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Preliminary Content

This lecture will discuss Higgs sectors of various extensions beyond the Standard Model.

1. Revision of the Standard Model (SM) Higgs Sector

2. 2 Higgs Doublet Model

3. The Minimal Supersymmetric Extension of the SM (MSSM)

4. The Next-to-Minimal Supersymmetric Extension of the SM (NMSSM)

5. Composite Higgs Model
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Chapter 1

The Standard Model Higgs Sector

Literature:

1. Recent physics results are presented on the webpages of the LHC experiments ATLAS
and CMS.

2. A. Djouadi, “The Anatomy of electro-weak symmetry breaking. I: The Higgs boson in
the standard model,” Phys. Rept. 457 (2008) 1 [hep-ph/0503172].

3. M. Spira, “QCD effects in Higgs physics,” Fortsch. Phys. 46 (1998) 203 [hep-ph/9705337]
and
“Higgs Boson Production an Decay at Hadron Colliders”, Prog. Part. Nucl. Phys. 95
(2017) 98.

4. S. Dittmaier et al. [LHC Higgs Cross Section Working Group Collaboration], “Hand-
book of LHC Higgs Cross Sections: 1. Inclusive Observables,” arXiv:1101.0593 [hep-
ph].

5. S. Dittmaier, S. Dittmaier, C. Mariotti, G. Passarino, R. Tanaka, S. Alekhin, J. Alwall
and E. A. Bagnaschi et al., “Handbook of LHC Higgs Cross Sections: 2. Differential
Distributions,” arXiv:1201.3084 [hep-ph].

6. S. Heinemeyer et al. [LHC Higgs Cross Section Working Group Collaboration], “Hand-
book of LHC Higgs Cross Sections: 3. Higgs Properties,” arXiv:1307.1347 [hep-ph].

7. De Florian et al., “Handbook of LHC Higgs Cross Sections: 4. Deciphering the Nature
of the Higgs Sector,” arXiv:1610.07922 [hep-ph].

8. H. E. Logan, “TASI 2013 lectures on Higgs physics within and beyond the Standard
Model,” arXiv:1406.1786 [hep-ph].

9. Some material on the SM Higgs sector can also be found in my lectures TTP1 and
TTP2 and in my lectures on supersymmetry at colliders.

1.1 The Introduction of the Higgs Boson

There are two reasons for the introduction of the Higgs boson [1, 2] in the Standard Model
(SM) of particle physics:
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2 The Standard Model Higgs Sector

Figure 1.1: The scattering of longitudinal gauge bosons in longitudinal gauge bosons. Upper:
without a Higgs boson. Lower: with a Higgs boson

1. A theory of massive gauge bosons and fermions, which is weakly interacting up to very
high energies, requires for unitarity reasons the existence of a Higgs particle. The Higgs
particle is a scalar 0+ particle, i.e. a spin 0 particle with positive parity, which couples
to the other particles with a coupling strength proportional to the mass (squared) of
the particles.
Look e.g. at the amplitude for the scattering of longitudinal gauge bosonsWL into a pair
of longitudinal gauge bosons WL, see Fig. 1.1. Without a Higgs boson the amplitude
diverges proportional to the center-of-mass (c.m) energy squared, s, cf. Fig. 1.1 (upper),
where GF denotes the Fermi constant. The introduction of a Higgs boson which
couples proportional to the mass squared of the gauge boson, regularizes the amplitude,
cf. Fig. 1.1 (lower), where MH denotes the Higgs boson mass.

2. The introduction of mass terms for the gauge bosons violates the SU(2)L × U(1)
symmetry of the SM Lagrangian. The same problem arises for the introduction of
mass terms for the fermions. It violates the chiral symmetry.

Let us have a closer look at point 2. We look at the Lagrangian

Lf = Ψ̄(iγµDµ −m)Ψ . (1.1)

In the chiral respresentation the 4× 4 γ matrices are given by

γµ =

((
0 1

1 0

)

,

(
0 −~σ
~σ 0

))

=

(
0 σµ−
σµ+ 0

)

(1.2)

γ5 =

(
1 0
0 −1

)

, (1.3)

where σi (i = 1, 2, 3) are the Pauli matrices. With

Ψ =

(
χ
ϕ

)

and Ψ̄ = Ψ†γ0 = (χ†, ϕ†)

(
0 1

1 0

)

= (ϕ†, χ†) (1.4)
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we get

Ψ̄iγµDµΨ = i(ϕ†, χ†)

(
0 σµ−
σµ+ 0

)(
Dµχ
Dµϕ

)

︸ ︷︷ ︸




σµ−Dµϕ
σµ+Dµχ





= ϕ†iσµ−Dµϕ+ χ†iσµ+Dµχ . (1.5)

The gauge interaction1 holds independently for

ΨL =

(
0
ϕ

)

=
1

2
(1− γ5)Ψ and ΨR =

(
χ
0

)

=
1

2
(1+ γ5)Ψ . (1.6)

The ΨL and ΨR can transform differently under gauge transformations,

Ψ′
L = ULΨL and Ψ′

R = URΨR . (1.7)

But

mΨ̄Ψ = m(ϕ†, χ†)

(
χ
ϕ

)

= m(ϕ†χ+ χ†ϕ) = m(Ψ̄LΨR + Ψ̄RΨL) . (1.8)

The mass term mixes ΨL and ΨR. From this follows symmetry breaking if ΨL and ΨR

transform differently.

What about the mass term for gauge bosons? We have the Lagrangian

L = −1

4
F aµνF a

µν
︸ ︷︷ ︸

gauge invariant

+
m2

2
AaµAaµ
︸ ︷︷ ︸

not gauge invariant

. (1.9)

For example for the U(1) we get2

(AµA
µ)′ = (Aµ + ∂µθ)(A

µ + ∂µθ) = AµA
µ + 2Aµ∂

µθ + (∂µθ)(∂
µθ) . (1.10)

The mass term Aµ breaks the gauge symmetry.

1.2 The Standard Model Higgs sector

The problem of mass generation without violating gauge symmetries can be solved by in-
troducing an SU(2)L Higgs doublet3 with weak isospin I = 1/2 and hypercharge Y = 1 and
the SM Higgs potential given by

V (Φ) = λ[Φ†Φ− v2

2
]2 . (1.11)

V (�)

j�

0

j

j�

+

j

1Question: What is the gauge principle?
2The kinetic Lagrangian −1/4FµνF

µν is invariant under a gauge transformation Aµ → A′
µ = Aµ + ∂µθ.

3Question: Why do we need to introduce a doublet?
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Here v denotes the vacuum expectation value (VEV)

v =
1

√√
GF

≈ 246.22 GeV, (1.12)

and GF = 1.16637 ·10−5 GeV−2 the Fermi constant. Introducing the Higgs field in a physical
gauge,

Φ =
1√
2

(
0

v +H

)

, (1.13)

the Higgs potential can be written as

V (H) =
1

2
M2

HH
2 +

M2
H

2v
H3 +

M2
H

8v2
H4 . (1.14)

Here we can read off directly the mass of the Higgs boson and the Higgs trilinear and quartic
self-interactions. Adding the couplings to gauge bosons and fermions we have4:

Mass of the Higgs boson MH =
√
2λv

Couplings to gauge bosons gV V H =
2M2

V

v

Yukawa couplings gffH =
mf

v

T rilinear coupling λHHH = 3
M2

H

M2
Z[units λ0 = 33.8 GeV]

Quartic coupling λHHHH = 3
M2

H

M4
Z[units λ2

0
]

In the SM the trilinear and quartic Higgs self-couplings are uniquely determined by the mass
of the Higgs boson. As can be read off from the table, before the Higgs discovery the only
unknown parameter was the Higgs boson mass.

The Higgs potential with its typical form leads to a non-vanishing VEV v in the ground
state. Expansion of Φ around the minimum of the Higgs potential leads to one massive scalar
particle, the Higgs boson, and three massless Goldstone bosons, that are absorbed to give
masses to the charged W bosons and the Z boson. (For a toy example, see Appendix 3.1.)
The appearance of Goldstone bosons is stated in the Goldstone theorem, which says:

Be

N = dimension of the algebra of the symmetry group of the complete Lagrangian.
M = dimension of the algebra of the group, under which the vacuum

is invariant after spontaneous symmetry breaking.

⇒ There are N −M Goldstone bosons without mass in the theory.

The Goldstone theorem states that for each spontaneously broken degree of freedom of the
symmetry there is one massless Goldstone boson.

In gauge theories, however, the conditions for the Goldstone theorem are not fulfilled:
Massless scalar degrees of freedom are absorbed by the gauge bosons to give them mass.
The Goldstone phenomenon leads to the Higgs phenomenon.

4The trilinear and quartic Higgs self-couplings are given in terms of λ0 = M2

Z/v ≈ 33.8 GeV.
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1.3 Verification of the Higgs mechanism

On 4th July 2012, the LHC experiments ATLAS and CMS announced the disovery of a
new scalar particle with mass MH ≈ 125 GeV [3, 4]. The discovery triggered immediately
the investigation of the properties of this particle in order to test if it is indeed the Higgs
particle that has been disovered. In order to verify experimentally the Higgs mechanism as
the mechanism that allows to generate particle masses without violating gauge principles,
we have to perform several steps:

1.) First of all the Higgs particle has to be discovered.

2.) In the next step its couplings to gauge bosons and fermions are measured. If the Higgs
mechanism acts in nature these couplings are proportional to the masses (squared) of
the respective particles.

3.) Its spin and parity quantum numbers have to be determined.

4.) And finally, the Higgs trilinear and quartic self-couplings must be measured. This
way, the Higgs potential can be reconstructed which, with its typical minimax form,
is responsible for the non-vanishing vacuum expectation value, that is essential for the
non-zero particle masses.

In the following, we will see how this program can be performed at the LHC.

1.4 Higgs boson decays

In order to search for the Higgs boson at existing and future colliders, one has to know
what to look for. Hence, one has to study the Higgs decay channels. Since the Higgs boson
couples proportional to the mass of the particle its preferred decays will be those into heavy
particles, i.e. heavy fermions and, when kinematically allowed, into gauge bosons. The
branching ratio into a final state pair XX is defined as

BR(H → XX) =
Γ(H → XX)

ΓHtot
. (1.15)

The partial decay width for the decay H → XX is given by Γ(H → XX). The total decay
width ΓHtot is the sum of all possible partial decay widths of H . All possible branching ratios
hence have to add up to 1. For the SM Higgs boson of massMH = 125.09 GeV the branching
ratios into fermions are

H

f

�

f

+

m

f

v
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BR(H → bb̄) <∼ 0.5797
BR(H → τ+τ−) <∼ 0.06244
BR(H → cc̄) <∼ 0.02879
BR(H → tt̄) <∼ 0 (kinematically closed)

. (1.16)

These and the following branching ratios are obtained from the program HDECAY [5, 6]. It is
a Fortran code for the computation of the branching ratios and total widths of the SM Higgs
boson and also of the MSSM and 2HDM Higgs bosons. The decay widths include, where
applicable, the state-of-the-art higher-order QCD and electroweak corrections. Furthermore,
off-shell decays into heavy-quark, massive gauge boson, neutral Higgs pair as well as Higgs
and gauge boson final states. The latter two decays do not exist in the SM Higgs sector but
only in extended Higgs sectors with a larger Higgs spectrum. There are also other programs
on the market for the computation of the SM Higgs decays, see [7, 8, 9] for an overview.

The tree-level partical decay width into fermions is given by

Γ(H → f f̄) =
NcfGFMH

4
√
2π

m2
fβ

3 , (1.17)

with the velocity

β = (1− 4m2
f/M

2
H)

1/2 (1.18)

of the fermions, their mass mf , and the colour factor Ncf = 1(3) for leptons (quarks). The
decays into quark pair final states receive large QCD corrections which have been calculated
by various groups and can amount up to -50%. [Braaten, Leveille; Sakai; Inami, Kubota; Drees,

Hikasa; Gorishnii, Kataev, Larin, Surguladze; Kataev, Kim; Larin, van Ritbergen, Vermaseren;

Chetyrkin, Kwiatkowski; Baikov, Chetyrkin, Kühn] - for details, see [].

For the SM Higgs boson with a mass of 125.09 GeV the branching ratios into gauge bosons
are

H

W

+

; Z

W

�

; Z

+

M

2

V

v

BR(H → W+W−) <∼ 0.2167
BR(H → ZZ) <∼ 0.02657

. (1.19)

For the 125 GeV Higgs boson these decays are off-shell, hence given by H → V ∗V ∗ →
(f f̄)(f ′f̄ ′) (V = W,Z). The Higgs boson decays into a pair of virtual vector bosons that
subsequently decay into fermion pairs.

The formula for the tree-level decay width into a pair of on-shell massive gauge bosons
V = Z,W is given by

Γ(H → V V ) = δV
GFM

3
H

16
√
2π
β(1− 4x+ 12x2) , (1.20)
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with x =M2
V /M

2
H , β =

√
1− 4x and δV = 2(1) for V = W (Z). The electroweak corrections

to these decays are of the order 5-20%.
[Fleischer, Jegerlehner; Bardin, ...; Kniehl; Ghinculov; Frink, ...] For a Higgs boson of mass
MH = 125 GeV off-shell decays H → V ∗V ∗ → 4l are important. The program PROPHECY4F

includes the complete QCD and EW next-to-leading order (NLO) corrections to H →
W ∗W ∗/Z∗Z∗ → 4f [Bredenstein, Denner; Dittmaier, Mück, Weber].

