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Einführung in Theoretische Teilchenphysik
Lecture: PD Dr. S Gieseke – Exercises: Dr. D. López-Val, Dr. S. Patel, PD Dr. M. Rauch
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Exercise 1: Complex scalar field

The Hamiltonian of a complex-valued scalar field obeying the Klein-Gordon Equation is given
at the classical level by

H =

∫
d3~x [Π∗Π + (~∇ϕ∗) · (~∇ϕ) +m2 ϕ∗ ϕ] . (1)

The field variables ϕ,ϕ∗ are treated as independent quantities, with Π ≡ ∂ L
∂(∂0 ϕ)

, Π∗ ≡ ∂ L
∂(∂0 ϕ∗)

denoting their respective canonically conjugated momenta. The theory is symmetric under real
phase transformations ϕ→ ϕ′ = ϕeiα, ϕ∗ → ϕ′

∗
= ϕ∗ e−iα (α ∈ R). This global U(1) symmetry

leads at the classical level to the Noether current j0 and the corresponding Noether charge

Q =

∫
d3~x j0 = i

∫
d3~x (Π∗ ϕ∗ −Πϕ) . (2)

In agreement with canonical quantization, the field operators are required to fulfill the following
commutation relations at equal time:

[ϕ̂(~x, t), Π̂(~x′, t)] = [ϕ̂†(~x, t), Π̂†(~x′, t)] = i δ(3)(~x− ~x′) ,

while the commutators involving other combinations are required to vanish.

(a) Prove that the Heisenberg Equations,

i
∂ ϕ

∂t
= [ϕ, Ĥ] ; i

∂ Π̂

∂t
= [Π̂, Ĥ] (3)

imply that ϕ satisfies the Klein-Gordon equation.

(b) Introducing the field decomposition into the quantized normal modes,

ϕ(~x, t) =

∫
d3~p

(2π)3 2E~p

[
a~p e

−ip·x + b†~p e
ip·x

]
;

ϕ†(~x, t) =

∫
d3~p

(2π)3 2E~p

[
a†~p e

ip·x + b~p e
−ip·x

]
,

show that the classical Noether charge (2) leads at the quantum level to the charge operator

Q̂ = i

∫
d3~p

(2π)3 2E~p
[N̂

(a)
~p − N̂ (b)

~p ] , , (4)

with N̂
(a)
~p ≡ a†~p a~p, N̂

(b)
~p ≡ b†~p b~p, and E~p =

√
~p2 +m2.
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(c) Check that [Q̂, Ĥ] = 0, namely, that the charge is a conserved quantity in the quantized
theory as well. For that, recall the expression of the quantized Hamiltonian (up to the
zero-point energy term):

Ĥ =

∫
d3~p

(2π)3 2E~p
E~p [N̂

(a)
~p + N̂

(b)
~p ] . (5)

To investigate the action of Q̂ on the field states, let us assume |α〉 to represent an eigenstate
of Q̂ with eigenvalue q, Q̂ |α〉 = q |α〉.

(d) Show that

Q̂ ϕ† = ϕ† (Q̂+ 1) and thereby Q̂ ϕ† |α〉 = (q + 1)ϕ† |α〉 , (6)

which means that Q̂ increases the charge of a state by one unit.

Exercise 2: Conserved charges for multiple complex fields

Consider two complex scalar fields ϕa, a = 1, 2 with equal masses satisfying the Klein-Gordon
Lagrangian,

L =
∑
a

(∂µ ϕ∗a) (∂µ ϕa)−m2 ϕ∗a ϕa .

(a) Show that, at variance with the single-field case, there are now four conserved charges,

Q̂ =
∑
a

∫
d3~x i

[
ϕ∗a Π̂∗a − ϕa Π̂a

]
Q̂(k)=

∑
a,b

∫
d3~x

i

2

[
ϕ∗a (σk)ab Π̂∗b − Π̂a (σk)ab ϕb

]
,

where σk denote the thee Pauli matrices, viz. the generators of the SU(2) algebra.

Hint: Check that [Q̂, Ĥ] = [ ˆQ(k), Ĥ] = 0.

Notice that the first conserved charge Q̂ is a straight generalization of the single-field case,
while Q̂(k) are genuine of the double-field structure.

(b) Could you guess what is the underlying symmetry that leads to the conserved quantities
Q̂ and Q̂(k)?

(c) Any intuition on how these results generalize to an arbitrary number N of complex scalar
fields?
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