
WiSe 2017
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Exercise 1: Chiral Representation of Dirac Spinors

An explicit form of the spinors (in the chiral representation of the Dirac matrices) with mass m
and four-momentum (E, px, py, pz)

T can be written as

uλ(p) =

(√
E − λ|~p| χλ(p)√
E + λ|~p| χλ(p)

)
, vλ(p) =

(
−λ
√
E + λ|~p| χ−λ(p)

λ
√
E − λ|~p| χ−λ(p)

)
with

χ+(p) =
1√

2|~p|(|~p|+ pz)

(
|~p|+ pz
px + ipy

)
, χ−(p) =

1√
2|~p|(|~p|+ pz)

(
−px + ipy
|~p|+ pz

)
.

The spinors of the particle, u, and the antiparticle, v, thereby are solutions of the Dirac equation
in momentum space

(γµpµ −m)uλ(p) = 0 , ūλ(p)(γµpµ −m) = 0 ,

(γµpµ +m)vλ(p) = 0 , v̄λ(p)(γµpµ +m) = 0 .

Show by using their explicit forms that u and v fulfil the following orthogonality relations

u†λ(p)uλ′(p) = v†λ(p)vλ′(p) = 2Eδλλ′ ,

u†λ(p)vλ′(p−) = v†λ(p)uλ′(p−) = 0

with p− = (E,−~p)T .

Hints:

Show first that
χ†λ(p)χλ′(p) = δλλ′

by considering the two cases λ = λ′ and λ 6= λ′ separately.

Show also that
χ†λ(p)χλ(p−) = 0 .

(The case for unequal λ, λ′ is not needed here.)

These relations are sufficient for the rest of the sheet and the explicit form is not used in the
following.
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Exercise 2: Energy and Momentum of the Dirac Propagator

In analogy to exercise 1 on sheet 7, where we have calculated energy and momentum of the real
Klein-Gordon field, we now consider the Dirac field. Its Lagrangian is given by

L = ψ̄(x) (iγµ∂µ −m)ψ(x) ,

where ψ and ψ̄ are considered as independent variables.
For the Dirac field we make the ansatz

ψ(x) =

∫
d3p

(2π)32E

∑
λ=−1,+1

aλ(p)uλ(p)e−ipx + b†λ(p)vλ(p)e+ipx .

(a) What is the corresponding energy-momentum tensor Tµν? Why does the term proportional
to gµν vanish?

(b) Use this and the results of exercise 1 to calculate the 4-momentum vector

Pµ =

∫
d3xT 0µ

and show that this leads to the form given in the lecture

: Pµ : =

∫
d3p

(2π)3
pµ

∑
λ=−1,+1

(
Ña
λ (p) + Ñ b

λ(p)
)

(c) Show that the current
jµ = ψ̄(x)γµψ(x)

is conserved.
Hint: This can be done without using the explicit form of ψ.

(d) The corresponding charge is given by

Q =

∫
d3xj0(x) .

Write the charge in terms of the variables a, a†, b and b†.
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