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Exercise 1: Flavor-spin wave function of a hadron

To completely characterize the quantum state of hadrons, we need a product wave-function which
factorizes into several pieces, each of them corresponding to separate Hilbert spaces: i) a spatial
part, describing the relative location and motion of the quarks; ii) a spin part, representing the
orientation of their spins; iii) a flavor part, indicating the quark type (e.g. u, d); and the color
part, which specifies the individual quark color charges.

|Ψ〉hadron = |Ψspace〉 ⊗ |Ψspin〉 ⊗ |Ψflavor〉 ⊗ |Ψcolor〉 .

From Pauli’s Exclusion Principle we know that the total wave function must be antisymmetric
under the permutation of two quarks 1.

For the spatial part, one assumes the lowest-lying hadronic states to be bound states of (anti)quarks

with no relative angular momenta, ~L = 0. The spatial wave function is therefore symmetric. The
spin state can be either completely symmetric (j = s = 3

2 ) or of mixed symmetry (j = s = 1
2 ).

Finally, due to color confinement, all hadron states are color singlets, hence |Ψcolor〉 is completely
antisymmetric.

(a) Bearing all these ingredients in mind, convince yourself that the spin-flavor wave-function
of the state ∆++ from the baryon decouplet is given by (quite trivial!)

|Ψ〉flavor-spin
∆++ = |uuu〉 ⊗ |↑↑↑〉 = |u ↑ u ↑ u ↑〉 .

(b) Using the same notation, write down the normalized spin-flavor wave function for ∆+

(J = 1
2 uud bound state) with spin down mj = − 1

2 . If it was feasible to pull one particle
apart, what would be the probability that the first quark would be a d-quark with spin up?

Constructing |Ψ〉flavor⊗ |Ψ〉spin
for states of the baryon octet is a little trickier, as we must

combine states of mixed symmetry to make a completely symmetric combination. The
general recipee is:

|Ψ〉flavor ⊗ |Ψ〉spin
= N

{
|Ψflavor

12 〉 |Ψspin
12 〉+ |Ψflavor

13 〉 |Ψspin
13 〉+ |Ψflavor

23 〉 |Ψspin
23 〉

}
,

where Ψij denote a WF with mixed symmetry, viz. antisymmetric under the i ↔ j

quark-pair exchange. This way, the product wave function Ψflavor
ij ⊗Ψspin

ij is symmetric
under such quark exchange.

(c) Write down the six mixed symmetry spin- 1
2 wave functions |Ψspin

ij 〉 for i, j = 1, 2, 3. Notice

that exactly the same structure applies to the isospin- 1
2 flavor wave function.

1Notice that we treat all quarks as identical particles, regardless of their spin, flavor or color. These degrees of
freedom correspond to different possible states of a single type of particle.
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(d) From the above result, show that the spin-flavor wave function of a proton with spin up
can be written as:

|Ψ〉flavor-spin
p =

1

3
√

2

[
2 |u ↑ u ↑ d ↓〉+ 2 |u ↑ d ↓ u ↑〉+ 2 |d ↓ u ↑ u ↑〉 − |u ↑ u ↓ d ↑〉

− |u ↑ d ↑ u ↓〉 − |d ↑ u ↑ u ↓〉 − |u ↓ u ↑ d ↑〉 − |u ↓ d ↑ u ↑〉 − |d ↑ u ↓ u ↑〉
]
.

(e) The interaction of a spin- 1
2 particle with a classical magnetic field ~B is governed by

Ĥpauli = −~µ · ~B, where the magnetic moment operator is given by the 3rd component

projection, µ̂z =
q

2m
Ŝz. Show that the magnetic moment of the proton can be written

in terms of the up and down-quark magnetic moments as µp = 1
3 (4µu − µd), where

µu = 2
3 ( e

2mu
) and µd = − 1

3 ( e
2md

).

By direct analogy, evaluate the neutron magnetic moment µn and compare the ratio
µp

µn

∣∣∣
theory

to the experimental measurement
µp

µn

∣∣∣
exp

= −0.68497945(58).

Hint: For the numerical estimate, recall that mu = md under the assumption of isospin
invariance.

Exercise 2: Poincaré Group: the Pauli-Lubanski Operator

The spin of a moving particle can be written in terms of the Pauli-Lubanski pseudovector

Wµ =
1

2
εµνρσPνMρσ Wµ= −1

2
εµνρσP

σMνρ

where Mνρ = i(xν∂ρ − xρ∂ν) denotes the relativistic angular momentum tensor operator, and
Pσ = i∂σ is the 4-momentum.
We define the generalized Levi-Civita symbol in four dimensions as:

εµνρσ =

 1 if {µ, ν, ρ, σ} is an even permutation of {1, 2, 3, 0}
−1 if {µ, ν, ρ, σ} is an even permutation of {0, 1, 2, 3}

0 otherwise
,

with εµνρσ = gµαgνβgργgσδεαβγδ = −εµνρσ.

Prove the following properties:

(a) The Wµ components for a particle at rest are (0,−m~J),

(b) [Mαβ , Pµ] = i(gµβPα − gµαPβ),

(c) WµP
µ = 0, and [Wµ, Pν ] = 0,

(d) P 2 and W 2 are the Casimir operators of the Poincaré group, i.e., that they commute with
all its generators, [P 2, Pµ] = [P 2,Mµν ] = 0 and [W 2, Pµ] = [W 2,Mµν ] = 0 (you do not
need to prove the last property, [W 2,Mµν ] = 0, the calculation is really tedious.).

(e) Knowing (no proof required) that W 2 = − 1
2MµνM

µνP 2 + MµρM
νρPµPν W 2|p =

0,m, j〉 = −m2j(j + 1)|p = 0,m, j〉 where |p = 0,m, j〉 is an eigenvector for a particle of
mass m, momentum p, and total angular momentum j.
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