
−2 + (1− ε)z1z2

1− z2

− 2εz1

}
.

(83)

The integrals can be expressed in terms of Euler Beta-functions and lead to
the result quoted in Eq. (60).

4.5 Parton evolution

4.5.1 Deeply inelastic scattering

In the previous section we have only considered leptons in the initial state
(e+e− annihilation). Now we consider the case where we have an electron-
proton collider, like for example HERA (at DESY Hamburg), which operated
until 2007 and offered unique opportunities to study the proton structure.
We consider the scattering of leptons off the proton, as depicted in Fig. 20,
in a kinematic regime where the squared momentum transfer Q2 is large
compared to the proton mass squared (M ∼ 1 GeV), so we consider deeply
inelastic scattering. The relations between the involved momenta and kine-
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e−(k) θ

e−(k′)

p(P )
X

q

Figure 20: Deeply inelastic scattering, partonic picture. Figure from
Ref. [48].

matic variables are

s = (P + k)2 [cms energy]2

qµ = kµ − k′µ [momentum transfer]

Q2 = −q2 = 2MExy

x =
Q2

2P · q [scaling variable]

ν =
P · q
M

= E − E ′ [energy loss]

y =
P · q
P · k = 1− E ′

E
[relative energy loss] . (84)

The cross section for e(k) + p(P )→ e(k′) +X can be written as

dσ =
∑
X

1

4ME

∫
dΦ

1

4

∑
spins

|M|2 . (85)

We can factorise the phase space and the squared matrix element into a
leptonic and a hadronic part:

dΦ =
d3k′

(2π)32E ′
dΦX ,

1

4

∑
spins

|M|2 =
e4

Q4
LµνHµν . (86)

Then the hadronic part of the cross section can be described by the dimen-
sionless Lorentz tensor Wµν = 1

8π

∑
X

∫
dΦXHµν . As it depends only on two
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momenta P µ and qµ, the most general gauge and Lorentz invariant expression
must be of the form

Wµν(P, q) =

(
−gµν +

qµqν
q2

)
W1(x,Q2)

+

(
Pµ − qµ

P · q
q2

)(
Pν − qν

P · q
q2

)
W2(x,Q2)

P · q , (87)

where the structure functions Wi(x,Q
2) are dimensionless functions of the

scaling variable x and the momentum transfer Q2.
For the leptonic part we use the relations E ′ = (1− y)E, cos θ = 1− xyM

(1−y)E

to change variables to the so-called scaling variable x and the relative energy
loss y

d3k′

(2π)32E ′
=

dφ

2π

E ′

8π2
dE ′ d cos θ =

dφ

2π

yME

8π2
dy dx ,

and compute the trace Lµν = 1
2
Tr[ 6 kγµ 6 k′γν ] = kµk′ν + kνk′µ − gµνk · k′ .

Then the differential cross section in x and y is obtained from Eq. (85) as

d2σ

dx dy
=

4πα2

y Q2

[
y2W1(x,Q2) +

(
1− y
x
− xyM

2

Q2

)
W2(x,Q2)

]
.

In the scaling limit, defined by Q2 → ∞ with x fixed, we use W1 →
−F1,W2 → F2, neglect the term ∼M2/Q2 and obtain

d2σ

dx dy
=

4πα2

y Q2

[(
1 + (1− y)2

)
F1 +

1− y
x

(
F2 − 2xF1

)]
. (88)

The functions F1 and F2 are called “structure functions”, where the combina-
tion FL = F2−2xF1 is also called the longitudinal structure function because
it is related to the absorption of a longitudinally polarised virtual photon.
They were first measured by the SLAC-MIT experiment (USA) in 1970, and
have been measured very accurately at the HERA collider. The interesting
feature is that, in the scaling limit, 2xF1 → F2 and F2 becomes independent
of Q2, F2(x,Q2) → F2(x), a feature which is often called Bjorken scaling.
The Callan-Gross relation F2(x) = 2xF1(x) which reflects that this scaling
can be derived from the assumption that the photon scatters at point-like
spin-1/2 particles. The observation of Bjorken scaling was very important to
establish the quark model. How the scaling looks in experiment is shown in
Fig. 21, where we observe that the scaling violations increase at small x. We
will see in the following that scaling is violated at higher orders.
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Figure 21: The structure function F2 for different values of Q2. Figure from
Ref. [49].