The decay into gluon pairs proceeds via a loop with the dominant contributions from top
and bottom quarks:

H t; b

g

g

For MH = 125.09 GeV the branching ratio amounts to

BR(H → gg) = 0.08157 . (1.21)

At leading order (LO) the decay width can be cast into the form

ΓLO(H → gg) =
GFα

2
sM

3
H

36
√
2π3

∣
∣
∣
∣
∣

∑

Q=t,b

AHQ (τQ)

∣
∣
∣
∣
∣

2

, (1.22)

with the form factor

AHQ =
3

2
τ [1 + (1− τ)f(τ)] (1.23)

f(τ) =

{
arcsin2 1√

τ
τ ≥ 1

−1
4

[

log 1+
√
1−τ

1−
√
1−τ − iπ

]2

τ < 1
. (1.24)

The parameter τQ = 4M2
Q/M

2
H is defined by the pole mass MQ of the heavy quark Q in the

loop. Note that for large quark masses the form factor approaches unity. The strong coupling
constant is denoted by αs. The QCD corrections have been calculated [Baikov, Chetyrkin;

Chetyrkin, Kniehl, Steinhauser; Krämer, Laenen, Spira; Schröder, Steinhauser; Chetyrkin, Kühn,

Sturm; Inami eal; Djouadi, Graudenz, Spira, Zerwas; Dawson eal; Harlander, Steinhauser; Har-

lander, Hofmann]. They are large and increase the branching ratio by about 70% at next-
to-leading order (NLO). They are known at NLO including the full quark mass dependence
and up to next-to-next-to-next-to leading order (N3LO) in the heavy top quark limit.

Further loop-mediated decays are those into 2 photons and a photon and a Z boson. They
are mediated by charged fermion and W boson loops, the latter being dominant.

H f





=Z

H W





=Z

H

W





=Z

Although they amount only up to

BR(H → γγ) = 2.265× 10−3 and BR(H → Zγ) = 1.537× 10−3 , (1.25)
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the γγ final state is an important search mode for light Higgs bosons at the LHC. The partial
decay width into photons reads

Γ(H → γγ) =
GFα

2M3
H

128
√
2π3

∣
∣
∣
∣
∣

∑

f

Ncfe
2
fA

H
f (τf ) + AHW (τW )

∣
∣
∣
∣
∣

2

, (1.26)

with the form factors

AHf (τ) = 2τ [1 + (1− τ)f(τ)] (1.27)

AHW (τ) = −[2 + 3τ + 3τ(2− τ)f(τ)] , (1.28)

with the function f(τ) defined in Eq. (1.24). The parameters τi = 4M2
i /M

2
H (i = f,W )

are defined by the corresponding masses of the heavy loop particles. Ncf denotes again the
colour factor of the fermion and ef its electric charge. For large loop masses the form factors
approach constant values,

AHf → 4
3

for M2
H ≪ 4M2

Q

AHW → −7 for M2
H ≪ 4M2

W .
(1.29)

The W loop provides the dominant contribution in the intermediate Higgs mass regime,
and the fermion loops interfere destructively. The QCD corrections have been calculated
and are small in the intermediate Higgs boson mass region. [Zheng, Wu; Djouadi, Graudenz

Spira, Zerwas; Melnikov, Spira, Yakovlev; Dawson, Kauffmann; Melnikov, Yakovlev; Inoue, Najima,

Okada, Saito] The tree-level decay width into Zγ is given

Γ(H → Zγ) =
G2
FM

2
WαM

3
H

64π4

(

1− M2
Z

M2
H

)3
∣
∣
∣
∣
∣

∑

f

AHf (τf , λf) + AHW (τW , λW )

∣
∣
∣
∣
∣

2

, (1.30)

with the form factors

AHf (τ, λ) = 2Ncf
ef (I3f − 2ef sin

2 θW )

cos θW
[I1(τ, λ)− I2(τ, λ)]

AHW (τ, λ) = cos θW

{

4(3− tan2 θW )I2(τ, λ)

+

[(

1 +
2

τ

)

tan2 θW −
(

5 +
2

τ

)]

I1(τ, λ)
}

. (1.31)

The functions I1 and I2 read

I1(τ, λ) =
τλ

2(τ − λ)
+

τ 2λ2

2(τ − λ)2
[f(τ)− f(λ)] +

τ 2λ

(τ − λ)2
[g(τ)− g(λ)] (1.32)

I2(τ, λ) = − τλ

2(τ − λ)
[f(τ)− f(λ)] . (1.33)

The function g(τ) can be cast into the form

g(τ) =

{ √
τ − 1 arcsin 1√

τ
τ ≥ 1

√
1−τ
2

[

log 1+
√
1−τ

1−
√
1−τ − iπ

]

τ < 1
(1.34)

The parameters τi = 4M2
i /M

2
H and λi = 4M2

i /M
2
Z (i = f,W ) are defined in terms of the

corresponding masses of the heavy loop particles. TheW loop dominates in the intermediate
Higgs mass range, and the heavy fermion loops interfere destructively.
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Figure 1.2: The Higgs boson branching ratios as a function of the Higgs boson mass: zoomed
in low-mass region (left), whole canonical mass region (right). Plot taken from the LHC Higgs
Cross Section Working Group Report 3 [8].

Figs. 1.2 and 1.3 show plots as they were already produced before the Higgs boson dis-
covery when the Higgs boson mass was still unknown. Shown are the Higgs boson branching
ratios and total width, respectively, as a function of the Higgs boson mass. One can infer
from the figures that the total Higgs boson width is rather small, less than ∼ 10 MeV, for
masses below about 140 GeV. Once the threshold for gauge boson decays is reached the
total width increases rapidly up to about 600 GeV forMH = 1 TeV. The gauge boson decay
widths are proportional to M3

H . Below the gauge boson threshold the main decay is into bb̄,
followed by the decay into τ+τ−. - The error bands include the parametric and theoretical
uncertainties.

1.5 Higgs boson production at the LHC

There are several Higgs boson production mechanisms at the LHC.

- Gluon fusion: The dominant production mechanism for Standard Model Higgs bosons at
the LHC is gluon fusion

[Georgi, et al.;Gamberini, et al.]

�

0

t; b;

~

t;

~

b

g

g

pp→ gg → H . (1.35)



10 The Standard Model Higgs Sector

 [GeV]HM

80 100 200 300 1000

 [
G

e
V

]
HΓ

­310

­210

­110

1

10

210

310

L
H

C
 H

IG
G

S
 X

S
 W

G
 2

0
1

3

Figure 1.3: The Higgs boson total width as a function of the Higgs boson mass. Plot taken
from the LHC Higgs Cross Section Working Group Report 3 [8].

In the Standard Model it is mediated by top and bottom quark loops. The QCD corrections
(the next-to leading order calculation involves 2-loop diagrams!) have been calculated and
turn out to be large. They are of the order 10-100%. [Spira, Djouadi, Graudenz, Zerwas;

Dawson, Kauffmann, Schaffer]; see Fig. 1.4, which shows the NLO K-factor, i.e. the ratio of
the NLO cross section to the leading order (LO) cross section as a function of the Higgs
boson mass for the virtual and real corrections.

K(pp→H+X)

√s = 14 TeV

µ = M = M
H

M
t
 = 175 GeV

CTEQ4

K
tot

K
gg

K
virt

K
qq

K
gq

M
H

 [GeV]
50 100 200 500 1000

-0.5

0

0.5

1

1.5

2

2.5

3

Figure 1.4: The K factor for the gluon fusion process as a function of the Higgs boson mass.

Due to the inclusion of the NLO QCD corrections the scale dependence of the gluon fusion
cross section is decreased, cf. Fig. 1.5.

The next-to-next-to leading order (NNLO) corrections have been calculated in the limit
of heavy top quark masses (MH ≪ mt) [Harlander,Kilgore;Anastasiou,Melnikov;Ravindran,...].
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They lead to a further increase of the cross section by 20-30%. The scale dependence is
reduced to ∆ <∼ 10 − 15%. Resummation of the soft gluons [Catani, et al.; ...] adds another
10%. There has been a lot of progress in the computation of the higher-order corrections to

σ(pp→H+X) [pb]
√s = 14 TeV

µ = M = ξ M
H

M
t
 = 175 GeV

M
H
 = 150 GeV

CTEQ4

NLO

LO

ξ

5
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10

20
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50

σ(pp→H+X) [pb]
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M
t
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M
H
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CTEQ4

NLO

LO
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1

2

3
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10

0 0.5 1 1.5 2 2.5 3 3.5 4

0 0.5 1 1.5 2 2.5 3 3.5 4

Figure 1.5: The scale dependence of the gluon fusion cross section for two different Higgs
boson masses.

gluon fusion in the last years.
Status of higher order (HO) corrections:
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✄ complete NLO: increase σ by ∼ 10-100% Spira,Djouadi,Graudenz,Zerwas
Dawson;Kauffman,Schaffer

✄ SM: limit MΦ ≪ mt - approximation ∼ 20-30% Krämer,Laenen,Spira

✄ NNLO @ MΦ ≪ mt ⇒ further increase by 20-30%
Harlander,Kilgore
Anastasiou,Melnikov
Ravindran,Smith,van Neerven

top mass effects are small in the SM
Marzani,Ball,Del Duca,Forte,Vicini
Harlander,Ozeren
Pak,Rogal,Steinhauser

✄ NNNLO for MΦ ≪ mt ❀ scale stabilisation

Moch,Vogt
Ravindran
de Florian,Mazzitelli,Moch,Vogt
Anastasiou,Duhr,Dulat,Furlan,Gehrmann,Herzog,Mistlberger
Ball,Bonvini,Forte,Marzani,Ridolfi

scale dependence: ∆ <∼ 5%

✄ NNNLL soft resummation: ∼ 2%

Catani,de Florian,Grazzini,Nason
Ravindran
Ahrens,Becher,Neubert,Yang
Ball,Bonvini,Forte,Marzani,Ridolfi
Bonvini,Marzani
Schmidt,Spira

✄ leading soft contribution at N3LO in limit mt → ∞ Ravindran,Smith,van Nerven; Ahrens eal

✄ SM+2HDM EW corrections ∼ 5%

Aglietti eal
Degrassi,Maltoni
Actis,Passarino,Sturm,Uccirati
Jennis,Sturm,Uccirati

✄ impl. in POWHEG including mass effects at NLO Bagnaschi,Degrassi,Slavich,Vicini

- WW/ZZ fusion: Higgs bosons can be produced in the WW/ZZ fusion processes [Cahn,

Dawson; Hikasa; Altarelli, Mele, Pitolli]

h;H

q

q

W;Z

W;Z

pp→W ∗W ∗/Z∗Z∗ → H . (1.36)

The QCD corrections have been calculated long time ago and amount up to ∼ 10% [Han, Va-

lencia, Willenbrock], [Figy,Oleary,Zeppenfeld], [Berger,Campbell]. In the meantime more higher-
order QCD and EW corrections have been calculated.

✄ approximate 2-loop QCD corrs. ⇒ <∼ 1% Bolzano,Maltoni,Moch,Zaro
Cacciari,Dreyer,Karlberg,Salam,Zanderighi

✄ approximate 3-loop QCD corrs. ⇒ <∼ 0.3% Dreyer,Karlberg

✄ electroweak corrs. ⇒ ∼ 10% Ciccolini,Denner,Dittmaier

- Higgs-strahlung: Higgs boson production in Higgs-strahlung [Glashow et al.; Kunszt et al.]

proceeds via
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h;H

�q

q

W;Z

W;Z

pp→ W ∗/Z∗ → W/Z +H . (1.37)

The QCD corrections are ∼ 30% [Han,Willenbrock]. The NNLO QCD corrections add an-
other <∼ 5% [Harlander, Kilgore; Hamberg, Van Neerven, Matsuura; Brein, Djouadi, Harlander].
The theoretical error is reduced to about 5%. The complete electroweak (EW) corrections
reduce the cross section by 5-10% [Ciccolini, Dittmaier, Krämer]. Furthermore, the W/Z +H
production has been provided fully exclusively at NNLO QCD [Ferrera,Grazzini,Tramantano].

- Associated Production: Higgs bosons can also be produced in association with top and
bottom quarks [Kunszt; Gunion; Marciano, Paige]

�

0

q

�q

g

t=b

�

t=

�

b

�

0

g

g

t=b

�

t=

�

b

pp→ tt̄/bb̄+H . (1.38)

The process tt̄H → tt̄bb̄ is important at the LHC as it gives access to the top Yukawa
coupling. The NLO QCD corrections to associated top production increase the cross sec-
tion at the LHC by 20% [Beenakker, et al.;Dawson, et al.]. The parton level cross sec-
tion has been linked to parton showers in the tools aMC@NLO and PowHel [Frederix et al.;

Garzelli,Kardos,Papadopoulos,Trocsanyi]. There has been important work on the background
tt̄bb̄, tt̄jj etc. [Bredenstein,Denner,Dittmaier,Pozzorini; Bevilacqua,Czakon,Papadopoulos,Pittau,Worek;

Cascioli,Maierhofer,Pozzorini] Fig. 1.5 shows the production cross sections in pb as a function
of the Higgs boson mass. The bands show the residual theoretical error.

