(* Content-type: application/vnd.wolfram.mathematica *) (*** Wolfram Notebook File ***) (* http://www.wolfram.com/nb *) (* CreatedBy='Mathematica 11.0' *) (*CacheID: 234*) (* Internal cache information: NotebookFileLineBreakTest NotebookFileLineBreakTest NotebookDataPosition[ 158, 7] NotebookDataLength[ 203906, 5060] NotebookOptionsPosition[ 200113, 4934] NotebookOutlinePosition[ 200440, 4949] CellTagsIndexPosition[ 200397, 4946] WindowFrame->Normal*) (* Beginning of Notebook Content *) Notebook[{ Cell[BoxData[ RowBox[{ RowBox[{"Exit", "[", "]"}], ";"}]], "Input"], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{ RowBox[{"$LoadAddOns", "=", RowBox[{"{", "\"\\"", "}"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"$LoadFeynArts", "=", "True"}], ";"}], "\[IndentingNewLine]", RowBox[{"<<", "FeynCalc`"}]}], "Input"], Cell[CellGroupData[{ Cell[BoxData[ FormBox[ InterpretationBox[ RowBox[{ StyleBox["\<\"FeynCalc \"\>", "Text", StripOnInput->False, FontWeight->Bold], "\[InvisibleSpace]", StyleBox["\<\"9.3.0 (development version). For help, use the \"\>", "Text", StripOnInput->False], "\[InvisibleSpace]", StyleBox[ TagBox[ ButtonBox[ RowBox[{"documentation", " ", "center"}], BaseStyle->"Link", ButtonData:>"paclet:FeynCalc/", ButtonNote->"paclet:FeynCalc/"], DisplayForm], "Text", StripOnInput->False], "\[InvisibleSpace]", StyleBox["\<\", check out the \"\>", "Text", StripOnInput->False], "\[InvisibleSpace]", StyleBox[ TagBox[ ButtonBox["wiki", BaseStyle->"Hyperlink", ButtonData:>{ URL["https://github.com/FeynCalc/feyncalc/wiki"], None}, ButtonNote->"https://github.com/FeynCalc/feyncalc/wiki"], DisplayForm], "Text", StripOnInput->False], "\[InvisibleSpace]", StyleBox["\<\" or write to the \"\>", "Text", StripOnInput->False], "\[InvisibleSpace]", StyleBox[ TagBox[ ButtonBox[ RowBox[{"mailing", " ", RowBox[{"list", "."}]}], BaseStyle->"Hyperlink", ButtonData:>{ URL["http://www.feyncalc.org/forum/"], None}, ButtonNote->"http://www.feyncalc.org/forum/"], DisplayForm], "Text", StripOnInput->False]}], SequenceForm[ Style["FeynCalc ", "Text", Bold], Style["9.3.0 (development version). For help, use the ", "Text"], Style[ DisplayForm[ ButtonBox[ "documentation center", BaseStyle -> "Link", ButtonData :> "paclet:FeynCalc/", ButtonNote -> "paclet:FeynCalc/"]], "Text"], Style[", check out the ", "Text"], Style[ DisplayForm[ ButtonBox["wiki", ButtonData :> { URL["https://github.com/FeynCalc/feyncalc/wiki"], None}, BaseStyle -> "Hyperlink", ButtonNote -> "https://github.com/FeynCalc/feyncalc/wiki"]], "Text"], Style[" or write to the ", "Text"], Style[ DisplayForm[ ButtonBox["mailing list.", ButtonData :> { URL["http://www.feyncalc.org/forum/"], None}, BaseStyle -> "Hyperlink", ButtonNote -> "http://www.feyncalc.org/forum/"]], "Text"]], Editable->False], TraditionalForm]], "Print", CellChangeTimes->{3.75708380753106*^9, 3.757237801274743*^9}], Cell[BoxData[ FormBox[ InterpretationBox[ RowBox[{ StyleBox["\<\"To save your and our time, please check our \"\>", "Text", StripOnInput->False], "\[InvisibleSpace]", StyleBox[ TagBox[ ButtonBox["FAQ", BaseStyle->"Hyperlink", ButtonData:>{ URL["https://github.com/FeynCalc/feyncalc/wiki/FAQ"], None}, ButtonNote->"https://github.com/FeynCalc/feyncalc/wiki"], DisplayForm], "Text", StripOnInput->False], "\[InvisibleSpace]", StyleBox["\<\" for answers to some common FeynCalc questions.\"\>", "Text", StripOnInput->False]}], SequenceForm[ Style["To save your and our time, please check our ", "Text"], Style[ DisplayForm[ ButtonBox["FAQ", ButtonData :> { URL["https://github.com/FeynCalc/feyncalc/wiki/FAQ"], None}, BaseStyle -> "Hyperlink", ButtonNote -> "https://github.com/FeynCalc/feyncalc/wiki"]], "Text"], Style[" for answers to some common FeynCalc questions.", "Text"]], Editable->False], TraditionalForm]], "Print", CellChangeTimes->{3.75708380753106*^9, 3.7572378012807436`*^9}], Cell[BoxData[ FormBox[ InterpretationBox[ RowBox[{ StyleBox["\<\"See also the supplied \"\>", "Text", StripOnInput->False], "\[InvisibleSpace]", StyleBox[ TagBox[ ButtonBox[ RowBox[{"examples", "."}], BaseStyle->"Hyperlink", ButtonFunction:>SystemOpen[ FileNameJoin[{FeynCalc`$FeynCalcDirectory, "Examples"}]], Evaluator->Automatic, Method->"Preemptive"], DisplayForm], "Text", StripOnInput->False], "\[InvisibleSpace]", StyleBox["\<\" If you use FeynCalc in your research, please cite\"\>", "Text", StripOnInput->False]}], SequenceForm[ Style["See also the supplied ", "Text"], Style[ DisplayForm[ ButtonBox[ "examples.", BaseStyle -> "Hyperlink", ButtonFunction :> SystemOpen[ FileNameJoin[{FeynCalc`$FeynCalcDirectory, "Examples"}]], Evaluator -> Automatic, Method -> "Preemptive"]], "Text"], Style[" If you use FeynCalc in your research, please cite", "Text"]], Editable->False], TraditionalForm]], "Print", CellChangeTimes->{3.75708380753106*^9, 3.757237801287744*^9}], Cell[BoxData[ FormBox[ StyleBox["\<\" \[Bullet] V. Shtabovenko, R. Mertig and F. Orellana, Comput. \ Phys. Commun., 207, 432-444, 2016, arXiv:1601.01167\"\>", "Text", StripOnInput->False], TraditionalForm]], "Print", CellChangeTimes->{3.75708380753106*^9, 3.7572378013177457`*^9}], Cell[BoxData[ FormBox[ StyleBox["\<\" \[Bullet] R. Mertig, M. B\[ODoubleDot]hm, and A. Denner, \ Comput. Phys. Commun., 64, 345-359, 1991.