Einführung in Theoretische Teilchenphysik

Lecture: PD. Dr. S Gieseke - Exercises: Dr. D. López-Val, Dr. S. Patel, Dr. M. Rauch

Exercise Sheet 4

Submission: Mo, 20.11.17, 12:00
Discussion: \quad Mon, 20.11.17 \quad 14:00 \quad Room 11/12

Exercise 1: Flavor-spin wave function of a hadron

To completely characterize the quantum state of hadrons, we need a product wave-function which factorizes into several pieces, each of them corresponding to separate Hilbert spaces: i) a spatial part, describing the relative location and motion of the quarks; ii) a spin part, representing the orientation of their spins; iii) a flavor part, indicating the quark type (e.g. u, d); and the color part, which specifies the individual quark color charges.

$$
|\Psi\rangle_{\text {hadron }}=\left|\Psi^{\text {space }}\right\rangle \otimes\left|\Psi^{\text {spin }}\right\rangle \otimes\left|\Psi^{\text {flavor }}\right\rangle \otimes\left|\Psi^{\text {color }}\right\rangle
$$

From Pauli's Exclusion Principle we know that the total wave function must be antisymmetric under the permutation of two quarks ${ }^{1}$.
For the spatial part, one assumes the lowest-lying hadronic states to be bound states of (anti)quarks with no relative angular momenta, $\vec{L}=0$. The spatial wave function is therefore symmetric. The spin state can be either completely symmetric $\left(j=s=\frac{3}{2}\right)$ or of mixed symmetry ($j=s=\frac{1}{2}$). Finally, due to color confinement, all hadron states are color singlets, hence $\left|\Psi_{\text {color }}\right\rangle$ is completely antisymmetric.
(a) Bearing all these ingredients in mind, convince yourself that the spin-flavor wave-function of the state Δ^{++}from the baryon decouplet is given by (quite trivial!)

$$
|\Psi\rangle_{\Delta++}^{\text {flavor-spin }}=|u u u\rangle \otimes|\uparrow \uparrow \uparrow\rangle=|u \uparrow u \uparrow u \uparrow\rangle .
$$

(b) Using the same notation, write down the normalized spin-flavor wave function for Δ^{+} ($J=\frac{1}{2}$ uud bound state) with spin down $m_{j}=-\frac{1}{2}$. If it was feasible to pull one particle apart, what would be the probability that the first quark would be a d-quark with spin up? Constructing $|\Psi\rangle^{\text {flavor }} \otimes|\Psi\rangle^{\text {spin }}$ for states of the baryon octet is a little trickier, as we must combine states of mixed symmetry to make a completely symmetric combination. The general recipee is:

$$
|\Psi\rangle^{\text {flavor }} \otimes|\Psi\rangle^{\text {spin }}=N\left\{\left|\Psi_{12}^{\text {flavor }}\right\rangle\left|\Psi_{12}^{\text {spin }}\right\rangle+\left|\Psi_{13}^{\text {flavor }}\right\rangle\left|\Psi_{13}^{\text {spin }}\right\rangle+\left|\Psi_{23}^{\text {flavor }}\right\rangle\left|\Psi_{23}^{\text {spin }}\right\rangle\right\}
$$

where $\Psi_{i j}$ denote a WF with mixed symmetry, viz. antisymmetric under the $i \leftrightarrow j$ quark-pair exchange. This way, the product wave function $\Psi_{i j}^{\text {flavor }} \otimes \Psi_{i j}^{\text {spin }}$ is symmetric under such quark exchange.
(c) Write down the six mixed symmetry spin- $\frac{1}{2}$ wave functions $\left|\Psi_{i j}^{\text {spin }}\right\rangle$ for $i, j=1,2,3$. Notice that exactly the same structure applies to the isospin- $\frac{1}{2}$ flavor wave function.

[^0](d) From the above result, show that the spin-flavor wave function of a proton can be written as:
\[

$$
\begin{aligned}
|\Psi\rangle_{p}^{\text {flavor-spin }}= & \frac{1}{3 \sqrt{2}}[2|u \uparrow u \uparrow d \downarrow\rangle+2|u \uparrow d \downarrow u \uparrow\rangle+2|d \downarrow u \uparrow u \uparrow\rangle-|u \uparrow u \downarrow d \uparrow\rangle \\
& -|u \uparrow d \uparrow u \downarrow\rangle-|d \uparrow u \uparrow u \downarrow\rangle-|u \downarrow u \uparrow d \uparrow\rangle-|u \downarrow d \uparrow u \uparrow\rangle-|d \downarrow u \downarrow u \uparrow\rangle] .
\end{aligned}
$$
\]