1.6 Higgs Boson Discovery

The main Higgs discovery channels are the γγ and Z∗Z∗ final states. The decay into γγ final
states has a very small branching ratio, but is very clean. (CMS and ATLAS have an excellent
photon-energy resolution. Look for narrow γγ invariant mass peak, extrapolate background
into the signal region from thresholds.). The Z∗Z∗ final state is the other important search
channel. For MH = 125 Gev it is an off-shell decay. It leads to a clean 4 lepton (4l) final
state from the decay of the Z bosons. Also the WW final state is off-shell. The final state
signature includes missing energy from the neutrinos of the W boson decays. The bb̄ final
state is exploited as well. It has the largest branching ratio, but suffers from a large QCD
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Figure 1.6: The Higgs boson production cross sections at the LHC as a function of the Higgs
boson mass for a center-of-mass energy of 13 TeV (left) and 14 TeV (right).

background. Finally, the ττ channel is also used.

The main discovery channels for the 125 GeV Higgs boson at ATLAS and CMS, i.e. the
photon and the Z boson final states, are shown in Fig. 1.7.

The experiments give the best fit values to the reduced µ values in the final state X .
These are the production rate times branching ratio into the final state X = γ, Z,W, b, τ
normalized to the corresponding value for a SM Higgs boson,

µ =
σprod × BR(H → XX)

(σprod × BR(H → XX))SM
. (1.39)

In case the discovered Higgs boson is a SM Higgs boson they are all equal to 1. Figure 1.8
shows the µ values reported by the LHC experiments. The various final states suffer from
uncertainties that leave room for beyond the SM (BSM) physics.

1.7 Higgs boson couplings at the LHC

In principle the strategy to measure the Higgs boson couplings is to combine various Higgs
production and decay channels, from which the couplings can then be extracted. For ex-
ample, the production of the Higgs boson in W boson fusion with subsequent decay into
τ leptons, Fig. 1.9, is proportional to the partial width into WW and the branching ratio
into ττ . Combination with other production/decay channels and the knowledge of the total
width allow then to extract the Higgs couplings. The problem at the LHC, however, is that
the total width, which is small for a SM 125 GeV Higgs boson, cannot be measured without
model-assumptions, and also not all final states are accessible experimentally. Therefore
without applying model-assumptions only ratios of couplings are measureable.

The theoretical approach is to define an effective Lagrangian with modified Higgs cou-
plings. In a first approach the couplings are modified by overall scale factors κi and the
tensor structure is not changed. With this Lagrangian the signal rates, respectively µ val-
ues, are calculated as function of the scaling factors, µ(κi). These are then fitted to the
experimentally measured µ values. The fits provide then the κi values. Such a theoretical
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Figure 1.7: The main Higgs discovery channels: Upper: The photon final state, here shown
for the ATLAS experiment [ATLAS-CONF-2013-12]. Lower: The Z∗Z∗ final state, here
shown for the CMS experiment [CMS-PAS-HIG-13-002].

Lagrangian for the SM field content with a scalar particle h looks like

L = Lh − (M2
WW

+
µ W

µ− +
1

2
M2

ZZµZ
µ)[1 + 2 κV

h

v
+O(h2)]

−mψi
ψ̄iψi[1 + κF

h

v
+O(h2)] + ... (1.40)

It is valid below the scale Λ where new physics (NP) becomes important. It implements
the electroweak symmetry breaking (EWSB) via Lh and the custodial symmetry through
κW = κZ = κV . Furthermore, there are no tree-level flavour changing neutral current
(FCNC) couplings as κF is chosen to be the same for all fermion generations and does not
allow for transitions between fermion generations. The best fit values for κf and κV are
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Figure 1.8: Combined best fits for the µ values from the ATLAS and CMS experiments
based on Run 1 data.

W
H

τ

τ

• •

Figure 1.9: Feynman diagram for the production of a Higgs boson in W boson fusion with
subsequent decay into ττ . It is proportional to the partial width ΓWW and the branching
ratio into ττ , BR(H → ττ).

shown in Fig. 1.10.

If the discovered particle is the Higgs boson the coupling strengths are proportional to
the masses (squared) of the particles to which the Higgs boson couples. This trend can be
seen in the plot published by CMS, see Fig. 1.11.

1.8 Higgs Boson Quantum Numbers

The Higgs boson quantum numbers can be extracted by looking at the threshold distributions
and the angular distributions of various production and decay processes. The SM Higgs
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Figure 1.10: The best fit values for κf and κV by ATLAS (upper). The best fit values to
the κ’s measured by CMS [CMS-PAS-HIG-17-031] (lower).

boson has spin 0, positive parity P and is even under charge conjugation C. From the
observation of the Higgs boson in the γγ final state one can already conclude that it does
not have spin 1, due to the Landau-Yang theorem, and that it has C = +1, assuming
charge invariance. However, these are theoretical considerations and have to be proven also
experimentally.
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Figure 1.11: Coupling strengths as function of the mass of the particles coupled to the Higgs
boson.

The theoretical tools to provide angular distributions for a particle with arbitrary spin
and parity are helicity analyses and operator expansion. Let us look as an example at the
Higgs decay into ZZ∗, and the Z bosons subsequently decay into 4 leptons,

H → ZZ(∗) → (f1f̄1)(f2f̄2) . (1.41)

The decay is illustrated in Fig. 1.12. The angle ϕ is the azimuthal angle between the decay
planes of the Z bosons in the H rest frame. The θ1 and θ2 are the polar angles, respectively,
of the fermion pairs in, respectively, the rest frame of the decaying Z boson.

For the SM the double polar angle distribution reads

1

Γ′
dΓ′

d cos θ1d cos θ2
=

9

16

1

γ4 + 2

[
γ4 sin2 θ1 sin

2 θ2

+
1

2
(1 + cos2 θ1)(1 + cos2 θ2)

]

(1.42)

and the azimuthal angular distribution is given by

1

Γ′
dΓ′

dφ
=

1

2π

[

1 +
1

2

1

γ4 + 2
cos 2φ

]

(1.43)

The verification of these distributions is a necessary step for the proof of the 0+ nature of
the Higgs boson.

The calculation of the azimuthal angular distribution delivers a different behaviour for a
scalar and a pseudoscalar boson:

0+ : dΓ/dφ ∼ 1 + 1/(2γ4 + 4) cos 2φ
0− : dΓ/dφ ∼ 1− 1/4 cos 2φ

(1.44)
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Figure 1.12: The decay H → ZZ(∗) → (f1f̄1)(f2f̄2).

Here γ2 = (M2
H−M2

∗−M2
Z)/(2M∗MZ) andM∗ is the mass of the virtual Z boson. Figure 1.13

shows how the azimuthal angular distribution can be exploited to test the parity of the
particle. A pseudoscalar with spin-parity 0− shows the opposite behaviour in this distribution
than the scalar, which is due to the minus sign in front of cos 2φ in Eq. (1.44). The threshold
behaviour on the other hand can be used to determine the spin of the particle. We have for
spin 0 a linear rise with the velocity β,

dΓ[H → Z∗Z]

dM2
∗

∼ β =
√

(MH −MZ)2 −M2
∗ /MH . (1.45)

A spin 2 particle, e.g. shows a flatter rise, ∼ β3, cf. Fig. 1.14.

The experiments cannot perform an independent spin-parity measurement. Instead they
test various spin-parity hypotheses. Various non-SM spin-parity hypotheses have been ruled
out at more than 95% confidence level (C.L.), see e.g. Fig. 1.15.
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Figure 1.13: The azimuthal distribution for the H → ZZ∗ → 4l decay for the SM scalar
Higgs (black) and a pseudoscalar (red). [Choi,Mühlleitner,Zerwas]
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Figure 1.14: The threshold distribution for the H → ZZ∗ → 4l decay for the SM spin-0
Higgs (black) and a spin-2 particle (red).[Choi,Mühlleitner,Zerwas]

1.9 Determination of the Higgs self-interactions

In order to fully establish the Higgs mechanism as the one responsible for the generation
of particle masses without violating gauge principles, the Higgs potential has to be recon-
structed. This can be done once the Higgs trilinear and quartic self-interactions have been
measured. The trilinear coupling λHHH is accessible in double Higgs production. The quartic
coupling λHHHH is to be obtained from triple Higgs production.

1.9.1 Determination of the Higgs self-couplings at the LHC

The processes for the extraction of λHHH [Djouadi,Kilian,Mühlleitner,Zerwas] at the LHC are
gluon fusion into a Higgs pair, double Higgs-strahlung, WW/ZZ fusion and radiation of a
Higgs pair off top quarks.

gluon fusion: gg → HH
double Higgs-strahlung: qq̄ → W ∗/Z∗ → W/Z +HH
WW/ZZ double Higgs fusion: qq → qq +WW/ZZ → HH
associated production: pp → tt̄HH

(1.46)

The dominant gluon fusion production process proceeds via triangle and box diagrams, see
Fig. 1.16.

Due to smallness of the cross sections, cf. Fig. 1.17, and the large QCD background the
extraction of the Higgs self-coupling at the LHC is extremely difficult. There is an enormous
theoretical activity to determine the production processes with high accuracy including HO
corrections and to develop strategies and observables for the measurement of the di-Higgs pro-
duction processes and the trilinear Higgs self-couplings. Status of higher order (HO) corrections:
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Figure 1.15: Examples of distributions of the test statistic q̃ for the combination of decay
channels. (a): 0+ versus 0; (b): 0+ versus 0+h ; (c): 0+ versus the spin-2 model with universal
couplings (κq = κg); (d): 0+ versus the spin-2 model with κq = 2κg and the pT selection
at 125 GeV. The observed values are indicated by the vertical solid line and the expected
medians by the dashed lines. The shaded areas correspond to the integrals of the expected
distributions used to compute the p-values for the rejection of each hypothesis. Figure taken
from and details in Eur. Phys. J. C75 (2015) no.10, 476, Erratum: Eur. Phys. J. C76 (2016)
no.3, 152.

✄ LO cxn known exactly with full mass dependence Glover,van der Bij ’88;
Plehn,Spira,Zerwas ’95

✄ NLO QCD corrections - multi-scale problem
✄ improved LET: K = σNLO/σLO ∼ 1.7 Dawson,Dittmaier,Spira ’98

✄ Estimate of finite mass effects: inclusion
Grigo,Hoff,Melnikov,Steinhauser ’13;
Grigo,Hoff,Steinhauser ’15;
Degrassi,Giardino,Gröber ’16

of higher-order corrs. in large mt exp. O(±10%)

✄ real contribution w/ full mt dependence ❀

Frederix,Frixione,Hirschi,
Maltoni,Mattelaer,Torrielli,
Vryonidou,Zaro ’14

top mass effects: O(−10%)
✄ Fulll NLO calculation ❀

top mass effects: -14% Borowka eal ’16

✄ NNLO QCD corrs. for expansion in

de Florian,Mazzitelli ’13 ’15;
Grigo,Melnikov,Steinhauser ’14;
Grigo,Hoff,Steinhauser ’15;
de Florian,Grazzini,Hanga,Kallweit,
Lindert,Maierhöfer,Mazzitelli,Rathlev ’16

small external momenta: O(20%)

✄ threshold resumm., further increase
NNLO+NNLL in large top mass limit de Florian,Mazzitelli ’15

NLL w/ top quark mass effects Ferrera,Pires ’16

✄ Theoretical uncertainty: scale 6%, pdf 2%,
αs 2% LHC Higgs Cross Section WG
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Figure 1.16: The diagrams that contribute to the gluon fusion process gg → HH .
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Figure 1.17: Di-Higgs production processes at the LHC with c.m. energy 14 TeV, including
higher-order corrections. [Baglio,Djouadi,Gröber,Mühlleitner,Quévillon,Spira].

The next-to-leading order cross section for Higgs pair production at a c.m. energy of 14
TeV amounts to [Borowka eal ’16]

σNLO
gg→HH = 32.91+13.6%

−12.6% fb . (1.47)

The current constraints on the SM trilinear Higgs self-coupling are [arXiv:1506.0028, 1509.0467,
1603.0689; ATLAS-CONF-2016-049] O(±15λSMhhh), cf. Fig. 1.18. The prospects in the bb̄γγ final
state are [ATL-PHYS-PUB-2017-001] −0.8 < λhhh/λ

SM
hhh < 7.7.

1.10 Summary

The measurements of the properties of the discovered particle have identified it as the Higgs
boson. CERN therefore officially announced in a press release of March 2013 that the
discovered particle is the Higgs boson, cf. Fig. 1.19. This lead then to the Nobel Prize for
Physics in 2013 to Francois Englert and Peter Higgs.

The SM of particle physics has been very successful so far. At the experiments it has
been tested to highest accuracy, including higher order corrections. And with the discovery
of the Higgs particle we have found the last missing piece of the SM of particle physics. Still
there are many open questions that cannot be answered by the SM. To name a few of them

1. In the SM the Higgs mechanism is introduced ad hoc. There is no dynamical mecha-
nism behind it.
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Figure 1.18: Plot taken from CMS-PAS-HIG-17-008.