4.5.2 Proton structure in the parton model

Now let us assume the proton consists of free quarks and the lepton ex-
changes a hard virtual photon with one of those quarks as shown in Fig. 20.
The struck quark carries a momentum pµ, which is a fraction of the proton
momentum, pµ = ξP µ, so we consider the process e(k)+q(p)→ e(k′)+q(p′).
The corresponding cross section is

σ̂ =
1

2ŝ

∫
dΦ2

1

4

∑
spins

|M|2 . (89)

with ŝ = (p + k)2. The “hat” indicates that we consider the partonic cross
section. The squared matrix element is proportional to the product of the
lepton tensor Lµν and a quark tensor Qµν = 1

2
Tr[ 6 pγµ 6 p′γν ] = pµp′ν +pνp′µ−
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gµνp · p′, leading to LµνQµν = 2(ŝ2 + û2), where û = (p− k′)2 = −2p · k′. As
y = Q2/ŝ we can derive, using û2 = (1− y)2ŝ2,

1

4

∑
spins

|M|2 =
e2
qe

4

Q4
LµνQµν = 2e2

qe
4 ŝ

2

Q4

(
1 + (1− y)2

)
. (90)

Using p′2 = 2p · q − Q2 = Q2(ξ/x − 1), the two-particle phase space (in 4
dim.) can be written as (see Exercise 7)

dΦ2 =
d3k′

(2π)32E ′
d4p′

(2π)3
δ
(
p′ 2
)

(2π)4 δ(4)(k + p− k′ − p′) =
dφ

(4π)2
dy dx δ(ξ−x) .

(91)
The differential cross section in x and y for one quark flavour is then given
by

d2σ̂

dx dy
=

4πα2

yQ2

[
1 + (1− y)2

] 1

2
e2
qδ(ξ − x) . (92)

Comparing Eqs. (88) and (92), we find the parton model predictions

F̂1(x) ∝ e2
qδ(ξ − x) , F2 − 2xF1 = 0 . (93)

The above relations are called Callan-Gross relations. Thus the structure
functions probe the quark constituents of the proton with ξ = x. However,
this prediction cannot be the end of the story because experimentally, we
observe that F2 does depend on Q2, as can be seen from Fig. 21, even though
the dependence is not strong.
To see how the Q2 dependence comes in, let us define the following:

fi(ξ)dξ is the probability that a parton (q, q̄, g) with flavour i carries a mo-
mentum fraction of the proton between ξ and ξ + δξ.

The function fi(ξ) is called parton distribution function (PDF).

Using the relations dy = dQ2/ŝ and δ(ξ − x) = 1
ξ
δ
(

1− x
ξ

)
, we can write

the full cross section as a combination of the PDF and the differential cross
section (92),

d2σ

dx dQ2
=

∫ 1

x

dξ

ξ

∑
i

fi(ξ)
d2σ̂

dx dQ2

(
x

ξ
,Q2

)
. (94)

43



This means that the cross section is a convolution of a long-distance compo-
nent, the parton distribution function fi(ξ) for a parton of type i, and a short-
distance component, the partonic hard scattering cross section σ̂. This form
is highly non-trivial, because it means that we can separate short-distance ef-
fects, which are calculable in perturbation theory, from long-distance effects,
which belong to the domain of non-perturbative QCD and have to be mod-
elled and fitted from data (or calculated by lattice QCD if possible). This
factorisation, shown schematically in Fig. 22, can be proven rigorously in
DIS using operator product expansion, and less rigorously in hadron-hadron
collisions. It also holds once higher orders in αs are taken into account (in
a form which we will discuss below). Factorisation only holds for large Q2,
it has corrections which are suppressed by powers of order (Λ/Q)p (called
“power corrections”).

