

Moderne Theoretische Physik für Lehramtskandidaten

Vorlesung: PD Dr. S. Gieseke – Übung: Dr. F. Staub

Übungsblatt 11

Ausgabe: Mi, 16.01.2019 - Besprechung: Fr, 25.01.2019

Aufgabe 1: Interferenz ebener Wellen

4 P

Betrachten Sie zwei ebene Wellen Ψ_j mit gleicher Frequenz ω , aber unterschiedlicher Amplitude \vec{A}_j und unterschiedlichem Wellenvektor \vec{k}_j (j=1,2):

$$\Psi_1 = \vec{A}_1 e^{i(\omega t - \vec{k}_1 \vec{x})} \tag{1}$$

$$\Psi_2 = \vec{A}_2 e^{i(\omega t - \vec{k}_2 \vec{x})} \tag{2}$$

Wir nehmen an, dass beide Wellen sich kohärent überlagern.

- (a) 1 P Berechnen Sie die Intensität $I = |\Psi_1 + \Psi_2|^2$ der beiden Wellen.
- (b) 1 P Wie würde die Intensität der beiden Wellen lauten, wenn diese nicht kohärent wären?
- (c) $\boxed{1 \text{ P}}$ Wie lautet die Bedingung für k_1, k_2 , so dass die Itensität minimal (maximal) wird?
- (d) 1 P Unter welcher Bedingung können sich die beiden Wellen exakt aufheben?

Aufgabe 2: Gaußsches Wellenpaket

14 P

Betrachten Sie die Wellenfunktion

$$\psi_b(x) = [\pi b^2]^{-1/4} \exp\left[-\frac{x^2}{2b^2}\right] , \quad b > 0 .$$

- (a) 1 P Zeichnen Sie $\psi_b(x)$ für b=1 cm und b=5 cm. Berechnen Sie $\langle \psi | \psi \rangle$.
- (b) 2 P Berechnen Sie $\langle \psi_b | X | \psi_b \rangle$ und die Ortsunschärfe ΔX im Zustand ψ_b .

(c) 3 P Die Fourier-Transformation und ihre Umkehrung sind definiert durch

$$\psi(x) = \int_{-\infty}^{\infty} dp \, \widetilde{\psi}(p) e^{i\frac{px}{\hbar}}, \qquad \widetilde{\psi}(p) = \frac{1}{2\pi\hbar} \int_{-\infty}^{\infty} dx \, \psi(x) e^{-i\frac{px}{\hbar}}. \tag{1}$$

Berechnen Sie die Fouriertransformation von $\psi_b(x)$. Was fällt Ihnen auf?

(d) 3 P Berechnen Sie $\langle \psi_b | P | \psi_b \rangle$ für den Impulsoperator $P = -i\hbar \frac{\partial}{\partial x}$. Berechnen Sie auch die Impulsunschärfe ΔP und das Unschärfeprodukt $\Delta X \Delta P$ im Zustand ψ_b .

(Hinweis: Verwenden Sie Ihre Ergebnisse aus Aufgabenteil (c).)

- (e) 3 P Die kinetische Energie eines (nichtrelativistischen) Elektrons mit Masse m wird durch den Operator $H_{\rm kin} = \frac{P^2}{2m}$ beschrieben. Berechnen Sie den Erwartungswert der kinetischen Energie, $\langle E_{\rm kin} \rangle = \langle \psi_b | H_{\rm kin} | \psi_b \rangle$. Berechnen Sie die Unschärfe der kinetischen Energie, $\Delta E_{\rm kin} = [\langle \psi_b | H^2 | \psi_b \rangle \langle E_{\rm kin} \rangle^2]^{1/2}$, im Zustand ψ_b . Was passiert mit $\langle E_{\rm kin} \rangle$ und $\Delta E_{\rm kin}$, wenn wir das Elektron immer weiter lokalisieren, also b immer kleiner wählen?
- (f) 2 P Die nichtrelativistische Näherung bricht ungefähr dann zusammen, wenn $\langle E_{\rm kin} \rangle = mc^2$ ist. Geben Sie den Wert $b_{\rm krit}$ an, bei dem dies der Fall ist. Aus der relativistischen Beziehung

$$E = \sqrt{m^2c^4 + p^2c^2} = mc^2 + \frac{p^2}{2m} - \frac{p^4}{8m^3c^2} + \dots$$

verschaffen wir uns den Operator der relativistischen Korrektur, $H_{\rm kin}^{\rm rel} = -P^4/(8m^3c^2)$. Berechnen Sie $\langle E_{\rm kin}^{\rm rel} \rangle = \langle \psi_b | H_{\rm kin}^{\rm rel} | \psi_b \rangle$ und zeichnen Sie (im selben Koordinatensystem) $\langle E_{\rm kin} \rangle / (mc^2)$ und $\langle E_{\rm kin} + E_{\rm kin}^{\rm rel} \rangle / (mc^2)$ als Funktion von $b/b_{\rm krit}$.

Hinweis: Zur Berechnung von Integralen der Form $\int_{-\infty}^{\infty} dx \, x^{2n} e^{-\alpha x^2}$ mit $\alpha > 0$ und $n \in \mathbb{N}$ berechnen Sie zunächst $\int_{-\infty}^{\infty} dx \, e^{-\alpha x^2}$ und differenzieren Sie dann nach α .

Aufgabe 3: Entartung von Energieniveaus

3 P

Zeigen Sie, dass bei einer 1-dimensionalen stationären Schrödingergleichung mit einem Potential V(x) kein Energieniveau des diskreten Spektrums entartet ist. Wenn also Ψ_1 und Ψ_2 Eigenfunktionen zu derselben Energie E sind, dann müssen Ψ_1 und Ψ_2 linear abhängig sein.

Hinweis: Zeigen Sie: $\Psi_1''\Psi_2 - \Psi_1\Psi_2'' = 0$ und integrieren Sie diese Gleichung zweimal. Die erste Integrationskonstante lässt sich über die Randbedingungen bestimmen.