\"\>", "Text", StripOnInput->False], TraditionalForm]], "Print", CellChangeTimes->{3.75708380753106*^9, 3.757237801324746*^9}], Cell[BoxData[ FormBox[ InterpretationBox[ RowBox[{ StyleBox["\<\"FeynArts \"\>", "Text", StripOnInput->False, FontWeight->Bold], "\[InvisibleSpace]", StyleBox["\<\"3.1 patched for use with FeynCalc, for documentation see \ the \"\>", "Text", StripOnInput->False], "\[InvisibleSpace]", StyleBox[ TagBox[ ButtonBox["manual", BaseStyle->"Hyperlink", ButtonFunction:>SystemOpen[ First[ FileNames[{"*.pdf", "*.PDF"}, FileNameJoin[{FeynCalc`$FeynArtsDirectory, "manual"}]]]], Evaluator->Automatic, Method->"Preemptive"], DisplayForm], "Text", StripOnInput->False], "\[InvisibleSpace]", StyleBox["\<\" or visit \"\>", "Text", StripOnInput->False], "\[InvisibleSpace]", StyleBox[ TagBox[ ButtonBox[ RowBox[{"www", ".", "feynarts", ".", "de", "."}], BaseStyle->"Hyperlink", ButtonData:>{ URL["http://www.feynarts.de/"], None}, ButtonNote->"www.feynarts.de/"], DisplayForm], "Text", StripOnInput->False]}], SequenceForm[ Style["FeynArts ", "Text", Bold], Style[ "3.1 patched for use with FeynCalc, for documentation see the ", "Text"], Style[ DisplayForm[ ButtonBox[ "manual", BaseStyle -> "Hyperlink", ButtonFunction :> SystemOpen[ First[ FileNames[{"*.pdf", "*.PDF"}, FileNameJoin[{FeynCalc`$FeynArtsDirectory, "manual"}]]]], Evaluator -> Automatic, Method -> "Preemptive"]], "Text"], Style[" or visit ", "Text"], Style[ DisplayForm[ ButtonBox["www.feynarts.de.", ButtonData :> { URL["http://www.feynarts.de/"], None}, BaseStyle -> "Hyperlink", ButtonNote -> "www.feynarts.de/"]], "Text"]], Editable->False], TraditionalForm]], "Print", CellChangeTimes->{3.75708380753106*^9, 3.757237801781772*^9}], Cell[BoxData[ FormBox[ StyleBox["\<\"If you use FeynArts in your research, please cite\"\>", "Text", StripOnInput->False], TraditionalForm]], "Print", CellChangeTimes->{3.75708380753106*^9, 3.757237801791773*^9}], Cell[BoxData[ FormBox[ StyleBox["\<\" \[Bullet] T. Hahn, Comput. Phys. Commun., 140, 418-431, \ 2001, arXiv:hep-ph/0012260\"\>", "Text", StripOnInput->False], TraditionalForm]], "Print", CellChangeTimes->{3.75708380753106*^9, 3.7572378017977734`*^9}], Cell[BoxData[ FormBox[ InterpretationBox[ RowBox[{ StyleBox["\<\"FeynHelpers \"\>", "Text", StripOnInput->False, FontWeight->Bold], "\[InvisibleSpace]", StyleBox["\<\"1.1.0, for more information see the accompanying \"\>", "Text", StripOnInput->False], "\[InvisibleSpace]", StyleBox[ TagBox[ ButtonBox[ RowBox[{"publication", "."}], BaseStyle->"Hyperlink", ButtonFunction:>SystemOpen[ FileNameJoin[{ FeynCalc`$FeynHelpersDirectory, "Documentation", "1611.06793.pdf"}]], Evaluator->Automatic, Method->"Preemptive"], DisplayForm], "Text", StripOnInput->False]}], SequenceForm[ Style["FeynHelpers ", "Text", Bold], Style["1.1.0, for more information see the accompanying ", "Text"], Style[ DisplayForm[ ButtonBox[ "publication.", BaseStyle -> "Hyperlink", ButtonFunction :> SystemOpen[ FileNameJoin[{ FeynCalc`$FeynHelpersDirectory, "Documentation", "1611.06793.pdf"}]], Evaluator -> Automatic, Method -> "Preemptive"]], "Text"]], Editable->False], TraditionalForm]], "Print", CellChangeTimes->{3.75708380753106*^9, 3.7572378018907785`*^9}], Cell[BoxData[ FormBox[ InterpretationBox[ RowBox[{ StyleBox["\<\"Have a look at the supplied \"\>", "Text", StripOnInput->False], "\[InvisibleSpace]", StyleBox[ TagBox[ ButtonBox[ RowBox[{"examples", "."}], BaseStyle->"Hyperlink", ButtonFunction:>SystemOpen[ FileNameJoin[{FeynCalc`$FeynHelpersDirectory, "Examples"}]], Evaluator->Automatic, Method->"Preemptive"], DisplayForm], "Text", StripOnInput->False], "\[InvisibleSpace]", StyleBox["\<\" If you use FeynHelpers in your research, please cite\"\>", "Text", StripOnInput->False]}], SequenceForm[ Style["Have a look at the supplied ", "Text"], Style[ DisplayForm[ ButtonBox[ "examples.", BaseStyle -> "Hyperlink", ButtonFunction :> SystemOpen[ FileNameJoin[{FeynCalc`$FeynHelpersDirectory, "Examples"}]], Evaluator -> Automatic, Method -> "Preemptive"]], "Text"], Style[" If you use FeynHelpers in your research, please cite", "Text"]], Editable->False], TraditionalForm]], "Print", CellChangeTimes->{3.75708380753106*^9, 3.7572378018997793`*^9}], Cell[BoxData[ FormBox[ StyleBox["\<\" \[Bullet] V. Shtabovenko, \\\"FeynHelpers: Connecting \ FeynCalc to FIRE and Package-X\\\", Comput. Phys. Commun., 218, 48-65, 2017, \ arXiv:1611.06793\"\>", "Text", StripOnInput->False], TraditionalForm]], "Print", CellChangeTimes->{3.75708380753106*^9, 3.7572378019117794`*^9}], Cell[BoxData[ FormBox[ StyleBox["\<\"Furthermore, remember to cite the authors of the tools that \ you are calling from FeynHelpers, which are\"\>", "Text", StripOnInput->False], TraditionalForm]], "Print", CellChangeTimes->{3.75708380753106*^9, 3.75723780191778*^9}], Cell[BoxData[ FormBox[ InterpretationBox[ RowBox[{"\<\" \[Bullet] \"\>", "\[InvisibleSpace]", StyleBox[ TagBox[ ButtonBox["FIRE", BaseStyle->"Hyperlink", ButtonData:>{ URL["http://science.sander.su/FIRE.htm"], None}, ButtonNote->"http://science.sander.su/FIRE.htm"], DisplayForm], "Text", StripOnInput->False], "\[InvisibleSpace]", StyleBox["\<\" by A. Smirnov, if you are using the function \ FIREBurn.