Extended Higgs Sectors Beyond the Standard Model

Lecture: Prof. Dr. M. M. Mühlleitner
Exercises: Prof. Dr. M. M. Mühlleitner, P. Basler

Release: 15 October 2018
Tutorials: 17 October 2018
Lecture website: https://www.itp.kit.edu/courses/ws2018/bsm/

Exercise 1: Two-particle phase space

(0 points)
For the calculation of decay rates and cross sections, we need to integrate over the phase space of the particles in the final state. For a generic process with two particles with momenta p_{1} and p_{2} and masses m_{1} and m_{2} in the final state, this phase space integral is given by

$$
\int d \Phi_{2}=\int \frac{d^{3} p_{1}}{(2 \pi)^{3} 2 E_{1}} \int \frac{d^{3} p_{2}}{(2 \pi)^{3} 2 E_{2}}(2 \pi)^{4} \delta^{(4)}\left(q-p_{1}-p_{2}\right)
$$

where q is the total four-momentum of all incoming particles. This integral is performed over the absolute squared of the matrix element as well as over some additional Heaviside step functions Θ to implement the proper momentum cuts for the particles in the final state.
(a) Show that in the center-of-mass frame of the two final-state particles, the absolute value of the incoming three-momenta is given by

$$
\left|\vec{p}_{1}\right|=\left|\vec{p}_{2}\right|=\frac{\lambda\left(q^{2}, m_{1}^{2}, m_{2}^{2}\right)}{2 \sqrt{q^{2}}}
$$

where λ is the Källén function given by

$$
\lambda\left(a^{2}, b^{2}, c^{2}\right) \equiv \sqrt{a^{4}+b^{4}+c^{4}-2 a^{2} b^{2}-2 a^{2} c^{2}-2 b^{2} c^{2}}
$$

(b) Show that in the center-of-mass frame of the two final-state particles, the phase space integral can be written as

$$
\int d \Phi_{2}=\int d \Omega \frac{1}{32 \pi^{2} q^{2}} \lambda\left(q^{2}, m_{1}^{2}, m_{2}^{2}\right) \Theta\left(q_{0}\right) \Theta\left(q^{2}-\left(m_{1}+m_{2}\right)^{2}\right)
$$

where $d \Omega \equiv d\left(\cos \vartheta_{1}\right) d \varphi_{1}$ is the integration over the solid angle of particle 1 in the center-of-mass frame.
Hint: Prove and use the relation

$$
\frac{d^{3} p}{2 E}=d^{4} p \Theta\left(p_{0}\right) \delta\left(p^{2}-m^{2}\right)
$$

Exercise 2: Tree-Level Higgs decay into massive gauge bosons

One application for Exercise 1 is given by the decay of a Higgs boson h into two gauge bosons $V=\left(W^{ \pm}, Z\right)$. The process is given by

$$
h(p) \rightarrow V\left(q_{1}, \lambda_{1}\right)+V\left(q_{2}, \lambda_{2}\right),
$$

where p is the incoming momentum of the Higgs, $q_{1,2}$ are the outgoing momenta of the gauge bosons and $\lambda_{1,2}$ are the polarizations of the gauge bosons. Assume now that the on-shell decay is possible $\left(m_{h} \geq 2 m_{V}\right)$.
(a) Draw the Feynman graph for the process.
(b) Calculate the squared matrix element and sum over all possible polarizations. What is the difference between $V=W^{ \pm}$and $V=Z$? Express the result as a polynomial in $x=m_{V}^{2} / m_{h}^{2}$. Show that it can be cast into the form

$$
\sum_{\lambda_{i}}\left|\mathcal{M}_{H \rightarrow V V}\right|^{2}=\frac{m_{h}^{4}}{v^{2}}\left[12 x^{2}+1-4 x\right]
$$

Hint: The coupling between the Higgs boson and two gauge bosons is given by $g_{h V V}=\frac{2 m_{V}^{2}}{v}$ where v is the electroweak vacuum expectation value. You can replace the product $q_{1} q_{2}$ by the masses by using energy-momentum conservation.
(c) The decay width Γ is now given as

$$
\mathrm{d} \Gamma=\sum_{\lambda_{i}}\left|\mathcal{M}_{H \rightarrow V V}\right|^{2} \mathrm{~d} \Phi_{2}
$$

where $\mathrm{d} \Phi_{2}$ is the two-particle phase space calculated in exercise 1b). Simplify Γ as far as possible.