Figure 22: Deeply inelastic scattering, partonic picture of factorisation. Fig-
ure by F. Maltoni.

According to eqs. (88) and (94), we find in the näıve parton model

F2(x) = 2xF1(x) =
∑
i

∫ 1

0

dξ fi(ξ)x e
2
qi
δ(x− ξ) = x

∑
i

e2
qi
fi(x) . (95)

For a proton probed at a scale Q, we expect it consists mostly of uud. Writing
fi(x) = u(x), d(x) etc. for i = u, d, . . . we have in the näıve parton model

F proton
2 (x) = x

[4

9

(
u(x) + ū(x)

)
+

1

9

(
d(x) + d̄(x)

)]
. (96)
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If we define the so-called “valence quarks” uv(x)uv(x)dv(x),

u(x) = uv(x) + ū(x) , d(x) = dv(x) + d̄(x) , s(x) = s̄(x) ,

we expect the “sum rules”∫ 1

0

dxuv(x) = 2 ,

∫ 1

0

dx dv(x) = 1 ,

∫ 1

0

dx (s(x)− s̄(x)) = 0 . (97)

In Figs. 23 and 24 it is illustrated that the smaller x and the larger Q2, the
more the “sea quarks” and gluons in the proton are probed. In fact, it turns
out that

∑
i=q,q̄

∫ 1

0
dx xfi/p(x) ' 0.5, so quarks carry only about half of the

momentum of the proton. We know that the other half is carried by gluons,
but clearly the näıve parton model is not sufficient to describe the gluon
distribution in the proton.

Figure 23: Parton distribution functions in the proton as a function of x.
Source: Particle Data Group.

4.5.3 Proton structure in perturbative QCD

To see what happens in the “QCD-improved” parton model, we will en-
counter again IR singularities and splitting functions. Let us denote the
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Figure 24: Proton structure depending on how well it can be resolved.
Source: Utrecht University.

hard scattering cross section by σh. For final state radiation, we found that
the IR singularities due to soft and collinear configurations cancel against IR
divergences in the virtual correction for infrared safe quantities.
If there is a coloured parton in the initial state, the splitting may occur before
the hard scattering, such that the momentum of the parton that enters the
hard process is reduced to xpµ.

θ
p

(1 − x)p

xp σh

σh+g(p) ' σh(xp) 2CF
αs
π

dE

E

dθ

θ
→ σh(xp)CF

αs
π

dx (1−x)−1−ε dk2
⊥ (k2

⊥)−1−ε .

Integrating over x up to one and over k⊥ we find a soft and collinear di-
vergence. The corresponding ε poles multiply σh(xp), while in the virtual
correction the poles multiply σh(p), irrespective whether the IR divergence
is in the initial or final state:

p
σh

σh+V ' −σh(p)CF
αs
π

dx (1− x)−1−ε dk2
⊥ (k2

⊥)−1−ε .

The sum of the real and virtual corrections contains an uncanceled singular-
ity!

σh+g + σh+V ' CF
αs
π

∫ Q2

0

dk2
⊥ (k2

⊥)−1−εdx (1− x)−1−ε[σh(xp)− σh(p)]︸ ︷︷ ︸
finite

,

(98)
Note that the soft singularity for x→ 1 vanishes in the sum of real and vir-
tual parts. The uncanceled collinear singularity in the initial state however
remains. Fortunately its form is universal, i.e. independent of the details of
the hard scattering process, only dependent on the type of parton splittings.
Therefore we can also eliminate it in a universal way: It is absorbed into
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“bare” parton densities, f
(0)
i (x), such that the measured parton densities are

the “renormalised” ones. This procedure is very similar to the renormalisa-
tion of UV divergences and introduces a scale µf , the factorisation scale, into
the parton densities. Let us see how this works for the structure function
F2. We first consider the partonic structure functions F̂2,q, F̂2,g, where the
subscript q indicates that a quark is coming out of the proton, analogous for
a gluon g. Note that a gluon coming from the proton does not interact with
a photon, therefore the gluonic contribution is zero at leading order, but it
will appear at order αs because the gluon can split into a qq̄ pair and then
one of the quarks interacts with the photon. Therefore we have