\"\>", "Text", StripOnInput->False]}], SequenceForm[ Style[" \[Bullet] "], Style[ DisplayForm[ ButtonBox["FIRE", ButtonData :> { URL["http://science.sander.su/FIRE.htm"], None}, BaseStyle -> "Hyperlink", ButtonNote -> "http://science.sander.su/FIRE.htm"]], "Text"], Style[" by A. Smirnov, if you are using the function FIREBurn.", "Text"]], Editable->False], TraditionalForm]], "Print", CellChangeTimes->{3.75708380753106*^9, 3.757237801930781*^9}], Cell[BoxData[ FormBox[ InterpretationBox[ RowBox[{"\<\" \[Bullet] \"\>", "\[InvisibleSpace]", StyleBox[ TagBox[ ButtonBox[ RowBox[{"Package", "-", "X"}], BaseStyle->"Hyperlink", ButtonData:>{ URL["https://packagex.hepforge.org"], None}, ButtonNote->"https://packagex.hepforge.org"], DisplayForm], "Text", StripOnInput->False], "\[InvisibleSpace]", StyleBox["\<\" by H. Patel, if you are using the function \ PaXEvaluate.\"\>", "Text", StripOnInput->False]}], SequenceForm[ Style[" \[Bullet] "], Style[ DisplayForm[ ButtonBox["Package-X", ButtonData :> { URL["https://packagex.hepforge.org"], None}, BaseStyle -> "Hyperlink", ButtonNote -> "https://packagex.hepforge.org"]], "Text"], Style[" by H. Patel, if you are using the function PaXEvaluate.", "Text"]], Editable->False], TraditionalForm]], "Print", CellChangeTimes->{3.75708380753106*^9, 3.757237801943782*^9}] }, Open ]] }, Open ]], Cell[BoxData[{ RowBox[{ RowBox[{"$FAVerbose", "=", "1"}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"$CKM", "=", "True"}], ";"}]}], "Input", CellChangeTimes->{3.7570838169055963`*^9}], Cell[CellGroupData[{ Cell["Diagrams", "Section"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"diags", " ", "=", " ", RowBox[{"InsertFields", "[", RowBox[{ RowBox[{"CreateTopologies", "[", RowBox[{"1", ",", RowBox[{"1", " ", "->", " ", "2"}]}], "]"}], ",", " ", RowBox[{ RowBox[{"{", RowBox[{"S", "[", "1", "]"}], "}"}], " ", "->", " ", RowBox[{"{", RowBox[{ RowBox[{"V", "[", "5", "]"}], ",", RowBox[{"V", "[", "5", "]"}]}], "}"}]}], ",", "\n", RowBox[{"InsertionLevel", " ", "->", " ", RowBox[{"{", "Classes", "}"}]}], ",", RowBox[{"Model", "\[Rule]", "\"\\""}]}], "]"}]}], ";"}]], "Input", CellChangeTimes->{{3.7570838423020487`*^9, 3.757083859174014*^9}}], Cell[CellGroupData[{ Cell[BoxData[ FormBox[ InterpretationBox[ RowBox[{"\<\"generic model \"\>", "\[InvisibleSpace]", RowBox[{"{", "\<\"Lorentz\"\>", "}"}], "\[InvisibleSpace]", "\<\" initialized\"\>"}], SequenceForm["generic model ", {"Lorentz"}, " initialized"], Editable->False], TraditionalForm]], "Print", CellChangeTimes->{3.757083865683386*^9, 3.7572378102692575`*^9}], Cell[BoxData[ FormBox["\<\"\"\>", TraditionalForm]], "Print", CellChangeTimes->{3.757083865683386*^9, 3.7572378103402615`*^9}], Cell[BoxData[ FormBox[ InterpretationBox[GridBox[{ {GridBox[{ { RowBox[{"$CKM", "=", "True"}]} }, BaselinePosition->{Baseline, {1, 1}}, GridBoxAlignment->{ "Columns" -> {{Left}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}}, "RowsIndexed" -> {}}, GridBoxItemSize->{"Columns" -> {{ Scaled[0.999]}}, "ColumnsIndexed" -> {}, "Rows" -> {{1.}}, "RowsIndexed" -> {}}]} }, BaselinePosition->{Baseline, {1, 1}}, GridBoxAlignment->{ "Columns" -> {{Left}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}}, "RowsIndexed" -> {}}], Definition[$CellContext`$CKM], Editable->False], TraditionalForm]], "Print", CellChangeTimes->{3.757083865683386*^9, 3.7572378103642635`*^9}], Cell[BoxData[ FormBox["\<\"\"\>", TraditionalForm]], "Print", CellChangeTimes->{3.757083865683386*^9, 3.7572378103812637`*^9}], Cell[BoxData[ FormBox[ InterpretationBox[ RowBox[{"\<\"classes model \"\>", "\[InvisibleSpace]", RowBox[{"{", "\<\"SMQCD\"\>", "}"}], "\[InvisibleSpace]", "\<\" initialized\"\>"}], SequenceForm["classes model ", {"SMQCD"}, " initialized"], Editable->False], TraditionalForm]], "Print", CellChangeTimes->{3.757083865683386*^9, 3.7572378105782757`*^9}], Cell[BoxData[ FormBox[ InterpretationBox[ RowBox[{"\<\"in total: \"\>", "\[InvisibleSpace]", "\<\"6 Classes insertions\"\>"}], SequenceForm["in total: ", "6 Classes insertions"], Editable->False], TraditionalForm]], "Print", CellChangeTimes->{3.757083865683386*^9, 3.7572378107302837`*^9}] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"Paint", "[", RowBox[{"diags", ",", RowBox[{"ColumnsXRows", "->", RowBox[{"{", RowBox[{"5", ",", "2"}], "}"}]}], ",", RowBox[{"Numbering", " ", "->", " ", "None"}], ",", RowBox[{"SheetHeader", "->", "None"}], ",", RowBox[{"ImageSize", "->", RowBox[{"{", RowBox[{"1024", ",", "512"}], "}"}]}]}], "]"}], ";"}]], "Input"], Cell[BoxData[ FormBox[ GraphicsBox[{InsetBox[ GraphicsBox[ TagBox[ TooltipBox[ {Thickness[0.005], {Dashing[{0.030000000000000002`, 0.030000000000000002`}], LineBox[{{-2.4931168240982515`*^-12, 10.}, {6.499999999992696, 10.