2. In the presence of high energy scales, the Higgs boson mass receives large quantum
corrections, inducing the hierarchy problem.

3. We have no explanation for the fermion masses and mixings.

4. The SM does not contain a Dark Matter candidate.

5. In the SM the gauge couplings do not unify.

6. The SM does not incorporate gravity.

7. The CP violation in the SM is not large enough to allow for baryogenesis.

8. ...

We therefore should rather see the SM as an effective low-energy theory which is embedded
in some more fundamental theory that becomes apparent at higher scales. The Higgs data
so far, although pointing towards a SM Higgs boson, still allow for interpretations within
theories beyond the SM. These BSM theories can solve some of the problems of the SM. A
few of these BSM models shall be presented in this lecture.
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Figure 1.19: CERN press release.



Chapter 2

The 2-Higgs Doublet Model

Disclaimer: A lot of material for this chapter has been taken from Refs. [10, 11, 12].

So far the experimental Higgs data are compatible with an SM Higgs boson. Still there is
room for interpretations of the Higgs data within beyond the SM (BSM) Higgs physics. The
SM contains only one complex Higgs doublet. A straightforward minimal extension is given
by adding an additional singlet field or another Higgs doublet. When extending our model
to BSM physics we have to be careful, however, not to violate experimental and theoretical
constraints. Two major constraints are given by the ρ parameter and the severe limits on
the existence of flavour-changing neutral currents (FCNC).

The ρ parameter constraint: The ρ parameter

ρ =
M2

W

M2
Z cos2 θW

(2.1)

has been experimentally measured and is very close to one. In the SM the ρ parameter is
determined by the Higgs structure of the theory and the tree-level value ρ = 1 is automatic.
Introducing more generally n scalar multiplets φi with weak isospin Ii, weak hypercharge Yi
and VEV vi of the neutral components, we have for the ρ parameter at tree level (demonstrate
this)

ρ =

∑n
i=1

[
Ii(Ii + 1)− 1

4
Y 2
i

]
vi

∑n
i=1

1
2
Y 2
i vi

. (2.2)

Both SU(2) singlets with Y = 0 and SU(2) doublets with Y = ±1 satisfy

I(I + 1) =
3

4
Y 2 (2.3)

and hence ρ = 1. Also models with larger SU(2) multiplets, scalar particles with small or
vanishing VEVs and models with triplets and a custodial SU(2) global symmetry satisfy the
ρ parameter constraint. But they lead to larger and more complex Higgs sectors.

Flavour-changing neutral currents: The existence of FCNC is experimentally severly con-
strained. In the SM tree-level FCNC are automatically absent, as the mass matrix au-
tomatically diagonalizes the Higgs-fermion couplings. This is in general not the case for
non-minimal Higgs models. A solution to this problem is given by a theorem by Glashow

25
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and Weinberg [13] and shall be discussed below.

Unitarity Constraints: Finally in any model of EWSB it must be ensured, that the amplitude
for the scattering of longitudinal gauge bosons V (V = W,Z),

VLVL → VLVL (2.4)

or for fermions f scattering into longitudinal gauge bosons,

f+f̄+ → VLVL , (2.5)

where + denotes the positive helicity of the fermion, do not violate unitarity bounds. This
requires non-trivial cancellations of the Feynman diagrams contributing to a process. For
example, inWW →WW scattering, the cancellation happens in the SM due to the existence
of a light Higgs boson H with its couplings to the W bosons given by gHWW = gmW . In
models with extended Higgs sectors it is not necessary that a single scalar boson ensures the
unitary constraints. It is only necessary that sum rules for the scalar boson hi couplings to
V V and f f̄ are fulfilled, namely
∑

i

g2hiV V = g2HV V (2.6)

and
∑

i

ghiV V ghiff̄ = gHV V gHff̄ . (2.7)

Note that these sum rules only hold for models with doublet and singlet Higgs fields. In
extensions with triplets or higher Higgs representations there are more complicated sum
rules.

The 2-Higgs Doublet Model (2HDM) with 2 complex Higgs doublets is - together with
the singlet extension - the simplest possible extension of the SM and shall be discussed in
the following. Besides the simple fact that extended Higgs sectors have not been ruled out
yet experimentally, one main motivation for considering 2HDMs is supersymmetry (SUSY).
Supersymmetry requires the introduction of two Higgs doublets due to the structure of the
superpotential and also in order to have an anomaly-free theory. Another motivation is the
fact that within the SM it is impossible to generate a sufficiently large baryon asymmetry of
the universe. On the other hand, 2HDMs have more freedom due to their enlarged parameter
space and also additional sources for explicit or spontaneous CP violation. The latter is one
of the three Sakharov conditions to generate the baryon asymmetry.1

2.1 The Higgs Potential

The 2HDM has a very rich vacuum structure due to the large number of parameters. Taking
care of respecting the SU(2)L × U(1)Y gauge symmetry and requiring that the theory is
renormalizable in d = 4 dimensions, there are altogether 14 operator products possible
built of the two Higgs doublets Φ1 and Φ2 and that have operator dimension ≤ 4. The
most general scalar potential can have CP-conserving, CP-violating and charge-violating

1The three conditions are baryon number violating processes, C and CP violation and departure from
the thermal equilibrium.
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minima. When writing up the potential care has to be taken in defining the various bases
and in distinguishing between parameters which can be rotated away and those which have
physical implications. If we assume, that CP is conserved and not sponaneously broken and
if we impose a discrete symmetry (under which Φ1 → −Φ1 and Φ2 → Φ2)

2 that eliminate
from the potential all quartic terms odd in either of the doublets, while allowing for all real
quadratic coefficients, one of which softly breaks these symmetries, then the most general
scalar potential for two doublets Φ1 and Φ2 with hypercharge +1 is given by [11]

V = m2
11Φ

†
1Φ1 +m2

22Φ
†
2Φ2 −m2

12

(

Φ†
1Φ2 + Φ†

2Φ1

)

+
λ1
2

(

Φ†
1Φ1

)2

+
λ2
2

(

Φ†
2Φ2

)2

+λ3Φ
†
1Φ1Φ

†
2Φ2 + λ4Φ

†
1Φ2Φ

†
2Φ1 +

λ5
2

[(

Φ†
1Φ2

)2

+
(

Φ†
2Φ1

)2
]

, (2.8)

where all parameters are real.3 In the minimum of the Higgs potential the real components
of the Higgs doublets take the VEVs

〈Φ1〉 =
(

0
v1√
2

)

and 〈Φ2〉 =
(

0
v2√
2

)

. (2.9)

The two complex Higgs doublets contain eight real fields4,

Φa =

(
φ+
a

va+ρa+iηa√
2

)

, a = 1, 2 . (2.10)

Three out of them provide the longitudinal degrees of freedom for the massive W± and Z
bosons. After EWSB we are hence left with five Higgs fields. Assuming CP conservation, we
have two neutral scalars, one neutral pseudoscalar and two charged Higgs bosons. Expansion
about the minima leads to the mass term for the charged Higgs bosons, given by

Lφ±,mass = −[m2
12 − (λ4 + λ5)

v1v2
2

](φ−
1 , φ

−
2 )

( v2
v1

−1

−1 v1
v2

)

︸ ︷︷ ︸

M′
C

(
φ+
1

φ+
2

)

. (2.11)

Here we have already exploited the minimum conditions

∂V

∂Φ†
i

∣
∣
∣
∣
∣
〈Φi〉=vi/

√
2

= 0 , i = 1, 2 , (2.12)

which imply

m2
11 +

λ1v
2
1

2
+
λ3v

2
2

2
= m2

12

v2
v1

− (λ4 + λ5)
v22
2
, (2.13)

m2
22 +

λ2v
2
2

2
+
λ3v

2
1

2
= m2

12

v1
v2

− (λ4 + λ5)
v21
2
. (2.14)

The mass matrix is diagonalized by the orthogonal transformation matrix

UC =

(
cos β sin β
− sin β cos β

)

, (2.15)

2We come back to this point when we discuss the constraints from FCNC couplings.
3Note, that in [10], the parameter m2

11
is called m2

1
, m2

22
is m2

2
and m2

12
is named m2

3
.

4The real fields ρa, ηa and the real fields building up the charged field φ±
a = χa ∓ iζa (a = 1, 2).
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where

tan β =
v2
v1
. (2.16)

The parameter tan β is a key parameter of the model. In order to reproduce the W and Z
boson masses as in the SM we have

v21 + v22 = v2 , (2.17)

with

v2 =
1√
2GF

≈ (246.22)2 (GeV)2 , (2.18)

where GF = 1.1663787×10−5 GeV−2 denotes the Fermi constant. The mass matrix Eq. (2.11)
has one zero eigenvalue, which corresponds to the charged Goldstone boson G±. The mass
squared of the charged Higgs boson reads

m2
H± =

(
m2

12

v1v2
− λ4 + λ5

2

)

(v21 + v22) =M2 − 1

2
(λ4 + λ5)v

2 , (2.19)

where we have introduced

M2 =
m2

12

sin β cos β
. (2.20)

Due to CP-invariance, as assumed here, the imaginary and the real parts of the neutral scalar
fields decouple. The mass term for the pseudoscalars is given by the imaginary components
of the neutral Higgs fields and, again by exploiting the minimum conditions, can be cast into
the form

Lη,mass = −1

2

m2
A

v21 + v22
(η1, η2)

(
v22 −v1v2

−v1v2 v21

)

︸ ︷︷ ︸

M′
P

(
η1
η2

)

. (2.21)

The mass matrix is diagonalized by the orthogonal transformation matrix UP , for which at
tree-level

UP = UC . (2.22)

This leads to one neutral Goldstone boson G0 and a pseusoscalar, denoted by A, with mass
squared

m2
A =

(
m2

12

v1v2
− λ5

)

(v21 + v22) =M2 − λ5v
2 . (2.23)

Note, that when m12 = 0 and λ5 = 0, then the pseudoscalar is massless. The reason
behind this is the existence of an additional global U(1) symmetry in that limit, which is
spontaneously broken. The mass terms for the scalars, derived by collecting the bilinear
terms of the real parts of the neutral Higgs fields and exploiting the minimum conditions,
read

Lρ,mass = −1

2
(ρ1, ρ2)

(
m2

12
v2
v1

+ λ1v
2
1 −m2

12 + λ345v1v2
−m2

12 + λ345v1v2 m2
12
v1
v2

+ λ2v
2
2

)

︸ ︷︷ ︸

MN

(
ρ1
ρ2

)

, (2.24)
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where we have defined

λ345 ≡ λ3 + λ4 + λ5 . (2.25)

The mass matrix is diagonalized by the orthogonal transformation matrix

UN =

(
cosα sinα
− sinα cosα

)

. (2.26)

The mixing angle α is given in terms of the matrix elements of the mass matrix MN as

sin 2α =
2M12

√

(M11 −M22)2 + 4M2
12

(2.27)

cos 2α =
M11 −M22

√

(M11 −M22)2 + 4M2
12

(2.28)

and

tan 2α =
(M2 − λ345v

2) sin 2β

(M2 − λ1v2) cos2 β − (M2 − λ2v2) sin
2 β

. (2.29)

This leads to the CP-even mass eigenstates h and H

H = ρ1 cosα + ρ2 sinα (2.30)

h = −ρ1 sinα+ ρ2 cosα , (2.31)

with the mass values

m2
H,h =

1

2

[

M11 +M22 ±
√

(M11 −M22)2 + 4M2
12

]

. (2.32)

By convention the lighter CP-even state is called h and the heavier one H . Note that the
SM Higgs boson would be

HSM = ρ1 cos β + ρ2 sin β

= H cos(α− β)− h sin(α− β) . (2.33)

The SM Higgs boson hence corresponds to h for cosα = sin β and sinα = − cos β. It
corresponds to H for cosα = cos β and sinα = sin β. That Eq. (2.33) defines the SM Higgs
can be seen by multiplying the Higgs doublets with the mixing matrix UC , respectively UP ,
(

cos β sin β
− sin β cos β

)(
Φ1

Φ2

)

=

(
cos βΦ1 + sin βΦ2

− sin βΦ1 + cos βΦ2

)

, (2.34)

This leads to two Higgs doublets, one of which

ΦHB
1 = cos βΦ1 + sin βΦ2 =

(
cos βφ+

1 + sin βφ+
2

1√
2
[cos β(v1 + ρ1 + iη1) + sin β(v2 + ρ2 + iη2)]

)

=

(
G±

1√
2
[iG0 + (cos βρ1 + sin βρ2) + v]

)

≡
(

G±
1√
2
[iG0 + S1 + v]

)

, (2.35)
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contains the massless Goldstone bosons and the VEV v in the neutral component, so that
S1 ≡ (cos βρ1 + sin βρ2) can be identified with the SM Higgs boson. The superscript HB
stands for ’Higgs Basis’. The other Higgs doublet reads

ΦHB
2 = − sin βΦ1 + cos βΦ2 =

( − sin βφ+
1 + cos βφ+

2
1√
2
[− sin β(v1 + ρ1 + iη1) + cos β(v2 + ρ2 + iη2)]

)

=

(
H+

1√
2
(− sin βρ1 + cos βρ2) +

i√
2
(− sin βη1 + cos βη2)

)

≡
(

H+

S2+iS3√
2

)

. (2.36)

The advantage of the Higgs Basis is that the three Goldstone fields G± and G0 get isolated as
components of Φ1. The three neutral scalar mass eigenstates of the physical scalar spectrum,
ϕ0
i = (h,H,A)T are related through an orthogonal transformation R with the Si fields,

ϕ0
i = RijSj . (2.37)

In general the CP-odd component S3 mixes with the CP-even fields S1,2 and the resulting
mass eigenstates do not have a definite CP quantum number. If the scalar potential is CP
symmetric this admixture disappears. In this case A ≡ S3.

