Einführung in Theoretische Teilchenphysik

Lecture: PD Dr. S Gieseke - Exercises: Dr. D. López-Val, Dr. S. Patel, PD Dr. M. Rauch

Exercise Sheet 12

Submission: Mo, 29.01.18, 12:00

Discussion:	Mon, 29.01.18	$14: 00$	Room 11/12
	Wed, 31.01.18	$09: 45$	Room 10/1

Exercise 1: Higgs Production via W Fusion

Higgs production via W fusion is one of the main Higgs production processes at electron-positron colliders. At leading order, this process is given by a single Feynman diagram:

The corresponding Feynman rules are

with the weak coupling constant $g \simeq 0.65$ and the vacuum expectation value of the Higgs field $v \simeq 246 \mathrm{GeV}$.
(a) Show the following properties of the chirality projection operators $P_{R}=\frac{1 \pm \gamma^{5}}{2}$, which we will need in the following:

$$
\begin{array}{rrr}
\binom{P_{L}}{R}^{2}=P_{L}^{L}, & P_{R}+P_{L}=1, & P_{R}-P_{L}=\gamma^{5}, \\
\left(P_{R}^{L}\right)^{\dagger}=P_{R}^{L}, & P_{R}^{L} \gamma^{\mu}=\gamma^{\mu} P_{R}, & \gamma^{0}\binom{P_{L}^{L}}{R} \gamma^{0}=P_{R},
\end{array}
$$

Consider first the following sub-diagram:

where the W boson is "amputated", i.e. the contraction with its polarization vector is omitted and instead the matrix element contains an open Lorentz index μ.
(b) Write down the corresponding matrix element \mathcal{M}_{1}^{μ}. Calculate $q_{1 \mu} \mathcal{M}_{1}^{\mu}$ and eliminate the explicit momentum dependence of the expression, assuming that also the neutrino has a mass m_{ν}. What happens in the limit $m_{e}=m_{\nu}$? Show that for $m_{e}=m_{\nu}=0 q_{1 \mu} \mathcal{M}_{1}^{\mu}$ vanishes.
In the following we consider only massless fermions, $m_{e}=m_{\nu}=0$.
(c) Show that for the squared matrix element of the sub-diagram one obtains after spin summation

$$
\sum_{s_{1}, s_{3}}\left|\mathcal{M}_{1}\right|^{2, \mu \nu} \equiv \sum_{s_{1}, s_{3}} \mathcal{M}_{1}^{\mu} \mathcal{M}_{1}^{\dagger, \nu}=g^{2}\left(p_{1}^{\mu} p_{3}^{\nu}+p_{3}^{\mu} p_{1}^{\nu}-p_{1} \cdot p_{3} g^{\mu \nu}+i \epsilon^{\mu \nu \rho \sigma} p_{1, \rho} p_{3, \sigma}\right)
$$

Then consider how the expression changes for the equivalent part of the lower fermion line.
(d) Use this to calculate the spin-averaged squared matrix element of the whole Feynman diagram. Consider first the result of the "middle part" (W propagators, $H W W$ vertex) separately. The limit $\epsilon \rightarrow 0$ of the $i \epsilon$ terms in the propagators can be taken immediately. Take care to contract the correct Lorentz indices.
Result:

$$
\bar{\sum}|\mathcal{M}|^{2}=\frac{g^{8} v^{2}}{4} \frac{1}{\left(q_{1}^{2}-M_{W}^{2}\right)^{2}\left(q_{2}^{2}-M_{W}^{2}\right)^{2}} p_{1} \cdot p_{4} p_{2} \cdot p_{3}
$$

(e) no hand-in!

Write a program which calculates the corresponding cross section

$$
\sigma=\frac{1}{2 s} \int \mathrm{dPS}(3 \text {-particle }) \bar{\sum}|\mathcal{M}|^{2}
$$

for a given centre-of-mass energy \sqrt{s} of the electron-positron pair via numerical integration. The 3-particle phase space with one massive final-state particle can be written as

$$
\begin{aligned}
\int \mathrm{d} \Phi_{3} & \equiv \int \frac{\mathrm{~d}^{3} p_{3}}{(2 \pi)^{3} 2 E_{3}} \frac{\mathrm{~d}^{3} p_{4}}{(2 \pi)^{3} 2 E_{4}} \frac{\mathrm{~d}^{3} p_{5}}{(2 \pi)^{3} 2 E_{5}}(2 \pi)^{4} \delta^{(4)}\left(p_{1}+p_{2}-p_{3}-p_{4}-p_{5}\right) \\
& =\frac{s}{512 \pi^{4}} \int_{0}^{1} \mathrm{~d} x_{3} \int_{1-x_{3}}^{1} \mathrm{~d} x_{4} \int_{-1}^{1} \mathrm{~d} \cos \vartheta_{3} \int_{0}^{2 \pi} \mathrm{~d} \varphi_{4}
\end{aligned}
$$

where $s=\left(p_{1}+p_{2}\right)^{2}, x_{i}=\frac{2 E_{i}}{\sqrt{s}}$ and φ_{4} is taken relative to the plane spanned by the vectors \vec{p}_{3} and \vec{e}_{z}.