F̂2,q(x) =
d2σ̂

dx dQ2

∣∣∣∣
F2

= e2
qx

[
δ(1−x)+

αs

4π

(
−
(
Q2

µ2

)−ε
1

ε
Pq→qg(x) + Cq

2(x)

)]
,

(99)

and

F̂2,g(x) =
d2σ̂

dx dQ2

∣∣∣∣
F2

=
∑
q

e2
qx

[
0+

αs
4π

(
−
(
Q2

µ2

)−ε
1

ε
Pg→qq̄(x) + Cg

2 (x)

)]
,

(100)

where Pj→ik(x) is the Altarelli-Parisi splitting function (regularised at x =
1) which we already encountered when discussing collinear singularities. It
denotes the probability that a parton j splits collinearly into partons i and
k, with i carrying a momentum fraction x of the original parton j. Note that
the type of parton k is fixed by i and j. Therefore i and j are sufficient to
label the splitting functions. For the labelling different conventions are in
use. They are summarised in Table 1. C2(x) is the remaining finite term,
sometimes called coefficient function. The partonic scattering function F̂2 is
not measurable, only the structure function is physical. Therefore we have
to form the convolution of the partonic part with the parton distribution
functions.
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Pij(x) Pj→ik(x) Pi/j(x)
Pqq(x) Pq→qg(x) Pq/q(x)
Pgq(x) Pq→gq(x) Pg/q(x)
Pqg(x) Pg→qq̄(x) Pq/g(x)
Pgg(x) Pg→gg(x) Pg/g(x)

Table 1: Translation between different conventions for the labelling of the
splitting functions, see also Fig. 25.

j

k

j
j j

Pgq(x) Pqg(x) Pgg(x)Pqq(x)

i i i ixp
p

xp

Figure 25: Splitting functions with labelling.

F2,q(x,Q
2) = x

∑
i

e2
qi

[
f

(0)
i (x)

+
αs
2π

∫ 1

x

dξ

ξ
f

(0)
i (ξ)

(
−
(
Q2

µ2

)−ε
1

ε
Pq→qg

(
x

ξ

)
+ Cq

2

(
x

ξ

))]
.

(101)

Now we absorb the singularity into the parton distribution function (PDF)
by the definition

fi(x, µ
2
f ) = f

(0)
i (x) +

αs
2π

∫ 1

x

dξ

ξ

{
f

(0)
i (ξ)

[
−1

ε

(
µ2
f

µ2

)−ε
Pq→qg

(
x

ξ

)
+Kqq

]}
,

(102)
where Kqq denotes finite terms depending on the regularisation scheme. Then
the structure function becomes

F2,q(x,Q
2) =x

∑
i

e2
qi

∫ 1

x

dξ

ξ
fi(ξ, µ

2
f ) ×{

δ(1− x

ξ
) +

αs(µr)

2π

[
Pq→qg

(
x

ξ

)
ln
Q2

µ2
f

+
(
Cq

2 −Kqq

)]}
=x
∑
i

e2
qi

∫ 1

x

dξ

ξ
fi(ξ, µ

2
f ) F̂2,i(

x

ξ
,Q2, µr, µf ) . (103)
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Defining a convolution in x-space by f ⊗x g ≡
∫ 1

x
dξ
ξ
f(ξ) g

(
x
ξ

)
, we see that

the structure function is factorised in the form of a convolution,

F2,q(x,Q
2) = x

∑
i

e2
qi
fi(µf )⊗x F̂2,i(µr, t) with t = ln

Q2

µ2
f

. (104)

The long distance physics is factored into the PDFs which depend on the
factorisation scale µf . The short distance physics is factored into the hard
scattering cross section which depends on both the factorisation and the
renormalisation scales. Both scales are arbitrary, unphysical scales. The term
Kij depends on the factorisation scheme. It is not unique, as finite terms can
be shifted between the short and long distance parts. It is important that
the same scheme is used for the real and virtual corrections (usually MS).