Without loss of generality it can be assumed that β is in the first quadrant, i.e. that both
v1 and v2 are non-negative and real. Furthermore, π can be added to α, which inverts the
sign of both the h and H fields, witout affecting any physics. The angle α will be chosen
either in the first or the fourth quadrant.

The decoupling and the non-decoupling effect:

The masses of the heavier Higgs bosons (H,H± and A) take the form

m2
Φ =M2 + λiv

2(+O(v4/M2)) , (2.38)

where Φ ≡ H,H±, A and λi is a linear combination of λ1–λ5. In case M2 ≫ λiv
2 the mass

m2
Φ is determined by the soft-breaking scale of the discrete symmetry, M2. The effective

theory below M is then described by one Higgs doublet. And all the tree-level couplings
related to the lightest Higgs boson h approach SM values. The loop effects of Φ vanish in
the large mass limit due to the decoupling theorem.

In case M2 is limited to be at the weak scale (M2 <∼ λiv
2) a large value of mφ is realized

by taking λi to be large, so that one is in the strong coupling regime. The squared mass
of Φ is then effectively proportional to λi, so that the decoupling theorem does not apply,
leading to a power-like contribution of mφ in the radiative corrections. This effect is called
the non-decoupling effect of Φ. However, theoretical and experimental constraints have to be
considered. Thus too large λi lead to the breakdown of the validity of perturbation theory.
And low-energy precision data impose important constraints on the model parameters.

Parameters of the Higgs Potential:

The parameters of the Higgs potential are m2
11, m

2
22, m

2
12 and λ1–λ5. They can be ex-

pressed in terms of eight ’physical’ parameters, which are the four Higgs mass parameters
mh, mH , mA, mH±, the two mixing angles α, β, the vacuum expectation value v and the
soft-breaking scale of the discrete symmetry, M . The quartic coupling constants can be
expressed in terms of these parameters. (Derive the expressions!)



The 2-Higgs Doublet Model 31

2.2 The problem with flavour conservation

The 2HDM faces the serious problem of possible FCNCs at tree-level. To see this let us look
at e.g. the Yukawa Lagrangian. The most general Yukawa Lagrangian is given by

LY = −
{

Q̄′
L(Γ1Φ1 + Γ2Φ2)D

′
R − Q̄′

L(∆1Φ̃1 +∆2Φ̃2)U
′
R

+L̄′(Π1Φ1 +Π2Φ2)E
′
R + h.c.

}

, (2.39)

where Q′
L, L

′
L denote the left-handed quark and lepton doublets and Q ≡ (U,D)T , L ≡

(ν, E)T , with U ≡ (u, c, t)T , D ≡ (d, s, b)T , ν ≡ (νe, νµ, ντ )
T and E ≡ (e, µ, τ)T . The indices

L,R denote left- and right-handed fermions f given by

fL,R = PL,Rf ≡ 1

2
(1∓ γ5)f . (2.40)

We have defined Φ̃a = (ΦTa ǫ)
†, with

ǫ =

(
0 1
−1 0

)

. (2.41)

The couplings Γa,∆a and Πa (a = 1, 2) are 3 × 3 complex matrices in flavour space. In the
Higgs basis the Lagrangian can be cast into the form

LY = −
√
2

v

{

Q̄′
L(M

′
dΦ

HB
1 + Y ′

dΦ
HB
2 )D′

R − Q̄′
L(M

′
uΦ̃

HB
1 + Y ′

uΦ̃
HB
2 )U ′

R

+L̄′(M ′
lΦ

HB
1 + Y ′

l Φ
HB
2 )E ′

R + h.c.
}

, (2.42)

where M ′
f (f = d, u, l) are the non-diagonal fermion mass matrices. The matrices Y ′

f contain
the Yukawa couplings to the scalar doublet with zero vacuum expectation value.

In the basis of the mass eigenstates D,U,E, ν, with diagonal mass matricesMf (Mν = 0),
the corresponding matrices Yf are in general non-diagonal and unrelated to the fermion
masses. Therefore the Yukawa Lagrangian leads to FCNC couplings, as there are two differ-
ent Yukawa matrices coupling to a right-handed fermion field. These can in general not be
diagonalized simultaneously. Thus neutral Higgs scalars φ can mediate FCNC, as e.g. d̄sφ.
This would lead to serious phenomenological conflicts. This coupling would lead e.g. to K-K
mixing at tree level. Assuming the coupling to be as large as the b-quark Yukawa coupling,
this would require the mass of the exchanged scalar to exceed 10 TeV, in order to achieve a
suppression that is in accordance with the experiments.

The problem can be avoided by forcing one of the two matrices to be zero, which can be
achieved by imposing that only one scalar doublet couples to a given right-handed fermion
field. In other words, if all fermions with the same quantum numbers (so that they can mix)
couple to the same Higgs multiplet, then FCNCs are absent. This has been stated in the
Paschos-Glashow-Weinberg theorem [14]. It says that a necessary and sufficient condition for
the absence of FCNCs at tree level is that all fermions of a given charge and helicity transform
according to the same irreducible representation of SU(2), correspond to the same eigenvalue
of T3 and that a basis exists in which they receive their contributions to the mass matrix
from a single source. For the SM with left-handed doublets and right-handed singlets, this
means that all right-handed quarks of a given charge must couple to a single Higgs multiplet.
In the 2HDM, this can only be ensured by introducing discrete or continuous symmetries.

In the 2HDM there are two possibilities to achieve this:
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• type I 2HDM: All quarks couple to just one of the Higgs doublets (conventionally
chosen to be Φ2).

• type II 2HDM: The Q = 2/3 right-handed (RH) quarks couple to one Higgs doublet
(conventionally chosen to be Φ2) and the Q = −1/3 RH quarks couple to the other
(Φ1).

In order to get the type I 2HDM a simple discrete symmetry Φ1 → −Φ1 is imposed. For
the type II 2HDM a Φ1 → −Φ1, d

i
R → −diR discrete symmetry is enforced. Note, that

SUSY models lead to the same Yukawa couplings as the type II model. They use, however,
continuous symmetries.

In the type I and type II 2HDMs it is conventionally assumed, that the right-handed
leptons satisfy the same discrete symmetry as the diR, so that the leptons couple to the same
Higgs boson as the down-typ quarks. The Glashow-Weinberg theorem, however, does not
require this. There are therefore two more possibilities:

• Lepton-specific model: The RH quarks all couple to Φ2 and the RH leptons couple to
Φ1.

• Flipped model: The RH up-type quarks couple to Φ2, the RH down-type quarks couple
to Φ1, as in type II, but now the RH leptons couple to Φ2.

There circulate a lot of different names for these models in the literature. Thus Model III
and Model IV were used for the flipped and lepton-specific models, respectively, in one of the
earliest works on them. In other papers lepton-specific and flipped were named, respectively,
Model I and Model II. Also the terms IIA and IIB were used. Recently, lepton-specific was
called X-type and flipped Y-type models.

The explicit implementation of the discrete symmetry is scalar-basis dependent. If it
is imposed in the Higgs Basis, all fermions are forced to couple to the field ΦHB

1 in order
to get non-vanishing masses. This inert doublet model provides a natural frame for dark
matter. Note, however, that although ΦHB

2 does not couple to fermions, it has nevertheless
electroweak interactions.

Tree-level FCNC interactions can be avoided in a softer and more general way by requir-
ing the alignment in flavour space of the Yukawa couplings of the two scalar doublets. A
convenient way to implement this condition is given by the form

Γ2 = ξde
−iθΓ1 , ∆2 = ξ∗ue

iθ∆1 , Π2 = ξle
−iθΠ1 . (2.43)

The proportionality parameters ξf are arbitrary complex numbers. The explicit phases e∓iθ

can be introduced to cancel the relative global phases between the two scalar doublets. They
will be omitted in the following. Through the Yukawa alignment the Y ′

f andM
′
f matrices are

guaranteed to be proportional to each other, so that they can be diagonalized simultaneously,
leading to

Yd,l = ζd,lMd,l , Yu = ζ∗uMu , ζf ≡
ξf − tanβ

1 + ξf tanβ
. (2.44)
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The Yukawa interactions in terms of the mass eigenstate fields then take the form

LY = −
√
2

v
H+Ū [ζdVMdPR − ζuMuV PL]D −

√
2

v
H+ζlν̄MlPRE

−1

v

∑

ϕ0
i ,f

ϕ0
i y
ϕ0
i

f f̄MfPRf + h.c. , (2.45)

where V is the Cabibbo-Kobayashi-Maskawa (CKM) matrix. The flavour alignment of the
Yukawa couplings leads to a very specific structure of the scalar couplings to the fermions:

i) All fermion couplings of the physical scalar fields are proportional to the corresponding
fermion mass matrices.

ii) The neutral Yukawa couplings are diagonal in flavour space. The couplings of the
physical scalar fields h,H and A are proportional to the corresponding elements of the
orthogonal matrix R, namely

y
ϕ0
i

d,l = Ri1 + (Ri2 + iRi3)ζd,l (2.46)

y
ϕ0
i

u = Ri1 + (Ri2 − iRi3)ζ
∗
u . (2.47)

iii) The only source of flavour-changing couplings is given by the CKM matrix V . It
regulates the quark couplings of the W± bosons and the charged scalars H±.

iv) All leptonic couplings are diagonal in flavour space. This is because we assume the
neutrinos to be massless in our low-energy Lagrangian. (Although we know in the
meantime that the neutrinos have mass.) Since we assume the neutrinos to be massless
the leptonic mixing matrix can be reabsorbed through a redefinition of the neutrino
fields.

v) The only new couplings introduced by the Yukawa Lagrangian are the three parame-
ters ζf , which encode all possible freedom allowed by the alignment conditions. The
couplings satisfy universality among the different generations, as all fermions of a
given electric charge have the same universal coupling ζf . Furthermore, the param-
eters ζf are invariant under global SU(2) transformations of the scalar fields [16],
i.e. Φa → Φ′

a = UabΦb. This means that they are independent of the basis choice
adopted in the scalar space.

vi) The models where a single scalar doublet couples to each type of right-handed fermions
are recovered by taking the appropriate limits ξf → 0 or ξf → ∞, i.e. ζf → − tan β
of ζf → cot β. Thus the type-I model corresponds to (ξd, ξu, ξl) = (∞,∞,∞), type
II to (0,∞, 0), the lepton-specific to (∞,∞, 0) and the flipped model to (0,∞,∞).
(Compare with Table 2.1.) The inert model corresponds to ζf = 0 (ξf = tan β).

vii) The ζf can be arbitrary complex numbers, so that one can have new sources of CP
violation without tree-level FCNCs.
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We will now determine the Yukawa couplings. In the type II model, e.g. the Yukawa
Lagrangian is given by5

LY = −






ĒR





he 0 0
0 hµ 0
0 0 hτ



Φ†
1EL + D̄′

RV





hd 0 0
0 hs 0
0 0 hb



V †Φ†
1

(
U
D′

)

L

−ŪR





hu 0 0
0 hc 0
0 0 ht



ΦT2 ǫ

(
U
D′

)

L

+ h.c.






. (2.48)

Here U ≡ (u, c, t)T , D ≡ (d, s, b)T and E ≡ (e, µ, τ)T . The hf denote the various Yukawa
couplings. Coupling the Higgs doublets for the various models as described above and
rotating to the mass eigenstates, one gets, in the notation of Ref. [15], the Yukawa Lagrangian

L2HDM
Yukawa = −

∑

f=u,d,l

mf

v

(

ξfh f̄ fh+ ξfH f̄ fH − iξAf̄γ5fA
)

−
{√

2Vud
v

ū(muξ
u
APL +mdξ

d
APR)dH

+ +

√
2mlξ

l
A

v
ν̄LlRH

+ + h.c.

}

(2.49)

Here we have replaced the Yukawa coupling hf of the fermions f to the Higgs boson by√
2mf/vi. In the Lagrangian the u, d, l, ν stand for all three generations. The Lagrangian

defines the parameters ξfh , ξ
f
H, ξ

f
A. They are defined in Table 2.1.

