Note: Ta(ch)ing point: "V" is the rank of the matrix.

\[m = \text{rank}(F_{\text{v}}(K)) \]

\[\begin{align*}
\text{For } \alpha \in \text{rank}(K) & : \\
\text{For } \beta \in \text{rank}(K) & : \\
\text{For } \gamma \in \text{rank}(K) & :
\end{align*} \]

Healer\((\text{rank}(K) - \text{rank}(\text{v})) \) = 0

Property with respect to inner-vectors

\[\begin{align*}
\text{For } \alpha & : \\
\text{For } \beta & : \\
\text{For } \gamma & :
\end{align*} \]

Applying again \(\text{rank}(K) - \text{rank}(\text{v}) = 0 \) and \(\text{v} \text{ rank}(K) - \text{rank}(\text{v}) \text{ rank}(K) = 0 \)

\[\begin{align*}
\text{For } \alpha & : \\
\text{For } \beta & : \\
\text{For } \gamma & :
\end{align*} \]

Staring from the last identity:

\[\begin{align*}
\text{Invisible, if you were misguided} & : \\
\text{If the is the one which is rather sketchy, and} & :
\end{align*} \]

You can find alternative, more rigorous derivations:

Sheet 2, Problem
Thus, $[F_iFa] = 0 \Rightarrow F_i$ is an idempotent.