4.5.4 Parton evolution and the DGLAP equations

With eq. (104) we again have an equation where an unphysical scale appears
on the right-hand side, while the left-hand side is a physical quantity and
therefore should not depend on the scale µf (when calculated to all orders in
perturbation theory). This gives us something like a renormalisation group
equation, which means that we can calculate how the PDFs evolve as the scale
µf is changed. As the convolution in Eq. (104) is somewhat inconvenient,
we go to Mellin space, where the convolution in the factorisation formula
Eq. (104) above turns into simple products. The Mellin transform is defined
by

f(N) ≡
∫ 1

0

dx xN−1f(x) .

The structure function in Mellin space then becomes

F2,q(N,Q
2) = x

∑
i

e2
qi
fi(N,µ

2
f ) F̂2,i(N,µr, t) . (105)

As a measurable quantity, the structure function must be independent of µf ,
therefore

dF2,q(N,Q
2)

dµf
= 0 . (106)

Note that if F2 is calculated to order αns , we have µ2
f dF2,q(N,Q

2)/dµ2
f =

O(αn+1
s ): as in the case of the renormalisation scale µr, the truncation of the
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perturbative series introduces a dependence on the unphysical scale in the
observable, which gets weaker the more orders we calculate. x For simplicity,
let us leave out the sum over i in Eq. (105) and consider only one quark
flavour q. We obtain from Eq. (106)

F̂2,q(N, t)
dfq(N,µ

2
f )

dµ2
f

+ fq(N,µ
2
f )

dF̂2,q(N, t)

dµ2
f

= 0 . (107)

Dividing by fq F̂2,q and multiplying by µ2
f we obtain

µ2
f

d ln fq(N,µ
2
f )

dµ2
f

= −µ2
f

d ln F̂2,q(N, t)

dµ2
f

≡ γqq(N) . (108)

Using t = ln
(
Q2/µ2

f

)
this can be written as

t
dfq(N, t)

dt
= γqq(N) fq(N, t) , (109)

where

γqq(N) =

∫ 1

0

dx xN−1Pqq(x) = Pqq(N) . (110)

γqq(N) is called the anomalous dimension because it measures the devia-

tion of F̂2,q from its näıve scaling dimension. It corresponds to the Mellin
transform of the splitting functions.
Very importantly, Eq. (110) implies that the scale dependence of the PDFs
can be calculated in perturbation theory. The PDFs themselves are non-
perturbative, so they have to be extracted from experiment. However, the
universality of the PDFs (for each flavour) and the calculable scale depen-
dence means that we can measure the PDFs in one process at a certain scale
and then use it in another process at a different scale.
A rigorous treatment based on operator product expansion and the renormal-
isation group equations extends the above result to all orders in perturbation
theory, leading to

t
∂

∂t
fqi(x, t) =

∫ 1

x

dξ

ξ
Pqi/qj

(x
ξ
, αs(t)

)
fqj(ξ, t) . (111)

The splitting functions Pqi/qj are calculated as a power series in αs:

Pqi/qj(x, αs) =
αs
2π

P
(0)
ij (x) +

(αs
2π

)2

P
(1)
ij (x) +

(αs
2π

)3

P
(2)
ij (x) +O(α4

s) . (112)
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Eq. (111) holds for distributions which are non-singlets under the flavour
group: either a single flavour or a combination qns = fqi − fqj with qi, qj
being a quark or antiquark of any flavour. The cutting edge calculations
for the non-singlet splitting functions are four loops (P

(3)
ns (x)) in the planar

limit [50]. More generally, the DGLAP equation is a (2nf + 1)−dimensional
matrix equation in the space of quarks, antiquarks and gluons,

t
∂

∂t

(
fqi(x, t)
fg(x, t)

)
=
∑
qj ,q̄j

∫ 1

x

dξ

ξ

(
Pqi/qj(

x
ξ
, αs(t)) Pqi/g(

x
ξ
, αs(t))

Pg/qj(
x
ξ
, αs(t)) Pg/g(

x
ξ
, αs(t))

)(
fqj(ξ, t)
fg(ξ, t)

)
.