(e) The interaction of a spin- $\frac{1}{2}$ particle with a classical magnetic field \vec{B} is governed by $\hat{\mathcal{H}}_{\text {pauli }}=-\vec{\mu} \cdot \vec{B}$, where the magnetic moment operator is given by the 3rd component projection for a spin-up state, $\hat{\mu}_{z}=\frac{q \hat{S}_{z}}{m}$. Show that the magnetic moment of the proton can be written in terms of the up and down-quark magnetic moments as $\mu_{p}=\frac{1}{3}\left(4 \mu_{u}-\mu_{d}\right)$. By direct analogy, evaluate the neutron magnetic moment μ_{n} and compare the ratio $\left.\frac{\mu_{p}}{\mu_{n}}\right|_{\text {theory }}$ to the experimental measurement $\left.\frac{\mu_{p}}{\mu_{n}}\right|_{\exp }=-0.68497945(58)$.

Exercise 2: Poincaré Group: the Pauli-Lubanski Operator

The spin of a moving particle can be written in terms of the Pauli-Lubanski pseudovector

$$
W^{\mu}=\frac{1}{2} \varepsilon^{\mu \nu \rho \sigma} P_{\nu} M_{\rho \sigma} \quad W_{\mu}=-\frac{1}{2} \varepsilon_{\mu \nu \rho \sigma} P^{\sigma} M^{\nu \rho}
$$

where $M^{\nu \rho}=i\left(x^{\nu} \partial^{\rho}-x^{\rho} \partial^{\nu}\right)$ denotes the relativistic angular momentum tensor operator, and $P^{\sigma}=-i \partial^{\sigma}$ is the 4 -momentum.
We define the generalized Levi-Civita symbol in four dimensions as:

$$
\varepsilon_{\mu \nu \rho \sigma}=\left\{\begin{array}{c}
1 \text { if }\{\mu, \nu, \rho, \sigma\} \text { is an even permutation of }\{1,2,3,0\} \\
-1 \text { if }\{\mu, \nu, \rho, \sigma\} \text { is an even permutation of }\{0,1,2,3\} \\
0 \text { otherwise }
\end{array}\right.
$$

with $\varepsilon^{\mu \nu \rho \sigma}=g^{\mu \alpha} g^{\nu \beta} g^{\rho \gamma} g^{\sigma \delta} \varepsilon_{\alpha \beta \gamma \delta}=-\varepsilon_{\mu \nu \rho \sigma}$.
Prove the following properties:
(a) The W^{μ} components for a particle at rest are $(0,-m \vec{J})$,
(b) $\left[M_{\alpha \beta}, P_{\mu}\right]=i\left(g_{\mu \beta} P_{\alpha}-g_{\mu \alpha} P_{\beta}\right)$,
(c) $W_{\mu} P^{\mu}=0$, and $\left[W_{\mu}, P_{\nu}\right]=0$,
(d) $W^{2}=-\frac{1}{2} M_{\mu \nu} M^{\mu \nu} P^{2}+M_{\mu \rho} M^{\nu \rho} P^{\mu} P_{\nu}$ with $\varepsilon_{\mu \nu \rho \sigma} \varepsilon^{\mu \alpha \beta \gamma}=\left|\begin{array}{ccc}\delta_{\nu}^{\alpha} & \delta_{\nu}^{\beta} & \delta_{\nu}^{\gamma} \\ \delta_{\rho}^{\alpha} & \delta_{\rho}^{\beta} & \delta_{\rho}^{\gamma} \\ \delta_{\sigma}^{\alpha} & \delta_{\sigma}^{\beta} & \delta_{\sigma}^{\gamma}\end{array}\right|$,
(e) P^{2} and W^{2} are the Casimir operators of the Poincaré group, i.e., that they commute with all its generators, $\left[P^{2}, P_{\mu}\right]=\left[P^{2}, M_{\mu \nu}\right]=0$ and $\left[W^{2}, P_{\mu}\right]=\left[W^{2}, M_{\mu \nu}\right]=0$,
(f) $W^{2}|\mathbf{p}=0, m, j\rangle=-m^{2} j(j+1)|\mathbf{p}=0, m, j\rangle$ where $|\mathbf{p}=0, m, j\rangle$ is an eigenvector for a particle of mass m, momentum \mathbf{p}, and total angular momentum j.

[^0]: ${ }^{1}$ Notice that we treat all quarks as identical particles, regardless of their spin, flavor or color. These degrees of freedom correspond to different possible states of a single type of particle