}}]}, InsetBox[ TagBox[ StyleBox[ TagBox["H", DisplayForm], FontFamily->"Helvetica", FontSize->23.458909090909092`], StyleForm[#, FontFamily -> "Helvetica", FontSize -> 23.458909090909092`]& ], {3.25, 9.3048}, ImageScaled[{Rational[1, 2], 1}]], LineBox[CompressedData[" 1:eJwt1ns41GkUB/DZWWuGtdEgpDQuFSGSZBWmWtuwka1cWlnSlstmKXehEclY RBemWpRkR2w7VDa5s8to0VDkVqZErmtCD7ntft/n2T84z+c573vmPef9+RlN r4ADx6kUCiUVPyRS5MivTSwKnUQDFsXubWLQdlg84T9kCZ+Us5+PgGvoKw8F wuKaTs2/YL61Z8EVeB3v/aKyPotiTN0nXwBXuNrb+8KUez+mF8FqYbeLy2F2 7SX9HFhutqVDBtHVV+5JLKKySCvXEZGtHLnTGZHLPeWdgkiZkl+zDvH3j8af VZH8F9n5/ahjoldFew2n7QpOuwE7/7Jc8QEWahQ/dYa/sd1ltQiLUkaOkXOV 3Gn/ieSNH9ut7cW5g9+4Tr6BeXIeJwrhXdVF0o0wc3+EIhdOSQiPzYNZN8It QuHoFN+kGLhrmKkcDFPa9aJd4fBbv02eg3/56lbpNlK//apOLjw1oHNcDVZd XbVeBJ+UWLhJw3N3rl6SxXmOfBH2bhkxcX7gsANir3rBfSnkzbW9BzPhuP4t v6nCCt927huAB2taZy3I/sqgFAPEgCPXxvxIfwKV+gBEXytXjV8RJS5cDzL/ T2hZYRPEmgz3TsR7ZpccdhiyKIGSM74zsP190cUUWLJnFY2KeChYa0SMKHQZ v7WMfIJ+/dyWzZiP0XLmKKk/Hh0dDZtH0UzJnOSz5+Nr4PC7GjcyyP3J8K/O wcZlW+65wXzmP23aRizKIz3F12QOuRoPGLtgVp+7TAf6GRHWzu6HKQ9GN6bD 16oVJxxhn8V+owNw8PQLHRs4MCa+VR3uv+aTsBkWaX8we4951huZX5Yn+et5 M89hYb3RnjF8/s1q/UYhfHQ+oudPmKLsz22BvXwZ5TnwcOzJ9QPw6ZEi07Nk /arEq3TUf0e/6XQCZp6kTO+Az2QEVLvAj1Sp6ZHwxKdHY51IPapAqxaWHTVc 8CT1hlaOfo7+to+HNEWSetL7Jsjzyx+UrsyFOXb6RtlwkW34yxdk/7PX717C dTEfQlVxfuPh5scMzF2lIMjECzb/au/Ql7Bnw7xZCZy4rd/vWzhnp1IB1Rj9 RtdtdIWLX3YwDOBhx79H7eG6Hl7hQdh8yjZoK6yVKScOg+f0jnnLGrI4awu1 7DPhcMn1nR0GLA5rTvhMABubditl4jyGbb38ejjt1570g+S+M/w9n8Ki6gu3 VmA97WH99DOYtajwdbM+i2Pg8KC2jXxe6tiRNMzjcoMHtwkWsLu9v0c+OSvd owKmh8u4fQn/+MQjp5Csz1UJ0sb6bruBTh5809RSWQP+tEu9+DxMUY8s18P6 jx3mr4LgRN3WCRt47yHewg8knzbAPoX1oavbor6DOYV/pxcgT6WvyHSCdTMf dowhX8sWG7nAjv/0XjbF+VXao0QeMK/cafIs+vOfWp0dQOqflh5qQl5tROyS APOf5XBXYF5DsVHf3YZ9lpK228Gi96YFf5HzOmc1R8CbjD4sjJHPyy5ru455 H1a70Ka0Be+HhdfZhchrTi3EW8GSV42nYUqD48rj3rCjWVI01nPE7jbNKbCY JvOK1Gv232MugG/6z6R/A7Mi3DxayP43EYfJ85H9sX33W1gop53WRt4TpbKW M7DrOGMpGfb5WSC7BCvo22ax4ZGWyNZl2Edx2I+O/riF5vLz5PM35OmIMK/u 6IOCSdizPFb1NuYVItEfFJP64x0zccg3N0kzn5L6LzfkBsOTClFL5fCjTTK6 oeR+a5INC2AWMyo7Efur4vLceKSfO1cMCsl9s/tW/Qwz27hKfXDreGv5OdJP T1gz3mucA+t2HOXA/MwIre/JfQyeF8bDvBMqfnzkv7afP5AGz7WcF0wjz7jk sZgL10i3zOA9xtmwYatbBdk/+9gzGt7TE5ffCw8LQs4+wLxSDdRr/yXnlc3/ 6RXyGeudbTeaoJ/GGNpH5H9waC5yhHXZrktU/F1OzRZZRcJ8DUPJAtY3OF3Z nwtLdktOvYUjl+JtGmH6eOByJfbLHBeUvIOZodZDSchfWPHEl7oVz1NjtaED 8kkWf6augruGLL0+h3u3029rE1/39m5Af/c7o5L1YKbsvHUcXBE/m6EL83xK n9vAllJSgZpwDaOpYiX699S2XqsM65aUyY5inotdLRNSsNDtMbMNruNUe0/h PF1FdalC3IdV4zGTfpid7rooIv9vaMLlZljhyO512E9Ro90NqIQD3fKrGaif X7aNWkL6t3NvwvPDyTrXNVcID4fG+nKRf/6Ji20R7Hg+wwzPH2eErXPxPpmH tvzRNejvLq2SWgeniWNGTmAe7TLnQl/A5sUh3UWwnaX14Wkyr6i+M6OwYumO KiUyD3px+prNLM7BvZ5+FrB42YTDgv8oLRv0IvN8IQk5BDPd3dOSYfaxO/F4 L3McSxPKHpL58EPu2eL+zhTk/dEHz11sH9SHpcj3GNP/v89sZv0HZqtcXg== "]], InsetBox[ TagBox[ StyleBox[ TagBox["g", DisplayForm], FontFamily->"Helvetica", FontSize->23.458909090909092`], StyleForm[#, FontFamily -> "Helvetica", FontSize -> 23.458909090909092`]& ], {16.280796897832168, 15.429621715174807}, ImageScaled[{Rational[1, 2], 0}]], LineBox[CompressedData[" 1:eJwl1gk01WkfB/D/iFRK181Nasq1ztgZSwj9DVmiEMMoyZLoLUsRI+JG3oiu a2liKDeVCJHGmkKL5h1ElqG85fJa00Ia7rFM833mvefgfM7zPL/n9/v+//cc 8r4h+/xFKIri4of8/f8vNZr657OJplhl1TxreFruZqs7HJ75KTUL5jhPeWbC 3bt2DY4Rt+xeXQ7nZqTqm6jTFKN8aKoI9juxUz0Fblr2p87C7zOTEv6AK6R8 FY1hTuLZPbIaNEULa+d7ZGjqyLtFpjMc6jtV6QHXTCcuRMOM5uWu9o009X1w zVA2TFlve2QEH19yDroF89doBhWwaKpzYa9kEdz5XqSbCTemZi3mwk6X6jPS pWlqaKaEnUjWqx3ilOEDMyEiR0j92nPmPRtoinvCKNcC5incFV6DE//i6Gwh 9T0St6bDm/ceVppD/7yacIsC+Ie6s097YafDYax/zs/Pyz2AOcoZUYqonzHH 6LoD67w4XpwCl+5bOV4K09Kf41aiv4O8j3W1JA+DjuepsPBC5HAXcXv0k42Y b3H4mMYiyTMt7kAe/JVh/i86JK93sW0s5MMSmws/QfrvH1qKhmNd+7zvw4JE wf9+g7UZhfESmthvtl8wDzv4BRR6wU68igUx5P/mV5egu3AFd1nyE9Y/FP7n DKWF/FkOrxvgi/bCSlu4yWfqr0D4t3s5dudhp4+nmhfQz/gALV4Pc9b9MhkJ n/GX2D8IT+dK+Ixjnh0Gn4PnYJ12rR4nOLg52ewLOa89a9WAPIJUfJMWYEHV x2xdWD/EpmsSpgs2qNYiz2xhtW0HXGGv6uEGL8aO3Sgj99FCUylY/Y24WBLp 9wem0zsmTYUd/9ToA/Pr91hNwqpyRQbmMO9lyaQ49vuIeuSzyTwRK3StYWER d0iCrDvY2vFh48Nr/ETgTpXOXgb6sZq8+lYMZrtlmJD353rm20QZ0k+/8oIs 5nm+dv/p7eS8rDX7Opy8zs7Cn8zzdLZSCXlEK0Wl5ZN5BiYUL8MuVqcCRsj9 65kNs3Cc12sDXW2cPy69qE/y3bJqLh4WPEgbdYN922c8/4Ar5h+bucvQnFed a0SldZCfadh1A6wbSLa6mcB0mUkO6nEUYxNueuqQ7wErJAue3ihXFEX239q5 YSvuy1436sODGaNr2zLR7wfNBG0+zI4sefNFmubY1ch1FsG8/9Z8cxQWF84E 3ibntY6V9G2gOWmjWgk3Ycr9sqIL/KAkQDSXmP0sfZhJcxhqz+RTiZ3zBlJg 8W9H9p4mNvwc4YLnoVH1tWoA6ffoaTVTrOcY8L1d4VAr7TFrrMf6BvMtSX/T zOqTcKQxP8IQ9k6v7GjA/v679uZaZP/XfXVs3L+823StBrFQPjUb5h/NyNeB +XHrLbfieb3WUnI3JfM5VinewjxPxLdrOJJ6gZWqWiyaM+76ujIQnhYYRN1G HhOBs3JJsMCl5bk08rNRDnAtJfVHMseOID9XBbX33XDTtZ97c+Ejj6fclsn+ hXOOFfCrvPgRFV3Me+xhbwF8Wr1lbC/sncRtC0O9G3TikzDizpxTyljXH7CU yiL7Cx933Mf9hhdjrt0hvuTmZYr+Jlfvyn0E0+uyX5Whf0riaHwH3Nmu2COD +aRjHXf2kv2i3rviMX+bvi27Bw7VFVX4E3mlL2r3tpHz/dRYJPJ0SCn2byLW ZKhLwR6tEQoVpN6Kl7tbpGjOS5HHGVdIPbVXzFwpmpLfFuh1geyPc+emw0oT foY/wQJ9u8li7N98r7UhEObbvA0ahp1WZgUdJOtLq65sx/1G7Ihkd1Jf2Hjo BszbIif6I6kf2OuogO9b3fTNiEOk39r7zNvov+rjKplgYheVR3qYN3pRvSqB 5HXSz7MGXq6If5APT7uaGWoir97VFhbNZL9QMpAL2/zr6opxWOfQknYvPPA0 OGX9d3ify/stl5GnV6GMkTEsOK8hKYrnUTlS/aMvsWC+awLryTG6VsnElkr1 pTj/QtAdWkpczmzch/V2Z70Lv8N8H+1/DyL/y/mbzg3D09Hjmz3QnyUjoHgW ZhSU5rRgHpmT6oXLcKj189+1Ma9nlFUqpYf5/3x2Lw959Jz37Voi5+3VlVl4 Hmu5QXvIeR39GHs+8qw5WK40CnvfULezgtfIHGvuJvu/PzAohufhYNxa3wRX vLBQm2DQnIcNlo1lMMdwJvwdfJhfHJMH01c/qTBxvpPrksQl9WUftrnBumU/ 2yaS+uGXTKrhQwcGBWfJfFu6n6mhn4G7HHmyzjPzzS9Dv6FT7Jg0mJ0wwd6O +b5LCFjmk/XNpnsaYXqHjUMdTI3IGZkjj4XLH+70kXW1zz+VIq9zorKsRdJv 16asFcjzjJXWNwrIgxOv7G6OvG+5eHjYk3w8+xQ84Dm981+dgr1Fs7eR/HPy pUOu6JH3sWmfKtwdhTeWnJdSKBKgvuDiDusRuGlgoC0a/kI+MIP8PyNN/w2m PD7g "]], InsetBox[ TagBox[ StyleBox[ TagBox["g", DisplayForm], FontFamily->"Helvetica", FontSize->23.458909090909092`], StyleForm[#, FontFamily -> "Helvetica", FontSize -> 23.458909090909092`]& ], {16.181801948466052, 3.8774136392623753}, ImageScaled[{Rational[1, 2], 1}]], LineBox[{{6.500000000001819, 10.