(113)
Eq. (113) and (111) are called DGLAP equations, named after Dokshitzer
[51], Gribov, Lipatov [52] and Altarelli, Parisi [53]. They are among the
most important equations in perturbative QCD.

Note that because of charge conjugation invariance and SU(nf ) flavour sym-
metry the splitting functions Pq/g and Pg/q are independent of the quark
flavour and the same for quarks and antiquarks.
Defining the singlet distribution

Σ(x, t) =

nf∑
i=1

[ fqi(x, t) + fq̄i(x, t) ] (114)

and taking into account the considerations above, Eq. (113) simplifies to

t
∂

∂t

(
Σ(x, t)
g(x, t)

)
=

∫ 1

x

dξ

ξ

(
Pq/q(

x
ξ
, αs(t)) 2nfPq/g(

x
ξ
, αs(t))

Pg/q(
x
ξ
, αs(t)) Pg/g(

x
ξ
, αs(t))

)(
Σ(ξ, t)
g(ξ, t)

)
.

(115)

The leading order splitting functions P
(0)
a/b(x) can be interpreted as the prob-

abilities of finding a parton of type a in a parton of type b with a fraction x of
the longitudinal momentum of the parent parton and a transverse momentum
squared much less than µ2. The interpretation as probabilities implies that
the splitting functions are positive definite for x < 1, and satisfy the following
sum rules which correspond to quark number conservation and momentum
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conservation in the splittings of quarks respectively gluons:∫ 1

0

dxP
(0)
q/q(x) = 0 ,∫ 1

0

dx x [P
(0)
q/q(x) + P

(0)
g/q(x)] = 0 ,∫ 1

0

dx x [2nfP
(0)
q/g(x) + P

(0)
g/g(x)] = 0 . (116)

Let us now solve the simplified DGLAP equation, Eq. (109), in Mellin space.
It is a first order differential equation, solved by the ansatz

fqi(N,Q
2) = fqi(N,Q

2
0) exp

[∫ t

t0

dt̃ γqq (N,αs)

]
.

Using leading order expressions αs(Q
2) = 1/(b0t) with t = ln Q2

Λ2 and γqq =
αs

2π
γ

(0)
qq +O(α2

s), we have, introducing the abbreviation d
(0)
qq (N) = γ

(0)
qq (N)/(2πb0),

fqi(N,Q
2) = fqi(N,Q

2
0) exp

[
d(0)
qq (N)

∫ t

t0

dt̃

t̃

]

⇒ fqi(N,Q
2) = fqi(N,Q

2
0)

(
t

t0

)d(0)qq (N)

' fqi(N,Q
2
0)

(
αs(Q

2
0)

αs(Q2)

)d(0)qq (N)

.

(117)

Now we see how the scaling violations arise, and how they are related to the
anomalous dimension γqq(N). We have

γ(0)
qq (N) = CF

[
1

N(N + 1)
+

3

2
− 2

N∑
m=1

1

m

]
. (118)

As d
(0)
qq (1) = 0, the valence quark with flavour i in the proton, given by

the integral
∫ 1

0
dx fqi(x,Q

2), is independent of Q2. Further, d
(0)
qq (N) < 0 for

N > 1. In x-space soft gluon radiation leads to enhancements of the form
αs ln( 1

x
), which compete with the trend of fqi , fg to decrease with increasing

Q2. Therefore, as Q2 increases, fqi , fg decrease at large x and increase at
small x. Physically this can be attributed to an increase in the phase space
for gluon emission by quarks as Q2 increases, leading to a loss of momentum.
This trend can be seen in Fig. 21.
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5 Example: Higgs production

5.1 Higgs boson production in gluon fusion

5.2 Higgs boson pair production

5.3 Asymptotic expansions
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