Type I Type II Lepton-specific Flipped
ξuh cosα/ sinβ cosα/ sinβ cosα/ sinβ cosα/ sinβ
ξdh cosα/ sinβ − sinα/ cosβ cosα/ sinβ − sinα/ cosβ
ξlh cosα/ sinβ − sinα/ cosβ − sinα/ cosβ cosα/ sinβ
ξuH sinα/ sin β sinα/ sin β sinα/ sin β sinα/ sinβ
ξdH sinα/ sin β cosα/ cos β sinα/ sin β cosα/ cosβ
ξlH sinα/ sin β cosα/ cos β cosα/ cos β sinα/ sinβ
ξuA cot β cot β cot β cot β
ξdA − cot β tanβ − cot β tanβ
ξlA − cot β tanβ tanβ − cot β

Table 2.1: The u, d, l (they stand for all three generations) Yukawas couplings to the neutral
Higgs bosons h,H,A in the four different models.

2.3 Branching Ratios

For the determination of the Higgs decays widths, we also need the couplings to the gauge
bosons. The couplings of the Higgs bosons to the gauge bosons are derived from

2∑

i=1

(DµΦi)
†(DµΦi) , (2.50)

5Compare with “Theoretische Teilchenphysik” winter semester 2013/14, section 2.7.2.
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with

Dµ = ∂µ + i
g

2
~τ ~Wµ + i

g′

2
Bµ , (2.51)

where ~τ = (τ1, τ2, τ3)
T in terms of the Pauli matrices. Using Φi = (φ+

i , 1/
√
2(vi + ρi + iηi))

T

and

ρ1 = Hcα − hsα , ρ2 = Hsα + hcα , (2.52)

η1 = G0cβ − Asβ , η2 = G0sβ + Acβ , (2.53)

one finds for all four 2HDM models for the Higgs couplings to the gauge bosons normalized
to the corresponding SM coupling gHSMV V (V = W,Z)

ghWW = sin(β − α)gHSMWW , ghZZ = sin(β − α)gHSMZZ , (2.54)

gHWW = cos(β − α)gHSMWW , gHZZ = cos(β − α)gHSMZZ , (2.55)

gAWW = gAZZ = 0 . (2.56)

Note that in the 2HDM the Higgs couplings to the gauge bosons are always suppressed
compared to the SM, and in the case of the pseudoscalar they vanish.

In the 2HDM we can have additional decays of the neutral Higgs bosons, such as Higgs-
to-Higgs decays

h,H → AA , H → hh , h,H → H+H− , (2.57)

and Higgs decays into a Higgs boson and a gauge boson,

h,H → ZA , h,H,A→ W±H∓ , A→ Zh, ZH . (2.58)

The Higgs-to-Higgs decays require the derivation of the trilinear Higgs self-couplings (excer-
cise!). They can be expressed in terms of the Higgs masses, M , α and β and can be found
in Ref. [10] in Eqs. (E1)-(E6), (E11) and (E12). The Eqs. (E9), (E10), (E15) and (E16)
contain the Higgs-Higgs-gauge boson couplings.

With these couplings at hand the decay widths and branching ratios can be calculated.
There are several public programs that have implemented the calculation of the branching
ratios of the 2HDM including the state-of-the-art higher order corrections, such as:

• HDECAY

Ref.: A. Djouadi, J. Kalinowski and M. Spira, Comput. Phys. Commun. 108 (1998)
56 [hep-ph/9704448]; A. Djouadi, M. M. Mühlleitner and M. Spira, arXiv:1801.09506
[hep-ph].
webpage: http://tiger.web.psi.ch/hdecay/

• 2HDMC

Ref.: D. Eriksson, J. Rathsman and O. St̊al, Comput. Phys. Commun. 181 (2010)
189 [arXiv:0902.0851 [hep-ph]]; D. Eriksson, J. Rathsman and O. St̊al, Comput. Phys.
Commun. 181 (2010) 833.
webpage: http://2hdmc.hepforge.org/
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Exercise: Determine the branching ratios. Produce plots for the branching ratios of respec-
tively, H,A,H± as a function of their mass. Choose mh = 125 GeV, sin(β − α) = 0.9 (to
be close to the SM) and two values of tanβ, tan β = 2, 10. For the time being, we are not
interested in Higgs-to-Higgs decays, so that m2

12 can be chosen arbitrarily. For simplicity
choose H and H± to be close in mass (e.g. 150 and 600 GeV, respectively). As for the H
mass, choose it such that in one case the H → H+H− and H → ZA decays are possible, in
the other case not.

2.4 Higgs Production

For the neutral Higgs bosons of the 2HDM the same production mechanisms apply as in
the SM. The dominant production process at the LHC is given by gluon fusion. The cross
section can readily be taken over from the SM by making the appropriate replacements of
the Higgs couplings to the top and bottom quarks. So we have for φ = h,H,A

σ(gg → φ) = m2
φδ(ŝ−m2

φ)σ̂ , (2.59)

where ŝ denotes the partonic c.m. energy and

σ̂ =
GFα

2
s

512
√
2π

∣
∣
∣
∣
∣

∑

q=t,b

gφqqA
φ
1/2(τq)

∣
∣
∣
∣
∣

2

. (2.60)

Here we have defined τq = 4m2
q/m

2
φ and the Yukawa coupling modification factors for the

four 2HDM models are summarised in Tab. 2.1. Furthermore, we have the form factors

A
h/H
1/2 = 2τ [1 + (1− τ)f(τ)] (2.61)

AA1/2 = 2τf(τ) , (2.62)

with f(τ) defined in Eq. (1.24). For large quark masses, i.e. τq ≪ 1, they approach

A
h/H
1/2 → 4

3
and AA1/2 → 2 . (2.63)

Note in particular, that while b-quark loops in the SM do not play a role in the type II and
the flipped 2HDMs they can become crucial for large values of tanβ as the Higgs couplings
to down-type quarks are proportional to tanβ.

The production cross sections for h and H in gauge boson fusion and Higgs radiation can
be obtained from the corresponding SM cross sections by multiplying them with the coupling
modification factors sin2(β − α) for h and cos2(β − α) for H . The pseudocscalar does not
couple to the gauge bosons and cannot be produced through these processes. The tt̄φ pro-
duction cross section is obtained from the SM formula by multiplying it with (cosα/ sin β)2

for h, (sinα/ sinβ)2 for H and cot2 β for A in all four 2HDM models. In the type II and
flipped 2HDMs also bb̄φ production can become important due to the tan β enhanced Higgs
couplings to b-quarks for large values of tan β.

In the 2HDM there are further production mechanisms. Thus a resonantly produced
heavy scalar can decay into a Higgs pair. Higgs bosons can also be produced in di-Higgs
production through non-resonant channels and from gauge bosons produced in the Drell-Yan
process, that subsequently decay into a Higgs pair. As the 2HDM has a large parameter
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space and the trilinear couplings are not given by the gauge couplings (as in supersymmetric
theories) the double Higgs production cross sections can in general be larger than in the
Minimal Supersymmetric extension of the SM (MSSM). Charged Higgs bosons finally can
be produced in H+H− production or, if they are light enough, from top decays.

2.5 Type II 2HDM and the MSSM

As stated earlier the Higgs coupling structure to the fermions of the type II 2HDM is the
same as in the MSSM. However, there are some crucial differences between these models:

• The type II 2HDM does not have a strict upper bound on the mass of the lightest Higgs
boson. This is the case in the MSSM, as the Higgs potential, due to supersymmetry,
is given in terms of the gauge couplings.

• For the same reason in the 2HDM the scalar self-couplings are now arbitrary.

• Also the mixing angle α, which in the MSSM is given in terms of tanβ and the scalar
and pseudocalar masses, is now arbitrary.

• In the MSSM the charged scalar and pseudoscalar masses are so close that the decay of
the charged Higgs boson into a pseudoscalar and a real W is kinematically forbidden,
while it is generally allowed in the type II 2HDM.

2.6 The Scalar Sector of the 2HDM

In its most general form the Higgs potential has 14 independent parameters. The Higgs
doublets Φ1 and Φ2 are not physical observables, only the scalar mass eigenstates are physical
particles. One therefore has the freedom to redefine the doublets, provided the form of
their kinetic terms is preserved. Through such basis changes some of the parameters in
the potential can be absorbed. They are essential to understand the number of physical
parameters really present in the potential.

It is common to impose a variety of global symmetries on the 2HDM, e.g. in order to
avoid tree-level FCNC couplings. Thereby the number of free parameters is reduced. It has
been proven that there are only six such symmetries which have distinct effects on the scalar
potential. The resulting six models have different physical implications:

different spectra of scalars, different interactions with gauge bosons, in some cases
predictions of massless axions or potential dark matter candidates.

The scalar potential determines the vacuum of the 2HDM. Contrary to the SM this
vacuum is not unique. With two Higgs doublets it is possible that the model spontaneously
breaks the CP symmetry. For certain parameter values of the potential is is also possible
to have vacua that violate the electromagnetic symmetry and thus give mass to the photon.
These have to be avoided of course. Even if only vacua are considered that preserve both CP
and the usual gauge symmetries of the SM, the 2HDM has a rich vacuum structure. Thus
some potentials can have two different electromagnetism-preserving minima, with different
predictions for the masses of the gauge bosons for example. The 2HDM, however, has a
feature which distinguishes it from other multi-Higgs models, such as SUSY or the 3HDM:
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Its vacua are stable and no tunneling from a neutral, CP-conserving vacum to a deeper,
CP- or charge-breaking vacuum is possible. Vice-versa, any CP- or charge-breaking
minimum that one finds is guaranteed to be the global minimum of the model.

Not all values of the parameters of the 2HDM potential, however, ensure a stable mini-
mum, unless the potential can be ensured to be bounded from below. This basic requirement
imposes constraints on the quartic scalar couplings and translates in possibly severe bounds
on the masses of the physical scalar particles through renormalization-group improvement.

2.6.1 Notations of the Scalar Potential

Notation 1: The most general renormalizable scalar potential can be written as [17]

VH = m2
11Φ

†
1Φ1 +m2

22Φ
†
2Φ2 −m2

12

(

Φ†
1Φ2 + Φ†

2Φ1

)

+
λ1
2

(

Φ†
1Φ1

)2

+
λ2
2

(

Φ†
2Φ2

)2

+λ3(Φ
†
1Φ1)(Φ

†
2Φ2) + λ4(Φ

†
1Φ2)(Φ

†
2Φ1)

+

[
λ5
2
(Φ†

1Φ2)
2 + λ6(Φ

†
1Φ1)(Φ

†
1Φ2) + λ7(Φ

†
2Φ2)(Φ

†
1Φ2) + h.c.

]

. (2.64)

The parameters m2
11, m

2
22 and λ1,2,3,4 are real, whereas m

2
12 and λ5,6,7 are complex. This leads

to 14 parameters for the Higgs potential of Eq. (2.64). However, the freedom to redefine the
basis means that in reality only eleven degrees of freedom are physical.

Notation 2: An alternative notation has been given in [18] and reads

VH =
2∑

a,b=1

µabΦ
†
aΦb +

1

2

2∑

a,b,c,d=1

λab,cd(Φ
†
aΦb)(Φ

†
cΦd) , (2.65)

where by definition

λab,cd = λcd,ab . (2.66)

Hermiticity in Eq. (2.65) implies

µab = µ∗
ba and λab,cd = λ∗ba,dc . (2.67)

The notation of Eq. (2.65) is useful for the study of invariants, basis transformations and
symmetries. The correspondance between notation 1 and 2 is given by

µ11 = m2
11 , µ22 = m2

22 ,
µ12 = −m2

12 , µ21 = −m2∗
12 ,

λ11,11 = λ1 , λ22,22 = λ2 ,
λ11,22 = λ22,11 = λ3 , λ12,21 = λ21,12 = λ4 ,
λ12,12 = λ5 , λ21,21 = λ∗5 ,
λ11,12 = λ12,11 = λ6 , λ11,21 = λ21,11 = λ∗6 ,
λ22,12 = λ12,22 = λ7 , λ22,21 = λ21,22 = λ∗7 .

Notation 3: While the previous notations consider the scalar doublets Φa (a = 1, 2) individ-
ually, the third notation presented here emphasises the presence of field bilinears Φ†

aΦb in
the scalar potential. It can be written as [19]

VH =
3∑

µ=0

Mµrµ +
3∑

µ,ν=0

Λµνrµrν , (2.68)
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where

Λµν = Λνµ (2.69)

and

r0 =
1

2
(Φ†

1Φ1 + Φ†
2Φ2) ,

r1 =
1

2
(Φ†

1Φ2 + Φ†
2Φ1) = ℜ(Φ†

1Φ2)

r2 = − i

2
(Φ†

1Φ2 − Φ†
2Φ1) = ℑ(Φ†

1Φ2)

r3 =
1

2
(Φ†

1Φ1 − Φ†
2Φ2) . (2.70)

This notation is convenient for studies of features such as the existence and number of minima
of the scalar potential. Since the Yukawa couplings involve the Higgs doublets individually
rather than bilinears, notation 3 cannot be applied for studies of the full theory with both
scalars and fermions. The correspondence between notations 1 and 3 is given by

Mµ = (m2
11 +m2

22,−2ℜ(m2
12), 2ℑ(m2

12), m
2
11 −m2

22) , (2.71)

Λµν =







(λ1 + λ2)/2 + λ3 ℜ(λ6 + λ7) −ℑ(λ6 + λ7) (λ1 − λ2)/2
ℜ(λ6 + λ7) λ4 + ℜ(λ5) −ℑ(λ5) ℜ(λ6 − λ7)
−ℑ(λ6 + λ7) −ℑ(λ5) λ4 − ℜ(λ5) −ℑ(λ6 − λ7)
(λ1 − λ2)/2 ℜ(λ6 − λ7) −ℑ(λ6 − λ7) (λ1 + λ2)/2− λ3







. (2.72)

In the following we will discuss constraints on the 2HDM Higgs potential and the impli-
cations on its parameter values.