}, {13., 13.999999999996362`}}], PolygonBox[{{9.239005009977273, 11.6855415446014}, { 10.470633960288461`, 11.973795128716784`}, {10.051356019756993`, 12.655121782080418`}}], InsetBox[ TagBox[ StyleBox[ TagBox[ SubscriptBox["u", "l"], DisplayForm], FontFamily->"Helvetica", FontSize->23.458909090909092`], StyleForm[#, FontFamily -> "Helvetica", FontSize -> 23.458909090909092`]& ], {9.332600380984282, 13.056274380900543}, ImageScaled[{1, 0}]], LineBox[{{6.499999999989086, 10.000000000003638`}, { 12.999999999987267`, 6.000000000007276}}], PolygonBox[{{10.260994990022727`, 7.685541544601399}, { 9.029366039711539, 7.973795128716783}, {9.448643980243007, 8.655121782080418}}], InsetBox[ TagBox[ StyleBox[ TagBox[ SubscriptBox["u", "l"], DisplayForm], FontFamily->"Helvetica", FontSize->23.458909090909092`], StyleForm[#, FontFamily -> "Helvetica", FontSize -> 23.458909090909092`]& ], {9.332600380984282, 6.943725619099458}, ImageScaled[{1, 1}]], LineBox[{{13., 14.000000000000908`}, {13., 6.000000000000009}}], PolygonBox[{{13., 10.6}, {12.6, 9.4}, {13.4, 9.4}}], InsetBox[ TagBox[ StyleBox[ TagBox[ SubscriptBox["u", "l"], DisplayForm], FontFamily->"Helvetica", FontSize->23.458909090909092`], StyleForm[#, FontFamily -> "Helvetica", FontSize -> 23.458909090909092`]& ], {14.1493, 10.}, ImageScaled[{0, Rational[1, 2]}]], {PointSize[0.04], PointBox[{6.5, 10.}], PointBox[{13., 14.}], PointBox[{13., 6.}]}}, "\"ad\\\\becf\\\\dedfef.m\"", TooltipStyle->"TextStyling"], Annotation[#, "ad\\becf\\dedfef.m", "Tooltip"]& ], AspectRatio->1, PlotRange->{{-1, 21}, {-1, 21}}], {0, 22}, {0, 0}, {22, 22}], InsetBox[ GraphicsBox[ TagBox[ TooltipBox[ {Thickness[0.005], {Dashing[{0.030000000000000002`, 0.030000000000000002`}], LineBox[{{-2.4931168240982515`*^-12, 10.}, {6.499999999992696, 10.}}]}, InsetBox[ TagBox[ StyleBox[ TagBox["H", DisplayForm], FontFamily->"Helvetica", FontSize->23.458909090909092`], StyleForm[#, FontFamily -> "Helvetica", FontSize -> 23.458909090909092`]& ], {3.25, 9.3048}, ImageScaled[{Rational[1, 2], 1}]], LineBox[CompressedData[" 1:eJwt1ns41GkUB/DZWWuGtdEgpDQuFSGSZBWmWtuwka1cWlnSlstmKXehEclY RBemWpRkR2w7VDa5s8to0VDkVqZErmtCD7ntft/n2T84z+c573vmPef9+RlN r4ADx6kUCiUVPyRS5MivTSwKnUQDFsXubWLQdlg84T9kCZ+Us5+PgGvoKw8F wuKaTs2/YL61Z8EVeB3v/aKyPotiTN0nXwBXuNrb+8KUez+mF8FqYbeLy2F2 7SX9HFhutqVDBtHVV+5JLKKySCvXEZGtHLnTGZHLPeWdgkiZkl+zDvH3j8af VZH8F9n5/ahjoldFew2n7QpOuwE7/7Jc8QEWahQ/dYa/sd1ltQiLUkaOkXOV 3Gn/ieSNH9ut7cW5g9+4Tr6BeXIeJwrhXdVF0o0wc3+EIhdOSQiPzYNZN8It QuHoFN+kGLhrmKkcDFPa9aJd4fBbv02eg3/56lbpNlK//apOLjw1oHNcDVZd XbVeBJ+UWLhJw3N3rl6SxXmOfBH2bhkxcX7gsANir3rBfSnkzbW9BzPhuP4t v6nCCt927huAB2taZy3I/sqgFAPEgCPXxvxIfwKV+gBEXytXjV8RJS5cDzL/ T2hZYRPEmgz3TsR7ZpccdhiyKIGSM74zsP190cUUWLJnFY2KeChYa0SMKHQZ v7WMfIJ+/dyWzZiP0XLmKKk/Hh0dDZtH0UzJnOSz5+Nr4PC7GjcyyP3J8K/O wcZlW+65wXzmP23aRizKIz3F12QOuRoPGLtgVp+7TAf6GRHWzu6HKQ9GN6bD 16oVJxxhn8V+owNw8PQLHRs4MCa+VR3uv+aTsBkWaX8we4951huZX5Yn+et5 M89hYb3RnjF8/s1q/UYhfHQ+oudPmKLsz22BvXwZ5TnwcOzJ9QPw6ZEi07Nk /arEq3TUf0e/6XQCZp6kTO+Az2QEVLvAj1Sp6ZHwxKdHY51IPapAqxaWHTVc 8CT1hlaOfo7+to+HNEWSetL7Jsjzyx+UrsyFOXb6RtlwkW34yxdk/7PX717C dTEfQlVxfuPh5scMzF2lIMjECzb/au/Ql7Bnw7xZCZy4rd/vWzhnp1IB1Rj9 RtdtdIWLX3YwDOBhx79H7eG6Hl7hQdh8yjZoK6yVKScOg+f0jnnLGrI4awu1 7DPhcMn1nR0GLA5rTvhMABubditl4jyGbb38ejjt1570g+S+M/w9n8Ki6gu3 VmA97WH99DOYtajwdbM+i2Pg8KC2jXxe6tiRNMzjcoMHtwkWsLu9v0c+OSvd owKmh8u4fQn/+MQjp5Csz1UJ0sb6bruBTh5809RSWQP+tEu9+DxMUY8s18P6 jx3mr4LgRN3WCRt47yHewg8knzbAPoX1oavbor6DOYV/pxcgT6WvyHSCdTMf dowhX8sWG7nAjv/0XjbF+VXao0QeMK/cafIs+vOfWp0dQOqflh5qQl5tROyS APOf5XBXYF5DsVHf3YZ9lpK228Gi96YFf5HzOmc1R8CbjD4sjJHPyy5ru455 H1a70Ka0Be+HhdfZhchrTi3EW8GSV42nYUqD48rj3rCjWVI01nPE7jbNKbCY JvOK1Gv232MugG/6z6R/A7Mi3DxayP43EYfJ85H9sX33W1gop53WRt4TpbKW M7DrOGMpGfb5WSC7BCvo22ax4ZGWyNZl2Edx2I+O/riF5vLz5PM35OmIMK/u 6IOCSdizPFb1NuYVItEfFJP64x0zccg3N0kzn5L6LzfkBsOTClFL5fCjTTK6 oeR+a5INC2AWMyo7Efur4vLceKSfO1cMCsl9s/tW/Qwz27hKfXDreGv5OdJP T1gz3mucA+t2HOXA/MwIre/JfQyeF8bDvBMqfnzkv7afP5AGz7WcF0wjz7jk sZgL10i3zOA9xtmwYatbBdk/+9gzGt7TE5ffCw8LQs4+wLxSDdRr/yXnlc3/ 6RXyGeudbTeaoJ/GGNpH5H9waC5yhHXZrktU/F1OzRZZRcJ8DUPJAtY3OF3Z nwtLdktOvYUjl+JtGmH6eOByJfbLHBeUvIOZodZDSchfWPHEl7oVz1NjtaED 8kkWf6augruGLL0+h3u3029rE1/39m5Af/c7o5L1YKbsvHUcXBE/m6EL83xK n9vAllJSgZpwDaOpYiX699S2XqsM65aUyY5inotdLRNSsNDtMbMNruNUe0/h PF1FdalC3IdV4zGTfpid7rooIv9vaMLlZljhyO512E9Ro90NqIQD3fKrGaif X7aNWkL6t3NvwvPDyTrXNVcID4fG+nKRf/6Ji20R7Hg+wwzPH2eErXPxPpmH tvzRNejvLq2SWgeniWNGTmAe7TLnQl/A5sUh3UWwnaX14Wkyr6i+M6OwYumO KiUyD3px+prNLM7BvZ5+FrB42YTDgv8oLRv0IvN8IQk5BDPd3dOSYfaxO/F4 L3McSxPKHpL58EPu2eL+zhTk/dEHz11sH9SHpcj3GNP/v89sZv0HZqtcXg== "]], InsetBox[ TagBox[ StyleBox[ TagBox["g", DisplayForm], FontFamily->"Helvetica", FontSize->23.458909090909092`], StyleForm[#, FontFamily -> "Helvetica", FontSize -> 23.458909090909092`]& ], {16.280796897832168, 15.429621715174807}, ImageScaled[{Rational[1, 2], 0}]], LineBox[CompressedData[" 1:eJwl1gk01WkfB/D/iFRK181Nasq1ztgZSwj9DVmiEMMoyZLoLUsRI+JG3oiu a2liKDeVCJHGmkKL5h1ElqG85fJa00Ia7rFM833mvefgfM7zPL/n9/v+//cc 8r4h+/xFKIri4of8/f8vNZr657OJplhl1TxreFruZqs7HJ75KTUL5jhPeWbC 3bt2DY4Rt+xeXQ7nZqTqm6jTFKN8aKoI9juxUz0Fblr2p87C7zOTEv6AK6R8 FY1hTuLZPbIaNEULa+d7ZGjqyLtFpjMc6jtV6QHXTCcuRMOM5uWu9o009X1w zVA2TFlve2QEH19yDroF89doBhWwaKpzYa9kEdz5XqSbCTemZi3mwk6X6jPS pWlqaKaEnUjWqx3ilOEDMyEiR0j92nPmPRtoinvCKNcC5incFV6DE//i6Gwh 9T0St6bDm/ceVppD/7yacIsC+Ie6s097YafDYax/zs/Pyz2AOcoZUYqonzHH 6LoD67w4XpwCl+5bOV4K09Kf41aiv4O8j3W1JA+DjuepsPBC5HAXcXv0k42Y b3H4mMYiyTMt7kAe/JVh/i86JK93sW0s5MMSmws/QfrvH1qKhmNd+7zvw4JE wf9+g7UZhfESmthvtl8wDzv4BRR6wU68igUx5P/mV5egu3AFd1nyE9Y/FP7n