Einführung in Theoretische Teilchenphysik

Lecture: PD Dr. S Gieseke - Exercises: Dr. D. López-Val, Dr. S. Patel, PD Dr. M. Rauch

Exercise Sheet 9

Submission: Mo, 08.01.18, 12:00

Discussion:	Mon, 08.01.18 $14: 00$	Room 11/12	
	Wed, 10.01.18	$09: 45$	Room 10/1

Exercise 1: Chiral Representation of Dirac Spinors

An explicit form of the spinors (in the chiral representation of the Dirac matrices) with mass m and four-momentum $\left(E, p_{x}, p_{y}, p_{z}\right)^{T}$ can be written as

$$
u_{\lambda}(p)=\left(\begin{array}{cc}
\sqrt{E-\lambda|\vec{p}|} & \chi_{\lambda}(p) \\
\sqrt{E+\lambda|\vec{p}|} & \chi_{\lambda}(p)
\end{array}\right), \quad v_{\lambda}(p)=\left(\begin{array}{c}
-\lambda \sqrt{E+\lambda|\vec{p}|} \\
\chi_{-\lambda}(p) \\
\lambda \sqrt{E-\lambda|\vec{p}|} \\
\chi_{-\lambda}(p)
\end{array}\right)
$$

with

$$
\chi_{+}(p)=\frac{1}{\sqrt{2|\vec{p}|\left(|\vec{p}|+p_{z}\right)}}\binom{|\vec{p}|+p_{z}}{p_{x}+i p_{y}}, \quad \chi_{-}(p)=\frac{1}{\sqrt{2|\vec{p}|\left(|\vec{p}|+p_{z}\right)}}\binom{-p_{x}+i p_{y}}{|\vec{p}|+p_{z}} .
$$

The spinors of the particle, u, and the antiparticle, v, thereby are solutions of the Dirac equation in momentum space

$$
\begin{array}{ll}
\left(\gamma^{\mu} p_{\mu}-m\right) u_{\lambda}(p)=0, & \bar{u}_{\lambda}(p)\left(\gamma^{\mu} p_{\mu}-m\right)=0, \\
\left(\gamma^{\mu} p_{\mu}+m\right) v_{\lambda}(p)=0, & \bar{v}_{\lambda}(p)\left(\gamma^{\mu} p_{\mu}+m\right)=0 .
\end{array}
$$

Show by using their explicit forms that u and v fulfil the following orthogonality relations

$$
\begin{aligned}
u_{\lambda}^{\dagger}(p) u_{\lambda^{\prime}}(p) & =v_{\lambda}^{\dagger}(p) v_{\lambda^{\prime}}(p)=2 E \delta_{\lambda \lambda^{\prime}} \\
u_{\lambda}^{\dagger}(p) v_{\lambda^{\prime}}\left(p_{-}\right) & =v_{\lambda}^{\dagger}(p) u_{\lambda^{\prime}}\left(p_{-}\right)=0
\end{aligned}
$$

with $p_{-}=(E,-\vec{p})^{T}$.

Hints:

Show first that

$$
\chi_{\lambda}^{\dagger}(p) \chi_{\lambda^{\prime}}(p)=\delta_{\lambda \lambda^{\prime}}
$$

by considering the two cases $\lambda=\lambda^{\prime}$ and $\lambda \neq \lambda^{\prime}$ separately.
Show also that

$$
\chi_{\lambda}^{\dagger}(p) \chi_{\lambda}\left(p_{-}\right)=0
$$

(The case for unequal $\lambda, \lambda^{\prime}$ is not needed here.)
These relations are sufficient for the rest of the sheet and the explicit form is not used in the following.

Exercise 2: Energy and Momentum of the Dirac Propagator

In analogy to exercise 1 on sheet 7 , where we have calculated energy and momentum of the real Klein-Gordon field, we now consider the Dirac field. Its Lagrangian is given by

$$
\mathcal{L}=\bar{\psi}(x)\left(i \gamma^{\mu} \partial_{\mu}-m\right) \psi(x),
$$

where ψ and $\bar{\psi}$ are considered as independent variables.
For the Dirac field we make the ansatz

$$
\psi(x)=\int \frac{\mathrm{d}^{3} p}{(2 \pi)^{3} 2 E} \sum_{\lambda=-1,+1} a_{\lambda}(p) u_{\lambda}(p) e^{-i p x}+b_{\lambda}^{\dagger}(p) v_{\lambda}(p) e^{+i p x}
$$

(a) What is the corresponding energy-momentum tensor $T^{\mu \nu}$? Why does the term proportional to $g^{\mu \nu}$ vanish?
(b) Use this and the results of exercise 1 to calculate the 4-momentum vector

$$
P^{\mu}=\int \mathrm{d}^{3} x T^{0 \mu}
$$

and show that this leads to the form given in the lecture

$$
: P^{\mu}:=\int \frac{\mathrm{d}^{3} p}{(2 \pi)^{3}} p^{\mu} \sum_{\lambda=-1,+1}\left(\tilde{N}_{\lambda}^{a}(p)+\tilde{N}_{\lambda}^{b}(p)\right)
$$

(c) Show that the current

$$
j^{\mu}=\bar{\psi}(x) \gamma^{\mu} \psi(x)
$$

is conserved.
Hint: This can be done without using the explicit form of ψ.
(d) The corresponding charge is given by

$$
Q=\int \mathrm{d}^{3} x j^{0}(x)
$$

Write the charge in terms of the variables a, a^{\dagger}, b and b^{\dagger}.