2.6.2 Stability of the 2HDM Potential

In order to ensure the stability of the 2HDM potential, we have to make sure that it is
bounded from below, i.e. that there is no direction in field space along which the potential
tends to minus infinity. The existence of a stable minimum, around which perturbative
calculations can be performed, is a basic requirement for any physical theory. The scalar
potential of the SM satisfies this requirement through the trivial condition λ > 0, where λ
is the quartic coupling of the SM scalar potential. The 2HDM scalar potential of Eq. (2.64)
is much more complicated than the one of the SM. All possible directions along which the
fields Φ1 and Φ2, respectively their eight component fields, tend to arbitrarily large values,
have to be studied. In order to have a non-trivial minimum, i.e. the fields Φi acquire non-
zero VEVs, two conditions have to be fulfilled: The quartic part of the scalar potential,
V4, is positive for arbitrarily large values of the component fields, but the quadratic part
of the scalar potential, V2, can take negative values for at least some values of the fields.
In this respect, demanding V4 > 0 for all Φi → ∞ may be a too strong requirement, since
several interesting models are excluded by it. Thus in tree-level SUSY potentials there is a
direction, 〈Φ1〉 = 〈Φ2〉 for which V4 = 0. A simple way to obtain necessary conditions on the
quartic parameters of the potential is to study its behaviour along specific field directions.
Considering for example the direction |Φ1| → ∞ and |Φ2| = 0, the expression Eq. (2.64) for
the potential obviously leads to the conclusion that one can have positive values for V4 if and
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only if λ1 ≥ 0. Likewise, the direction |Φ1| = 0 and |Φ2| → ∞ gives the condition λ2 ≥ 0.
By studying several such directions it is possible to reach other conditions on the couplings,
arriving at

λ1 ≥ 0 , λ2 ≥ 0

λ3 ≥ −
√

λ1λ2 , λ3 + λ4 − |λ5| ≥ −
√

λ1λ2 , (2.73)

where λ5 has been taken real. In potentials, where λ6 = λ7 = 0 these are actually necessary
and sufficient conditions to ensure the positivity of the quartic potential along all directions.

The conditions Eq. (2.73) have been obtained through a tree-level analysis. The inclusion
of higher order corrections is done by considering only the tree-level expressions Eq. (2.73),
but taking the values of the couplings which appear in these expressions at different renor-
malization scales. One hence takes the bounds of Eq. (2.73) and runs the couplings therein,
using the β-functions of the model along a range of scales µ, i.e. from the weak scale MZ

to an upper scale Λ. At all scales in the interval chosen the bounds must hold. Note, that
combinations of parameters which at one scale might be acceptable would violate the bounds
at another scale.

Such an analysis has been performed for the SM. The Higgs potential quartic coupling λ
at the scale Q is given in terms of the β-function by

dλ

d lnQ
= β(gi) , (2.74)

where gi generically denotes the couplings of the model. The β-function is derived by con-
sidering the quantum corrections to the Higgs potential, and reads

16π2β = 24λ2 − (3g′2 + 9g2 − 12y2t )λ+
3

8
g′4 +

3

4
g′2g2 +

9

8
g4 − 6y4t

+ higher order terms . (2.75)

Here g and g′ denote the SM electroweak gauge couplings and yt the top Yukawa coupling.
The β-function has a sizeable negative contribution from the top quark Yukawa coupling.
As the top is so heavy, this term tends to decrease the value of λ at higher renormalization
scales. If the starting value of λ at the weak scale is too small, the coupling can become
negative at some higher scale and the potential would be unbounded from below. This allows
us to put a lower bound on λ and thus on the Higgs mass. Let us have a closer look at this.
For small masses (hence small λ – g and g′ are anyway small) the renormalization group
equation (RGE) Eq. (2.75) is dominated by yt, hence

16π2 dλ

d lnQ
= −6y4t . (2.76)

Integration leads to

λ(Q) = λ0 −
3

8π2y
4
0 ln

Q
Q0

1− 9
16π2 y

2
0 ln

Q
Q0

. (2.77)

Therefore λ decreases with Q. In order to have vacuum stability we have to require

Λ ≤ ve4π
2M2

H/(3y
4
t v

2) . (2.78)
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New Physics must appear before this point to ensure vacuum stability. For a fixed value of
Λ this leads to a lower bound on MH .

If the starting value of λ is too large, the RG evolution of the coupling will increase its
value immensely and eventually the theory becomes non-perturbative. We will come back to
this point later, when we discuss unitarity bounds. The RG analysis thus allows to impose
higher and lower bounds on the masses of the Higgs particles.

In the 2HDM the same type of phenomena can occur. If for example the Φ1 only couples
to the up-type quarks, the β-function for the λ1 quartic coupling will have a large negative
top Yukawa contribution, and a similar analysis to the SM case will hold. However, in
the 2HDM many other quartic couplings are present and more bounds need to be obeyed.
Nevertheless the main conclusions hold: Smaller values for some of the λi at the weak scale
are disfavoured as they lead to unbounded from below potentials at higher scales. Large
values of these couplings lead to Landau poles at high scales and thus the breakdown of
perturbation theory. These translate into bounds on the several Higgs masses.

2.6.3 Vacuum Stability

In the SM, apart from the trivial minimum, there is only one possible type of minimum. In
the 2HDM, however, there exist three types of vacua:6

• “Normal” (N) vacua, with VEVs which do not have any complex relative phase and
can thus trivially be rendered real:

〈Φ1〉N =

(
0
v1√
2

)

, 〈Φ2〉N =

(
0
v2√
2

)

, (2.79)

where v =
√

v21 + v22 = 246 GeV and tanβ = v2/v1.

• CP breaking vacua, where the VEVs have a relative complex phase,

〈Φ1〉CP =

(
0

v̄1√
2
eiθ

)

, 〈Φ2〉CP =

(
0
v̄2√
2

)

, (2.80)

where v̄1 and v̄2 are real.

• Charge breaking (CB) vacua, in which one of the VEVs carries electric charge,

〈Φ1〉CB =

(
α√
2
v′1√
2

)

, 〈Φ2〉CB =

(

0
v′2√
2

)

, (2.81)

with real numbers v′1, v
′
2, α. Because of the presence of a non-zero VEV in an upper

component (charged) of the fields, this vacuum breaks electrical charge conservation,
so that the photon acquires a mass. Such a vacuum therefore has to be avoided.

6Any stationary point of the potential, regardless of whether it is a minimum or not, is considered a
vacuum.
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The minima of the potential are defined by solving the minimization conditions. With
the potential written in terms of ṽi for any of the three sets Eqs. (2.79)-(2.81) a stationary
point of the potential is found if the set of equations ∂V/∂ṽi = 0 has solutions. The different
CP and CB stationary points are determined by a set of three equations and a normal one
by only two. Since the 2HDM potential depends on eight real component fields, in fact, any
stationary point should be the solution of a set of eight equations on eight unknowns. As
one can always choose the simplified forms of the VEVs given in Eqs. (2.79)-(2.81), most
of those equations are trivially satisfied. It has been shown in [20] that the charge breaking
VEVs can always be obtained analytically and are given by





v′21 + α2

v′22
v′1v

′
2



 = 2





λ1 λ3 2ℜ(λ6)
λ3 λ2 2ℜ(λ7)

2ℜ(λ6) 2ℜ(λ7) 2(λ4 + ℜ(λ5))





−1



m2
11

m2
22

−2ℜ(m2
12)



 . (2.82)

This implies, that if Eq. (2.82) has a solution, then this is unique up to trivial sign changes
(α → −α, v′1 → −v′1, v′2 → −v′2) with no physical impact. Charge breaking is hence
impossible in several symmetry-constrained 2HDM.

The CP breaking VEVs can be obtained analytically in terms of the parameters of the
potential. Assuming potentials where the CP symmetry is defined one obtains





v̄21
v̄22

v̄1v̄2 cos θ



 = 2





λ1 λ3 + λ4 − ℜ(λ5) 2ℜ(λ6)
λ3 + λ4 − ℜ(λ5) λ2 2ℜ(λ7)

2ℜ(λ6) 2ℜ(λ7) 4ℜ(λ5)





−1



m2
11

m2
22

−2ℜ(m2
12)



 .(2.83)

Up to physically irrelevant sign changes the CP vacuum is unique.

The most difficult vacuum to be solved is the normal one. For many potentials the
minimization conditions cannot be solved analytically. The equations ∂V/∂v1 = 0 and
∂V/∂v2 = 0 result for the most general 2HDM potential in

m2
11v1 − ℜ(m2

12)v2 +
λ1
2
v31 +

λ345
2
v1v

2
2 +

1

2
[3ℜ(λ6)v21v2 + ℜ(λ7)v32] = 0 (2.84)

m2
22v2 − ℜ(m2

12)v1 +
λ2
2
v32 +

λ345
2
v2v

2
1 +

1

2
[ℜ(λ6)v31 + 3ℜ(λ7)v2v21] = 0 , (2.85)

with λ345 = λ3 + λ4 + ℜ(λ5).
With the possibility of minima of different natures in theories with more than one scalar,

the theory may allow for tunneling from one minimum to another. In the 2HDM therefore
the question arises: Can the vacua of different natures coexist with one another? Could one
tunnel from a normal minimum to a deeper charge-breaking one? In other words, given a
minimum in the 2HDM, is it stable? In Refs. [20, 21, 22] it has been shown:

• Suppose we have a potential where a normal stationary point and a charge breaking one
exist, and with the VEVs given by Eqs. (2.82) and (2.84), (2.85), then the difference
in the values of the scalar potential at both those vacua is given by

VCB − VN =

(
M2

H±

4v2

)

N

[(v′1v2 − v′2v1)
2 + α2v22]

︸ ︷︷ ︸

>0

. (2.86)
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Note that (M2
H±/v2)N is the ratio of the squared mass of the charged scalar to the sum

of the square of the VEVs, v2 = v21 + v22, as computed in the normal stationary point.
This implies: If the normal stationary point is a minimum, which implies M2

H± > 0,
then one will necessarily have VCB−VN > 0. Hence, if there is a normal minimum, any
CB stationary point will lie above it. The normal minimum is stable against charge
breaking. It was also proven in [20] that in such a case the CB stationary point is
necessarily a saddle point. Therefore normal and CB minima cannot co-exist in the
2HDM. In case the set of parameters is chosen such that the global minimum of the
potential breaks charge, there are no normal minima.

• In case we have a potential where a normal stationary point and a CP breaking one
exist with the VEVs given by Eqs. (2.83) and (2.84), (2.85), the difference in the values
of the scalar potential at both those vacua is given by

VCP − VN =

(
M2

A

4v2

)

N

[(v̄1v2 cos θ − v̄2v1)
2 + v̄21v

2
2 sin

2 θ]
︸ ︷︷ ︸

>0

. (2.87)

Note that (M2
A/4v

2)N is the ratio of the squared mass of the pseudoscalar to the sum
of the square of the VEVs, v2 = v21 + v22, as computed in the normal stationary point.
Therefore, if the normal stationary point is a minimum, which implies that M2

A > 0
then we necessarily have VCP − VN > 0. If there is a normal minimum, any CP
stationary point will hence be above it. The normal minmum ist stable against CP
breaking. In [23] it was proven that in that case the CP stationary point is necessarily
a saddle point, and therefore normal and CP minima cannot co-exist in the 2HDM. If
the set of parameters of the potential is chosen such that the global minimum of the
potential breaks CP, then there are no normal minima.

• Also no CB and CP minima can co-exist. This is because for the CP vacuum the
square of the charged Higgs mass is given by

(M2
H±)CP = −1

2
[λ4 − ℜ(λ5)](v̄21 + v̄2

2) , (2.88)

whereas in a CB vacuum one of the squared mass matrix eigenvalues is

M2
CB =

1

2
[λ4 − ℜ(λ5)](v′21 + v′22 + α2) . (2.89)

The sign of λ4 − ℜ(λ5) determines that both these vacua cannot be simultaneously
minima. Therefore if a CP minimum exists the (unique) CB stationary point, if it
exists, cannot be a minimum as well, and vice-versa.

• The normal minimization conditions, however, allow for multiple solutions, so that one
can have an N1 vacuum with VEVs {v1,1, v2,1} and an N2 vacuum with different VEVs
{v1,2, v2,2}. The difference in the values of the potential in these two vacua is given by

VN2 − VN1 =
1

4

[(
M2

H±

v2

)

N1

−
(
M2

H±

v2

)

N2

]

(v1,1v2,2 − v2,1v2,2)
2 , (2.90)
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where (M2
H±/v2)N1 is the ratio of the charged mass squared to the sum of the square

VEVs, (v2)N1 = v21,1 + v22,1, as computed in the N1 stationary point, and analogously
for (M2

H±/v2)N2 . This equation shows that nothing favours N1 over N2. The deepest
stationary point is simply determined by the values of the parameters. This is to be
expected as the two vacua have the same symmetries. It was proven in [23] that it is
possible to have two co-existing normal minima. On the other hand it is very easy to
find a set of parameters where N1 would be the global minimum, with N2 above it or
not even existing.