DKWF/FkOrxvgi/bCSlu4yWfqr0D4t3s5dudhp4+nmhfQz/gALV4Pc9b9MhkJ n/GX2D8IT+dK+Ixjnh0Gn4PnYJ12rR4nOLg52ewLOa89a9WAPIJUfJMWYEHV x2xdWD/EpmsSpgs2qNYiz2xhtW0HXGGv6uEGL8aO3Sgj99FCUylY/Y24WBLp 9wem0zsmTYUd/9ToA/Pr91hNwqpyRQbmMO9lyaQ49vuIeuSzyTwRK3StYWER d0iCrDvY2vFh48Nr/ETgTpXOXgb6sZq8+lYMZrtlmJD353rm20QZ0k+/8oIs 5nm+dv/p7eS8rDX7Opy8zs7Cn8zzdLZSCXlEK0Wl5ZN5BiYUL8MuVqcCRsj9 65kNs3Cc12sDXW2cPy69qE/y3bJqLh4WPEgbdYN922c8/4Ar5h+bucvQnFed a0SldZCfadh1A6wbSLa6mcB0mUkO6nEUYxNueuqQ7wErJAue3ihXFEX239q5 YSvuy1436sODGaNr2zLR7wfNBG0+zI4sefNFmubY1ch1FsG8/9Z8cxQWF84E 3ibntY6V9G2gOWmjWgk3Ycr9sqIL/KAkQDSXmP0sfZhJcxhqz+RTiZ3zBlJg 8W9H9p4mNvwc4YLnoVH1tWoA6ffoaTVTrOcY8L1d4VAr7TFrrMf6BvMtSX/T zOqTcKQxP8IQ9k6v7GjA/v679uZaZP/XfXVs3L+823StBrFQPjUb5h/NyNeB +XHrLbfieb3WUnI3JfM5VinewjxPxLdrOJJ6gZWqWiyaM+76ujIQnhYYRN1G HhOBs3JJsMCl5bk08rNRDnAtJfVHMseOID9XBbX33XDTtZ97c+Ejj6fclsn+ hXOOFfCrvPgRFV3Me+xhbwF8Wr1lbC/sncRtC0O9G3TikzDizpxTyljXH7CU yiL7Cx933Mf9hhdjrt0hvuTmZYr+Jlfvyn0E0+uyX5Whf0riaHwH3Nmu2COD +aRjHXf2kv2i3rviMX+bvi27Bw7VFVX4E3mlL2r3tpHz/dRYJPJ0SCn2byLW ZKhLwR6tEQoVpN6Kl7tbpGjOS5HHGVdIPbVXzFwpmpLfFuh1geyPc+emw0oT foY/wQJ9u8li7N98r7UhEObbvA0ahp1WZgUdJOtLq65sx/1G7Ihkd1Jf2Hjo BszbIif6I6kf2OuogO9b3fTNiEOk39r7zNvov+rjKplgYheVR3qYN3pRvSqB 5HXSz7MGXq6If5APT7uaGWoir97VFhbNZL9QMpAL2/zr6opxWOfQknYvPPA0 OGX9d3ify/stl5GnV6GMkTEsOK8hKYrnUTlS/aMvsWC+awLryTG6VsnElkr1 pTj/QtAdWkpczmzch/V2Z70Lv8N8H+1/DyL/y/mbzg3D09Hjmz3QnyUjoHgW ZhSU5rRgHpmT6oXLcKj189+1Ma9nlFUqpYf5/3x2Lw959Jz37Voi5+3VlVl4 Hmu5QXvIeR39GHs+8qw5WK40CnvfULezgtfIHGvuJvu/PzAohufhYNxa3wRX vLBQm2DQnIcNlo1lMMdwJvwdfJhfHJMH01c/qTBxvpPrksQl9WUftrnBumU/ 2yaS+uGXTKrhQwcGBWfJfFu6n6mhn4G7HHmyzjPzzS9Dv6FT7Jg0mJ0wwd6O +b5LCFjmk/XNpnsaYXqHjUMdTI3IGZkjj4XLH+70kXW1zz+VIq9zorKsRdJv 16asFcjzjJXWNwrIgxOv7G6OvG+5eHjYk3w8+xQ84Dm981+dgr1Fs7eR/HPy pUOu6JH3sWmfKtwdhTeWnJdSKBKgvuDiDusRuGlgoC0a/kI+MIP8PyNN/w2m PD7g "]], InsetBox[ TagBox[ StyleBox[ TagBox["g", DisplayForm], FontFamily->"Helvetica", FontSize->23.458909090909092`], StyleForm[#, FontFamily -> "Helvetica", FontSize -> 23.458909090909092`]& ], {16.181801948466052, 3.8774136392623753}, ImageScaled[{Rational[1, 2], 1}]], LineBox[{{6.500000000001819, 10.}, {13., 13.999999999996362`}}], PolygonBox[{{10.260994990022727`, 12.3144584553986}, { 9.448643980243007, 11.344878217919582`}, {9.029366039711539, 12.026204871283216`}}], InsetBox[ TagBox[ StyleBox[ TagBox[ SubscriptBox["u", "l"], DisplayForm], FontFamily->"Helvetica", FontSize->23.458909090909092`], StyleForm[#, FontFamily -> "Helvetica", FontSize -> 23.458909090909092`]& ], {9.332600380984282, 13.056274380900543}, ImageScaled[{1, 0}]], LineBox[{{6.499999999989086, 10.000000000003638`}, { 12.999999999987267`, 6.000000000007276}}], PolygonBox[{{9.239005009977273, 8.3144584553986}, { 10.051356019756993`, 7.3448782179195815`}, {10.470633960288461`, 8.026204871283216}}], InsetBox[ TagBox[ StyleBox[ TagBox[ SubscriptBox["u", "l"], DisplayForm], FontFamily->"Helvetica", FontSize->23.458909090909092`], StyleForm[#, FontFamily -> "Helvetica", FontSize -> 23.458909090909092`]& ], {9.332600380984282, 6.943725619099458}, ImageScaled[{1, 1}]], LineBox[{{13., 14.000000000000908`}, {13., 6.000000000000009}}], PolygonBox[{{13., 9.4}, {12.6, 10.6}, {13.4, 10.6}}], InsetBox[ TagBox[ StyleBox[ TagBox[ SubscriptBox["u", "l"], DisplayForm], FontFamily->"Helvetica", FontSize->23.458909090909092`], StyleForm[#, FontFamily -> "Helvetica", FontSize -> 23.458909090909092`]& ], {14.1493, 10.}, ImageScaled[{0, Rational[1, 2]}]], {PointSize[0.04], PointBox[{6.5, 10.}], PointBox[{13., 14.}], PointBox[{13., 6.}]}}, "\"ad\\\\becf\\\\dedfef.m\"", TooltipStyle->"TextStyling"], Annotation[#, "ad\\becf\\dedfef.m", "Tooltip"]& ], AspectRatio->1, PlotRange->{{-1, 21}, {-1, 21}}], {22, 22}, {0, 0}, {22, 22}], InsetBox[ GraphicsBox[ TagBox[ TooltipBox[ {Thickness[0.005], {Dashing[{0.030000000000000002`, 0.030000000000000002`}], LineBox[{{-2.4931168240982515`*^-12, 10.}, {6.499999999992696, 10.}}]}, InsetBox[ TagBox[ StyleBox[ TagBox["H", DisplayForm], FontFamily->"Helvetica", FontSize->23.458909090909092`], StyleForm[#, FontFamily -> "Helvetica", FontSize -> 23.458909090909092`]& ], {3.25, 9.3048}, ImageScaled[{Rational[1, 2], 1}]], LineBox[CompressedData[" 1:eJwt1ns41GkUB/DZWWuGtdEgpDQuFSGSZBWmWtuwka1cWlnSlstmKXehEclY RBemWpRkR2w7VDa5s8to0VDkVqZErmtCD7ntft/n2T84z+c573vmPef9+RlN r4ADx6kUCiUVPyRS5MivTSwKnUQDFsXubWLQdlg84T9kCZ+Us5+PgGvoKw8F wuKaTs2/YL61Z8EVeB3v/aKyPotiTN0nXwBXuNrb+8KUez+mF8FqYbeLy2F2 7SX9HFhutqVDBtHVV+5JLKKySCvXEZGtHLnTGZHLPeWdgkiZkl+zDvH3j8af VZH8F9n5/ahjoldFew2n7QpOuwE7/7Jc8QEWahQ/dYa/sd1ltQiLUkaOkXOV 3Gn/ieSNH9ut7cW5g9+4Tr6BeXIeJwrhXdVF0o0wc3+EIhdOSQiPzYNZN8It QuHoFN+kGLhrmKkcDFPa9aJd4fBbv02eg3/56lbpNlK//apOLjw1oHNcDVZd XbVeBJ+UWLhJw3N3rl6SxXmOfBH2bhkxcX7gsANir3rBfSnkzbW9BzPhuP4t v6nCCt927huAB2taZy3I/sqgFAPEgCPXxvxIfwKV+gBEXytXjV8RJS5cDzL/ T2hZYRPEmgz3TsR7ZpccdhiyKIGSM74zsP190cUUWLJnFY2KeChYa0SMKHQZ v7WMfIJ+/dyWzZiP0XLmKKk/Hh0dDZtH0UzJnOSz5+Nr4PC7GjcyyP3J8K/O wcZlW+65wXzmP23aRizKIz3F12QOuRoPGLtgVp+7TAf6GRHWzu6HKQ9GN6bD 16oVJxxhn8V+owNw8PQLHRs4MCa+VR3uv+aTsBkWaX8we4951huZX5Yn+et5 M89hYb3RnjF8/s1q/UYhfHQ+oudPmKLsz22BvXwZ5TnwcOzJ9QPw6ZEi07Nk /arEq3TUf0e/6XQCZp6kTO+Az2QEVLvAj1Sp6ZHwxKdHY51IPapAqxaWHTVc 8CT1hlaOfo7+to+HNEWSetL7Jsjzyx+UrsyFOXb6RtlwkW34yxdk/7PX717C dTEfQlVxfuPh5scMzF2lIMjECzb/au/Ql7Bnw7xZCZy4rd/vWzhnp1IB1Rj9 