Einführung in Theoretische Teilchenphysik

Lecture: PD. Dr. S Gieseke - Exercises: Dr. D. López-Val

Exercise Sheet

Submission: Mo, 6.11.17, 12:00
Discussion: $\quad \begin{array}{llll} & \text { Mon, } 6.11 .17 & 14: 00 & \text { Room 11/12 }\end{array}$

WHEN HANDING IN, PLEASE MAKE SURE:

- your NAME and GROUP (Mon/Wed) are clearly indicated
- all sheets are stapled together
- you include the question sheet as cover

Exercise 1: Lie Algebra structure of $S U(N)$ and $S O(N)$

(a) Show that real $N \times N$ unimodular $(\operatorname{det}(R)=+1)$ and orthogonal ($\left.R^{T} R=\mathcal{I}_{N \times N}\right)$ matrices (viz. elements of $S O(N)$) have $\frac{N(N-1)}{2}$ independent parameters.
(b) Show that complex $N \times N$ unimodular $(\operatorname{det}(U)=+1)$ and hermitian $\left(U^{\dagger}=U\right)$ matrices (viz. elements of $S U(N)$) have $N^{2}-1$ independent parameters.
(c) Prove that any finite transformation $U \in S U(N)$ may be written as a combination of infinitesimal transformations $U(\vartheta)=\exp \left(i \vartheta^{a} J_{a}\right)\left(a=1,2, \ldots, N^{2}-1\right)$, where the basis elements of the Lie algebra J_{a} are i) hermitian $J_{a}^{\dagger} J_{a}$; and ii) traceless matrices $\operatorname{Tr}\left(J_{a}\right)=0$ $(\forall a)$.
Hint Take the limit $\vartheta^{a} \rightarrow 0(\forall a)$. To check that $\operatorname{Tr}\left(J_{a}\right)=0$, recall the identity $\operatorname{det}\left(e^{A}\right)=$ $e^{\operatorname{Tr} A}$.

Hereafter we shall focus our attention to the $S U(2)$ case.
(d) Convince yourself that a generic $S U(2)$ transformation can be parameterized as

$$
A=\left(\begin{array}{cc}
a_{0}+i a_{3} & a_{2}+i a_{1} \tag{1}\\
-a_{2}+i a_{1} & a_{0}-i a_{3}
\end{array}\right)=a_{0}+i \vec{a} \cdot \vec{\sigma}
$$

where $\left(a_{0}, \vec{a}\right)=\left(a_{0}, a_{1}, a_{2}, a_{3}\right)$ are real-valued parameters satisfying $\sum_{i=0}^{3} a_{i}^{2}=1$, and the vector $\vec{\sigma}=\left(\sigma_{1}, \sigma_{2}, \sigma_{3}\right)$ contains the Pauli matrices

$$
\sigma_{1}=\left(\begin{array}{cc}
0 & 1 \tag{2}\\
1 & 0
\end{array}\right) \quad \sigma_{2}=\left(\begin{array}{cc}
0 & i \\
-i & 0
\end{array}\right) \quad \sigma_{3}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

(e) Prove that the parameterization (1) is equivalent to $A=\exp \left[i \frac{\vartheta}{2}(\vec{\sigma} \cdot \hat{n})\right]$, where the rotation angle ϑ and the unit vector \hat{n} are related to $\left(a_{0}, \vec{a}\right)$. Write down these relations explicitly.

Exercise 2: A closer look at $S O(3)$

(a) Given a generic $S O(3)$ transformation represented in the form $R(\vartheta)=\exp \left(\vartheta_{a} K_{a}\right)$, show that the generators K_{a} are real and antisymmetric matrices; whereas, if represented as $R(\vartheta)=\exp \left(i \vartheta_{a} J_{a}\right)$, then J_{a} are imaginary and hermitian.