In summary, for the 2HDM vacua the following holds:

• Minima of different natures cannot coexist in the 2HDM.

• Whenever a normal minimum exists in the 2HDM, the global minimum of the potential
is normal. No tunneling to a deeper CB or CP minimum is possible.

• If a CP (CB) violating minimum exists, it is the global minimum of the theory and
thouroughly stable. No tunnelling to a deeper normal or CB (CP) minimum can occur.

2.6.4 Unitarity Constraints

We have already seen that the condition that the potential must have a minimum and is not
unbounded from below leads to constraints on the parameter values of the Higgs potential.
Another theoretical constraint arises from the requirement, that all the (tree-level) scalar-
scalar scattering amplitudes must respect unitarity. In the SM this requirement is equivalent
to ensuring that the quartic coupling in the scalar potential is not too large. This leads then
to an upper bound on the Higgs boson mass. We can see this by looking again at the RGE
in Eq. (2.75). For large masses (and hence large λ), the RGE is dominated by the λ term,
hence

16π2 dλ

d lnQ
= 24λ2 . (2.91)

This is solved by

λ(Q) =
M2

H

2v2 − 3
2π2M

2
H ln Q

v

. (2.92)

The coupling λ hence increases with Q. It diverges at the Landau pole. We therefore have
to require that new physics appears before this point, in order to restore stability, hence

Λ ≤ ve4π
2v2/(3M2

H ) . (2.93)

For fixed Λ this translates into an upper bound on MH . Extending this bound to the 2HDM
is complicated. Due to the richer scalar spectrum many scattering amplitudes need to be
taken into account. Furthermore the existence of many quartic couplings makes things more
complicated. This leads to an analysis of the eigenvalues of the S matrix for scalar-scalar
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scattering amplitudes. The relevant ones are given by

a± =
3

2
(λ1 + λ2)±

√

9

4
(λ1 − λ2)2 + (2λ3 + λ4)2 , (2.94)

b± =
1

2
(λ1 + λ2)±

1

2

√

(λ1 − λ2)2 + 4λ24 , (2.95)

c± =
1

2
(λ1 + λ2)±

1

2

√

(λ1 − λ2)2 + 4λ25 , (2.96)

e1 = λ3 + 2λ4 − 3λ5 , (2.97)

e2 = λ3 − λ5 , (2.98)

f+ = λ3 + 2λ4 + 3λ5 , (2.99)

f− = λ3 + λ5 , (2.100)

f1 = λ3 + λ4 , (2.101)

p1 = λ3 − λ4 . (2.102)

The requirement of tree-level perturbative unitarity leads to

|a±|, |b±|, |c±|, |f±|, |e1,2|, |f1|, |p1| < 8π . (2.103)

2.6.5 Further Constraints

The Higgs bosons of the 2HDM also contribute to the electroweak precision observables.
New physics contributions to these observables can conveniently be parametrized in terms
of the oblique parameters. With the vacuum polarization tensors written as

Πµν
V V ′(q) = gµνAV V ′(q2) + qµqνBV V ′(q2) , (2.104)

where V V ′ is either γγ, γZ, ZZ or W+W− and q = (qα) is the four-momentum of the gauge
bosons, and defining

ĀV V ′(q2) = AV V ′(q2)|2HDM − AV V ′(q2)|SM , (2.105)

the oblique parameters S, T, U, V,W,X of the 2HDM can be expressed in terms of the ĀV V ′.
Electroweak precision constraints lead to

mA = mH± (2.106)

sin(β − α) = 1 ⇒ mH± = mH (2.107)

sin(β − α) = 0 ⇒ mH± = mh . (2.108)

Other constraints arise from the measurement of muon anomalous magnetic moment and
from B-physics. In particular the charged Higgs boson can have a significant effect on B-
physics observables. For all four models without FCNC the Yukawa couplings of the charged
Higgs boson can be written as

LH± = −H+

(√
2Vud
v

ū(muXPL +mdY PR)d+

√
2ml

ν
Zν̄LlR

)

+ h.c. . (2.109)

The values of X , Y and Z are given in Table 2.2 for the various models. In Type I the
couplings to all fermions are suppressed if tanβ ≫ 1, implying a fermiophobic charged
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Type I Type II Lepton-specific Flipped
X cot β cot β cot β cotβ
Y cot β − tan β cot β − tan β
Z cot β − tan β − tanβ cotβ

Table 2.2: The parameters X , Y and Z for the four models without FCNC.

Higgs. In the same limit one has in the lepton-specific model a quark-phobic but lepto-philic
charged Higgs, which could lead to a huge branching ratio for H± → τ±ντ . In both models
the quark-phobic nature of the charged Higgs eliminates constraints from rare B decays. In
the type II and flipped model large contributions to rare B decays are possible. The data
on B → Xsγ lead for these models then to a constraint on the charged Higgs mass given by
[24]

mH± >∼ 580 GeV . (2.110)

All models are constraint by the data on B0
d − B̄0

d and B0
s − B̄0

s mixing. The measured

Rb =
Γ(Z → bb̄)

Γ(Z → qq̄)
(2.111)

constrains

tan β >∼ 1 . (2.112)

Last but not least there are constraints from the Higgs data from LEP, Tevatron and
LHC. It has to be made sure that the 2HDM Higgs sector is not in conflict with the reported
exclusion limits and the Higgs data of the discovered 126 GeV scalar. Thus at LEP it was
looked for the production of charged Higgs bosons in

e+e− → H+H− , (2.113)

with the charged Higgs decaying into τ+ντ . For any model the non-observaton of the charged
Higgs leads then to a constraint of mH± >∼ 80 GeV. And for the lepton-specific one, the limit
is mH± >∼ 94 GeV. At ATLAS and CMS a charged Higgs boson is looked for in

pp→ t̄t→ b̄bW+H− . (2.114)

The non-observation translates into exclusion limits in the tanβ-mH± plane.

There are dedicated public programs available that allow to check for the Higgs data con-
straints, namely HiggsBounds [25, 26, 27] and HiggsSignals [28]. The program HiggsBounds

requires as inputs the effective couplings of the Higgs bosons of the investigated model, nor-
malized to the corresponding SM values, as well as the masses, the widths and the branching
ratios of the Higgs bosons. This allows then to check for the compatibility with the non-
observation of the 2HDM Higgs bosons, in particular whether or not the Higgs spectrum is
excluded at the 95% confidence level (CL) in view of the LEP, Tevatron and LHC measure-
ments. The package HiggsSignals uses the same input and validates the compatibility of
the SM-like Higgs boson with the Higgs observation data. A p-value is given, which when
demanded to be at least 0.05 corresponds to a non-exclusion at 95% CL.

A tool for performing scans of the parameter space of scalar sectors is given by ScannerS

[32]. It automatises scans for tree-level renormalizable scalar potentials. It is interfaced with
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• SuShi [29] for the Higgs production at NNLO in gluon fusion and associated production
with bb̄.

• HDECAY [30] for the computation of the Higgs decays.

• Superiso [31] for the check of some flavour physics observables.

• HiggsBounds for the limits from the Higgs searches at LEP, Tevatron and the LHC.

• HiggsSignals for the signal rates at the Tevatron and LHC.

Furthermore ScannerS checks for the global minimum and has implemented checks of the
constraints from vacuum stability (potential bounded from below), unitarity, electroweak
precision observables and some alternative sources for B-physics constraints. The webpage
of the program is given by:
http://www.hepforge.org/archive/scanners/

In order to check for the 2HDM allowed parameter space with the available LHC data as
given in September 2014, a random scan has been performed, setting mh = 125.9 GeV, over
the parameter values

50 GeV ≤ mH± ≤ 1 TeV

mh + 5 GeV ≤ mA, mH ≤ 1 TeV

−9002 GeV2 ≤ m2
12 ≤ 9002 GeV2

0.5 ≤ tan β ≤ 50

−π
2
≤ α ≤ π

2
. (2.115)

The theoretical and pre-LHC experimental constraints have been imposed. The branching
ratios and production rates at the LHC have been calculated and the collider constraints
have been checked with HiggsBounds and HiggsSignals. The result for the type II model is
shown in Fig. 2.1. As can be inferred from the plot there are two regions that are favoured.
One is given by the SM-like limit. Here sin(β − α) = 1, leading to κF = 1 and κV = 1,
where κx denotes the 2HDM coupling of the SM-like h with mass around 125 GeV to the
SM particles x normalized to the corresponding coupling of the SM Higgs boson with same
mass. Hence all tree-level coupling to fermions and massive gauge bosons are as in the SM.
The other favoured region is the so-called ’wrong-sign’ limit [33], as here

κDκV < 0 or κUκV < 0 . (2.116)

This means that the Yukawa couplings and couplings to massive gauge bosons have a relative
minus sign. This can be easily checked by re-writing the coupling factor κD to down-type
fermions, which in the type II model is given by

κD = − sinα

cos β
= − sin(β + α) + cos(β + α) tanβ (2.117)

and analogously

κU =
cosα

sin β
= sin(β + α) + cos(β + α) cotβ . (2.118)

For sin(β + α) = 1 this leads to κD = −1 (κU = 1) and with

κV = sin(β − α) =
tan2 β − 1

tan2 β + 1
(2.119)

we have κV ≥ 0 if tanβ ≥ 1.
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Figure 2.1: Allowed parameters space of the type II 2HDM model as in September 2014.
Taken from the talk given by R. Santos at HiggsDays 2014 in Santander.



Chapter 3

Appendix

3.1 Beispiel: Feldtheorie für ein komplexes Feld

Wir betrachten die Lagrangedichte für ein komplexes Skalarfeld

L = (∂µφ)
∗(∂µφ)− µ2φ∗φ− λ(φ∗φ)2 mit dem Potential V = µ2φ∗φ+ λ(φ∗φ)2 . (3.1)

(Hinzufügen höherer Potenzen in φ führt zu einer nicht-renormierbaren Theorie.) Die La-
grangedichte ist invariant unter einer U(1)-Symmetrie,

φ→ exp(iα)φ . (3.2)

Wir betrachten den Grundzustand. Dieser ist gegeben durch das Minimum von V ,

0 =
∂V

∂φ∗ = µ2φ+ 2λ(φ∗φ)φ ⇒ φ =

{
0 für µ2 > 0

φ∗φ = −µ2

2λ
für µ2 < 0

(3.3)

Der Parameter λ muß positiv sein, damit das System nicht instabil wird. Für µ2 < 0 nimmt
das Potential die Form eines Mexikanerhutes an, siehe Fig. 3.1. Bei φ = 0 liegt ein lokales
Maximum, bei

|φ| = v =

√

−µ
2

2λ
(3.4)

V (�)

j�

0

j

j�

+

j

Figure 3.1: Das Higgspotential.
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ein globales Minimum. Teilchen entsprechen harmonischen Oszillatoren für die Entwicklung
um das Minimum des Potentials. Fluktuationen in Richtung der (unendlich vielen degener-
ierten) Minima besitzen Steigung null und entsprechen masselosen Teilchen, den Goldstone
Bosonen. Fluktuationen senkrecht zu dieser Richtung entsprechen Teilchen mit Massem > 0.
Die Entwicklung um das Maximum bei φ = 0 würde zu Teilchen negativer Masse (Tachy-
onen) führen, da die Krümmung des Potentials hier negativ ist.

Entwicklung um das Minimum bei φ = v führt zu (wir haben für das komplexe skalare
Feld zwei Fluktuationen ϕ1 und ϕ2)

φ = v +
1√
2
(ϕ1 + iϕ2) =

(

v +
1√
2
ϕ1

)

+ i
ϕ2√
2

⇒ (3.5)

φ∗φ = v2 +
√
2vϕ1 +

1

2
(ϕ2

1 + ϕ2
2) . (3.6)

Damit erhalten wir für das Potential

V = λ(φ∗φ− v2)2 − µ4

4λ2
mit v2 = −µ

2

2λ
⇒ (3.7)

V = λ

(√
2vϕ1 +

1

2
(ϕ2

1 + ϕ2
2)

)2

− µ4

4λ2
. (3.8)

Vernachlässige den letzten Term in V , da es sich nur um eine konstante Nullpunktsver-
schiebung handelt. Damit ergibt sich für die Lagrangedichte

L =
1

2
(∂µϕ1)

2 +
1

2
(∂µϕ2)

2 − 2λv2ϕ2
1 −

√
2vλϕ1(ϕ

2
1 + ϕ2

2)−
λ

4
(ϕ2

1 + ϕ2
2)

2 . (3.9)

Die in den Feldern quadratischen Terme liefern die Massen, die in den Feldern kubischen und
quartischen Terme sind die Wechselwirkungsterme. Es gibt ein massives und ein masseloses
Teilchen,

mϕ1 = 2v
√
λ und mϕ2 = 0 . (3.10)

Bei dem masselosen Teilchen handelt es sich um das Goldstone Boson.
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