RtdtdIWLX3YwDOBhx79H7eG6Hl7hQdh8yjZoK6yVKScOg+f0jnnLGrI4awu1 7DPhcMn1nR0GLA5rTvhMABubditl4jyGbb38ejjt1570g+S+M/w9n8Ki6gu3 VmA97WH99DOYtajwdbM+i2Pg8KC2jXxe6tiRNMzjcoMHtwkWsLu9v0c+OSvd owKmh8u4fQn/+MQjp5Csz1UJ0sb6bruBTh5809RSWQP+tEu9+DxMUY8s18P6 jx3mr4LgRN3WCRt47yHewg8knzbAPoX1oavbor6DOYV/pxcgT6WvyHSCdTMf dowhX8sWG7nAjv/0XjbF+VXao0QeMK/cafIs+vOfWp0dQOqflh5qQl5tROyS APOf5XBXYF5DsVHf3YZ9lpK228Gi96YFf5HzOmc1R8CbjD4sjJHPyy5ru455 H1a70Ka0Be+HhdfZhchrTi3EW8GSV42nYUqD48rj3rCjWVI01nPE7jbNKbCY JvOK1Gv232MugG/6z6R/A7Mi3DxayP43EYfJ85H9sX33W1gop53WRt4TpbKW M7DrOGMpGfb5WSC7BCvo22ax4ZGWyNZl2Edx2I+O/riF5vLz5PM35OmIMK/u 6IOCSdizPFb1NuYVItEfFJP64x0zccg3N0kzn5L6LzfkBsOTClFL5fCjTTK6 oeR+a5INC2AWMyo7Efur4vLceKSfO1cMCsl9s/tW/Qwz27hKfXDreGv5OdJP T1gz3mucA+t2HOXA/MwIre/JfQyeF8bDvBMqfnzkv7afP5AGz7WcF0wjz7jk sZgL10i3zOA9xtmwYatbBdk/+9gzGt7TE5ffCw8LQs4+wLxSDdRr/yXnlc3/ 6RXyGeudbTeaoJ/GGNpH5H9waC5yhHXZrktU/F1OzRZZRcJ8DUPJAtY3OF3Z nwtLdktOvYUjl+JtGmH6eOByJfbLHBeUvIOZodZDSchfWPHEl7oVz1NjtaED 8kkWf6augruGLL0+h3u3029rE1/39m5Af/c7o5L1YKbsvHUcXBE/m6EL83xK n9vAllJSgZpwDaOpYiX699S2XqsM65aUyY5inotdLRNSsNDtMbMNruNUe0/h PF1FdalC3IdV4zGTfpid7rooIv9vaMLlZljhyO512E9Ro90NqIQD3fKrGaif X7aNWkL6t3NvwvPDyTrXNVcID4fG+nKRf/6Ji20R7Hg+wwzPH2eErXPxPpmH tvzRNejvLq2SWgeniWNGTmAe7TLnQl/A5sUh3UWwnaX14Wkyr6i+M6OwYumO KiUyD3px+prNLM7BvZ5+FrB42YTDgv8oLRv0IvN8IQk5BDPd3dOSYfaxO/F4 L3McSxPKHpL58EPu2eL+zhTk/dEHz11sH9SHpcj3GNP/v89sZv0HZqtcXg== "]], InsetBox[ TagBox[ StyleBox[ TagBox["g", DisplayForm], FontFamily->"Helvetica", FontSize->23.458909090909092`], StyleForm[#, FontFamily -> "Helvetica", FontSize -> 23.458909090909092`]& ], {16.280796897832168, 15.429621715174807}, ImageScaled[{Rational[1, 2], 0}]], LineBox[CompressedData[" 1:eJwl1gk01WkfB/D/iFRK181Nasq1ztgZSwj9DVmiEMMoyZLoLUsRI+JG3oiu a2liKDeVCJHGmkKL5h1ElqG85fJa00Ia7rFM833mvefgfM7zPL/n9/v+//cc 8r4h+/xFKIri4of8/f8vNZr657OJplhl1TxreFruZqs7HJ75KTUL5jhPeWbC 3bt2DY4Rt+xeXQ7nZqTqm6jTFKN8aKoI9juxUz0Fblr2p87C7zOTEv6AK6R8 FY1hTuLZPbIaNEULa+d7ZGjqyLtFpjMc6jtV6QHXTCcuRMOM5uWu9o009X1w zVA2TFlve2QEH19yDroF89doBhWwaKpzYa9kEdz5XqSbCTemZi3mwk6X6jPS pWlqaKaEnUjWqx3ilOEDMyEiR0j92nPmPRtoinvCKNcC5incFV6DE//i6Gwh 9T0St6bDm/ceVppD/7yacIsC+Ie6s097YafDYax/zs/Pyz2AOcoZUYqonzHH 6LoD67w4XpwCl+5bOV4K09Kf41aiv4O8j3W1JA+DjuepsPBC5HAXcXv0k42Y b3H4mMYiyTMt7kAe/JVh/i86JK93sW0s5MMSmws/QfrvH1qKhmNd+7zvw4JE wf9+g7UZhfESmthvtl8wDzv4BRR6wU68igUx5P/mV5egu3AFd1nyE9Y/FP7n DKWF/FkOrxvgi/bCSlu4yWfqr0D4t3s5dudhp4+nmhfQz/gALV4Pc9b9MhkJ n/GX2D8IT+dK+Ixjnh0Gn4PnYJ12rR4nOLg52ewLOa89a9WAPIJUfJMWYEHV x2xdWD/EpmsSpgs2qNYiz2xhtW0HXGGv6uEGL8aO3Sgj99FCUylY/Y24WBLp 9wem0zsmTYUd/9ToA/Pr91hNwqpyRQbmMO9lyaQ49vuIeuSzyTwRK3StYWER d0iCrDvY2vFh48Nr/ETgTpXOXgb6sZq8+lYMZrtlmJD353rm20QZ0k+/8oIs 5nm+dv/p7eS8rDX7Opy8zs7Cn8zzdLZSCXlEK0Wl5ZN5BiYUL8MuVqcCRsj9 65kNs3Cc12sDXW2cPy69qE/y3bJqLh4WPEgbdYN922c8/4Ar5h+bucvQnFed a0SldZCfadh1A6wbSLa6mcB0mUkO6nEUYxNueuqQ7wErJAue3ihXFEX239q5 YSvuy1436sODGaNr2zLR7wfNBG0+zI4sefNFmubY1ch1FsG8/9Z8cxQWF84E 3ibntY6V9G2gOWmjWgk3Ycr9sqIL/KAkQDSXmP0sfZhJcxhqz+RTiZ3zBlJg 8W9H9p4mNvwc4YLnoVH1tWoA6ffoaTVTrOcY8L1d4VAr7TFrrMf6BvMtSX/T zOqTcKQxP8IQ9k6v7GjA/v679uZaZP/XfXVs3L+823StBrFQPjUb5h/NyNeB +XHrLbfieb3WUnI3JfM5VinewjxPxLdrOJJ6gZWqWiyaM+76ujIQnhYYRN1G HhOBs3JJsMCl5bk08rNRDnAtJfVHMseOID9XBbX33XDTtZ97c+Ejj6fclsn+ hXOOFfCrvPgRFV3Me+xhbwF8Wr1lbC/sncRtC0O9G3TikzDizpxTyljXH7CU yiL7Cx933Mf9hhdjrt0hvuTmZYr+Jlfvyn0E0+uyX5Whf0riaHwH3Nmu2COD +aRjHXf2kv2i3rviMX+bvi27Bw7VFVX4E3mlL2r3tpHz/dRYJPJ0SCn2byLW ZKhLwR6tEQoVpN6Kl7tbpGjOS5HHGVdIPbVXzFwpmpLfFuh1geyPc+emw0oT foY/wQJ9u8li7N98r7UhEObbvA0ahp1WZgUdJOtLq65sx/1G7Ihkd1Jf2Hjo BszbIif6I6kf2OuogO9b3fTNiEOk39r7zNvov+rjKplgYheVR3qYN3pRvSqB 5HXSz7MGXq6If5APT7uaGWoir97VFhbNZL9QMpAL2/zr6opxWOfQknYvPPA0 OGX9d3ify/stl5GnV6GMkTEsOK8hKYrnUTlS/aMvsWC+awLryTG6VsnElkr1 pTj/QtAdWkpczmzch/V2Z70Lv8N8H+1/DyL/y/mbzg3D09Hjmz3QnyUjoHgW ZhSU5rRgHpmT6oXLcKj189+1Ma9nlFUqpYf5/3x2Lw959Jz37Voi5+3VlVl4 Hmu5QXvIeR39GHs+8qw5WK40CnvfULezgtfIHGvuJvu/PzAohufhYNxa3wRX vLBQm2DQnIcNlo1lMMdwJvwdfJhfHJMH01c/qTBxvpPrksQl9WUftrnBumU/ 2yaS+uGXTKrhQwcGBWfJfFu6n6mhn4G7HHmyzjPzzS9Dv6FT7Jg0mJ0wwd6O +b5LCFjmk/XNpnsaYXqHjUMdTI3IGZkjj4XLH+70kXW1zz+VIq9zorKsRdJv 16asFcjzjJXWNwrIgxOv7G6OvG+5eHjYk3w8+xQ84Dm981+dgr1Fs7eR/HPy pUOu6JH3sWmfKtwdhTeWnJdSKBKgvuDiDusRuGlgoC0a/kI+MIP8PyNN/w2m PD7g "]], InsetBox[ TagBox[ StyleBox[ TagBox["g", DisplayForm], FontFamily->"Helvetica", FontSize->23.458909090909092`], StyleForm[#, FontFamily -> "Helvetica", FontSize -> 23.458909090909092`]& ], {16.181801948466052, 3.8774136392623753}, ImageScaled[{Rational[1, 2], 1}]], LineBox[{{6.500000000001819, 10.}, {13., 13.999999999996362`}}], PolygonBox[{{9.239005009977273, 11.6855415446014}, { 10.470633960288461`, 11.973795128716784`}, {10.051356019756993`, 12.655121782080418`}}], InsetBox[ TagBox[ StyleBox[ TagBox[ SubscriptBox["d", "l"], DisplayForm], FontFamily->"Helvetica", FontSize->23.458909090909092`], StyleForm[#, FontFamily -> "Helvetica", FontSize -> 23.458909090909092`]& ], {9.332600380984282, 13.056274380900543}, ImageScaled[{1, 0}]], LineBox[{{6.499999999989086, 10.000000000003638`}, { 12.999999999987267`, 6.000000000007276}}], PolygonBox[{{10.260994990022727`, 7.685541544601399}, { 9.029366039711539, 7.973795128716783}, {9.448643980243007, 8.655121782080418}}], InsetBox[ TagBox[ StyleBox[ TagBox[ SubscriptBox["d", "l"], DisplayForm], FontFamily->"Helvetica", FontSize->23.458909090909092`], StyleForm[#, FontFamily -> "Helvetica", FontSize -> 23.458909090909092`]& ], {9.332600380984282, 6.943725619099458}, ImageScaled[{1, 1}]], LineBox[{{13., 14.000000000000908`}, {13., 6.000000000000009}}], PolygonBox[{{13., 10.6}, {12.6, 9.4}, {13.4, 9.4}}], InsetBox[ TagBox[ StyleBox[ TagBox[ SubscriptBox["d", "l"], DisplayForm], FontFamily->"Helvetica", FontSize->23.458909090909092`], StyleForm[#, FontFamily -> "Helvetica", FontSize -> 23.458909090909092`]& ], {14.1493, 10.