The following matrices implement independent rotations of angles $\vartheta_{a}(a=1,2,3)$ around the X, Y and Z axis in the 3 -dimensional Euclidean space,

$$
\begin{align*}
& R_{X}\left(\vartheta_{1}\right)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \vartheta_{1} & -\sin \vartheta_{1} \\
0 & \sin \vartheta_{1} & \cos \vartheta_{1}
\end{array}\right) \\
& R_{Y}\left(\vartheta_{2}\right)=\left(\begin{array}{ccc}
\cos \vartheta_{2} & 0 & -\sin \vartheta_{2} \\
0 & 1 & 0 \\
\sin \vartheta_{2} & 0 & \cos \vartheta_{2}
\end{array}\right) \tag{1}\\
& R_{Z}\left(\vartheta_{3}\right)=\left(\begin{array}{ccc}
\cos \vartheta_{3} & -\sin \vartheta_{3} & 0 \\
\sin \vartheta_{3} & \cos \vartheta_{3} & 0 \\
0 & 0 & 1
\end{array}\right) .
\end{align*}
$$

(b) Taking the limit $R\left(\delta \vartheta_{a}\right)=1+i \delta \vartheta^{a} J_{a}+\mathcal{O}\left(\vartheta^{2}\right)$, obtain the matrix form of $J_{a}(a=1,2,3)$. Check that your result is equivalent to the systematic recipe for computing the group generators,

$$
\begin{equation*}
J_{a}=\left.\frac{1}{i} \frac{\partial U\left(\vartheta_{a}\right)}{\partial \vartheta_{a}}\right|_{\vartheta_{a}=0} \tag{2}
\end{equation*}
$$

(c) Using their explicit matrix form, check that J_{a} satisfy the commutation relation

$$
\begin{equation*}
\left[J_{a} J_{b}\right]=f_{a b}^{c} J_{c} \tag{3}
\end{equation*}
$$

Determine the structure constants of the Lie algebra $f_{a b}^{c}$.

Exercise 3: A closer look at $S U(3)$

(a) A generic finite transformation $S \in S U(3)$ in the fundamental representation may be written in terms of 8 real parameters (why?) and corresponding generators of the Lie algebra as

$$
\begin{equation*}
S=\exp \left(-\frac{i}{2} \sum_{i=1}^{8} \alpha_{i} \lambda_{i}\right) \quad \text { with } \quad \operatorname{Tr}\left(\frac{\lambda_{i}}{2} \times \frac{\lambda_{j}}{2}\right)=\frac{1}{2} \delta_{i j} \tag{1}
\end{equation*}
$$

where λ_{i} denote the 3×3 Gell-Mann matrices. These implement the $S U(3)$ generators in the fundamental representation and, as such, are hermitian, traceless matrices satisfying:

$$
\begin{equation*}
\left[\frac{\lambda^{a}}{2}, \frac{\lambda^{b}}{2}\right]=i f_{c}^{a b} \frac{\lambda_{c}}{2} \quad \text { or } \quad\left[T^{a} T^{b}\right]=i f_{c}^{a b} T^{c} . \tag{2}
\end{equation*}
$$

(b) Using Eq. 22, and recalling that the generators fulfill the Jacobi identity

$$
\begin{equation*}
\left[T^{a},\left[T^{b}, T^{c}\right]\right]+\left[T^{b},\left[T^{c}, T^{a}\right]\right]+\left[T^{c},\left[T^{a}, T^{b}\right]\right]=0 \tag{3}
\end{equation*}
$$

show that $\operatorname{Tr}\left(T^{a} T^{b}\right)=C(F) \delta^{a b}$, where $C(F)$ is a (real) numerical factor. Evaluate $C(F)$ explicitly, using e.g. the first Gell-Mann matrix,

$$
\lambda_{1}=\left(\begin{array}{lll}
0 & 1 & 0 \tag{4}\\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

Another important representation is the adjoint representation, for which the generators are given by the structure constants themselves:

$$
\begin{equation*}
\left[F_{i}(A)\right]_{j k} \equiv-i f_{i j k} \tag{5}
\end{equation*}
$$

(c) With the help of the identities (2) and (3), show that the adjoint generators $F(A)$ satisfy

$$
\begin{equation*}
-\left(F_{j} F_{i}\right)_{m n}+\left(F_{i} F_{j}\right)_{m n}=i f_{i j k}\left(F_{k}\right)_{m n} \quad \text { and thereby } \quad\left[F_{i}, F_{j}\right]_{m n}=i f_{i j k} F_{k m n} . \tag{6}
\end{equation*}
$$

Notice that these are exactly the same relations satisfied by the $S U(3)$ generators in the fundamental representation T^{a}.
(d) Check that $\operatorname{Tr}\left[F_{a}(A) F_{b}(A)\right]=f_{\text {ade }} f_{b d e} \equiv C(A)$, where again $C(A)$ is a real number.
(e) Verify that the quadratic Casimir of the group, $F^{2}=F^{a} F_{a}$, commutes with every individual generator F_{a}.