}, ImageScaled[{0, Rational[1, 2]}]], {PointSize[0.04], PointBox[{6.5, 10.}], PointBox[{13., 14.}], PointBox[{13., 6.}]}}, "\"ad\\\\becf\\\\dedfef.m\"", TooltipStyle->"TextStyling"], Annotation[#, "ad\\becf\\dedfef.m", "Tooltip"]& ], AspectRatio->1, PlotRange->{{-1, 21}, {-1, 21}}], {44, 22}, {0, 0}, {22, 22}], InsetBox[ GraphicsBox[ TagBox[ TooltipBox[ {Thickness[0.005], {Dashing[{0.030000000000000002`, 0.030000000000000002`}], LineBox[{{-2.4931168240982515`*^-12, 10.}, {6.499999999992696, 10.}}]}, InsetBox[ TagBox[ StyleBox[ TagBox["H", DisplayForm], FontFamily->"Helvetica", FontSize->23.458909090909092`], StyleForm[#, FontFamily -> "Helvetica", FontSize -> 23.458909090909092`]& ], {3.25, 9.3048}, ImageScaled[{Rational[1, 2], 1}]], LineBox[CompressedData[" 1:eJwt1ns41GkUB/DZWWuGtdEgpDQuFSGSZBWmWtuwka1cWlnSlstmKXehEclY RBemWpRkR2w7VDa5s8to0VDkVqZErmtCD7ntft/n2T84z+c573vmPef9+RlN r4ADx6kUCiUVPyRS5MivTSwKnUQDFsXubWLQdlg84T9kCZ+Us5+PgGvoKw8F wuKaTs2/YL61Z8EVeB3v/aKyPotiTN0nXwBXuNrb+8KUez+mF8FqYbeLy2F2 7SX9HFhutqVDBtHVV+5JLKKySCvXEZGtHLnTGZHLPeWdgkiZkl+zDvH3j8af VZH8F9n5/ahjoldFew2n7QpOuwE7/7Jc8QEWahQ/dYa/sd1ltQiLUkaOkXOV 3Gn/ieSNH9ut7cW5g9+4Tr6BeXIeJwrhXdVF0o0wc3+EIhdOSQiPzYNZN8It QuHoFN+kGLhrmKkcDFPa9aJd4fBbv02eg3/56lbpNlK//apOLjw1oHNcDVZd XbVeBJ+UWLhJw3N3rl6SxXmOfBH2bhkxcX7gsANir3rBfSnkzbW9BzPhuP4t v6nCCt927huAB2taZy3I/sqgFAPEgCPXxvxIfwKV+gBEXytXjV8RJS5cDzL/ T2hZYRPEmgz3TsR7ZpccdhiyKIGSM74zsP190cUUWLJnFY2KeChYa0SMKHQZ v7WMfIJ+/dyWzZiP0XLmKKk/Hh0dDZtH0UzJnOSz5+Nr4PC7GjcyyP3J8K/O wcZlW+65wXzmP23aRizKIz3F12QOuRoPGLtgVp+7TAf6GRHWzu6HKQ9GN6bD 16oVJxxhn8V+owNw8PQLHRs4MCa+VR3uv+aTsBkWaX8we4951huZX5Yn+et5 M89hYb3RnjF8/s1q/UYhfHQ+oudPmKLsz22BvXwZ5TnwcOzJ9QPw6ZEi07Nk /arEq3TUf0e/6XQCZp6kTO+Az2QEVLvAj1Sp6ZHwxKdHY51IPapAqxaWHTVc 8CT1hlaOfo7+to+HNEWSetL7Jsjzyx+UrsyFOXb6RtlwkW34yxdk/7PX717C dTEfQlVxfuPh5scMzF2lIMjECzb/au/Ql7Bnw7xZCZy4rd/vWzhnp1IB1Rj9 RtdtdIWLX3YwDOBhx79H7eG6Hl7hQdh8yjZoK6yVKScOg+f0jnnLGrI4awu1 7DPhcMn1nR0GLA5rTvhMABubditl4jyGbb38ejjt1570g+S+M/w9n8Ki6gu3 VmA97WH99DOYtajwdbM+i2Pg8KC2jXxe6tiRNMzjcoMHtwkWsLu9v0c+OSvd owKmh8u4fQn/+MQjp5Csz1UJ0sb6bruBTh5809RSWQP+tEu9+DxMUY8s18P6 jx3mr4LgRN3WCRt47yHewg8knzbAPoX1oavbor6DOYV/pxcgT6WvyHSCdTMf dowhX8sWG7nAjv/0XjbF+VXao0QeMK/cafIs+vOfWp0dQOqflh5qQl5tROyS APOf5XBXYF5DsVHf3YZ9lpK228Gi96YFf5HzOmc1R8CbjD4sjJHPyy5ru455 H1a70Ka0Be+HhdfZhchrTi3EW8GSV42nYUqD48rj3rCjWVI01nPE7jbNKbCY JvOK1Gv232MugG/6z6R/A7Mi3DxayP43EYfJ85H9sX33W1gop53WRt4TpbKW M7DrOGMpGfb5WSC7BCvo22ax4ZGWyNZl2Edx2I+O/riF5vLz5PM35OmIMK/u 6IOCSdizPFb1NuYVItEfFJP64x0zccg3N0kzn5L6LzfkBsOTClFL5fCjTTK6 oeR+a5INC2AWMyo7Efur4vLceKSfO1cMCsl9s/tW/Qwz27hKfXDreGv5OdJP T1gz3mucA+t2HOXA/MwIre/JfQyeF8bDvBMqfnzkv7afP5AGz7WcF0wjz7jk sZgL10i3zOA9xtmwYatbBdk/+9gzGt7TE5ffCw8LQs4+wLxSDdRr/yXnlc3/ 6RXyGeudbTeaoJ/GGNpH5H9waC5yhHXZrktU/F1OzRZZRcJ8DUPJAtY3OF3Z nwtLdktOvYUjl+JtGmH6eOByJfbLHBeUvIOZodZDSchfWPHEl7oVz1NjtaED 8kkWf6augruGLL0+h3u3029rE1/39m5Af/c7o5L1YKbsvHUcXBE/m6EL83xK n9vAllJSgZpwDaOpYiX699S2XqsM65aUyY5inotdLRNSsNDtMbMNruNUe0/h PF1FdalC3IdV4zGTfpid7rooIv9vaMLlZljhyO512E9Ro90NqIQD3fKrGaif X7aNWkL6t3NvwvPDyTrXNVcID4fG+nKRf/6Ji20R7Hg+wwzPH2eErXPxPpmH tvzRNejvLq2SWgeniWNGTmAe7TLnQl/A5sUh3UWwnaX14Wkyr6i+M6OwYumO KiUyD3px+prNLM7BvZ5+FrB42YTDgv8oLRv0IvN8IQk5BDPd3dOSYfaxO/F4 L3McSxPKHpL58EPu2eL+zhTk/dEHz11sH9SHpcj3GNP/v89sZv0HZqtcXg== "]], InsetBox[ TagBox[ StyleBox[ TagBox["g", DisplayForm], FontFamily->"Helvetica", FontSize->23.458909090909092`], StyleForm[#, FontFamily -> "Helvetica", FontSize -> 23.458909090909092`]& ], {16.280796897832168, 15.429621715174807}, ImageScaled[{Rational[1, 2], 0}]], LineBox[CompressedData[" 1:eJwl1gk01WkfB/D/iFRK181Nasq1ztgZSwj9DVmiEMMoyZLoLUsRI+JG3oiu a2liKDeVCJHGmkKL5h1ElqG85fJa00Ia7rFM833mvefgfM7zPL/n9/v+//cc 8r4h+/xFKIri4of8/f8vNZr657OJplhl1TxreFruZqs7HJ75KTUL5jhPeWbC 3bt2DY4Rt+xeXQ7nZqTqm6jTFKN8aKoI9juxUz0Fblr2p87C7zOTEv6AK6R8 FY1hTuLZPbIaNEULa+d7ZGjqyLtFpjMc6jtV6QHXTCcuRMOM5uWu9o009X1w zVA2TFlve2QEH19yDroF89doBhWwaKpzYa9kEdz5XqSbCTemZi3mwk6X6jPS pWlqaKaEnUjWqx3ilOEDMyEiR0j92nPmPRtoinvCKNcC5incFV6DE//i6Gwh 9T0St6bDm/ceVppD/7yacIsC+Ie6s097YafDYax/zs/Pyz2AOcoZUYqonzHH 6LoD67w4XpwCl+5bOV4K09Kf41aiv4O8j3W1JA+DjuepsPBC5HAXcXv0k42Y b3H4mMYiyTMt7kAe/JVh/i86JK93sW0s5MMSmws/QfrvH1qKhmNd+7zvw4JE wf9+g7UZhfESmthvtl8wDzv4BRR6wU68igUx5P/mV5egu3AFd1nyE9Y/FP7n DKWF/FkOrxvgi/bCSlu4yWfqr0D4t3s5dudhp4+nmhfQz/gALV4Pc9b9MhkJ n/GX2D8IT+dK+Ixjnh0Gn4PnYJ12rR4nOLg52ewLOa89a9WAPIJUfJMWYEHV x2xdWD/EpmsSpgs2qNYiz2xhtW0HXGGv6uEGL8aO3Sgj99FCUylY/Y24WBLp 9wem0zsmTYUd/9ToA/Pr91hNwqpyRQbmMO9lyaQ49vuIeuSzyTwRK3StYWER d0iCrDvY2vFh48Nr/ETgTpXOXgb6sZq8+lYMZrtlmJD353rm20QZ0k+/8oIs 5nm+dv/p7eS8rDX7Opy8zs7Cn8zzdLZSCXlEK0Wl5ZN5BiYUL8MuVqcCRsj9 65kNs3Cc12sDXW2cPy69qE/y3bJqLh4WPEgbdYN922c8/4Ar5h+bucvQnFed a0SldZCfadh1A6wbSLa6mcB0mUkO6nEUYxNueuqQ7wErJAue3ihXFEX239q5 YSvuy1436sODGaNr2zLR7wfNBG0+zI4sefNFmubY1ch1FsG8/9Z8cxQWF84E 3ibntY6V9G2gOWmjWgk3Ycr9sqIL/KAkQDSXmP0sfZhJcxhqz+RTiZ3zBlJg 8W9H9p4mNvwc4YLnoVH1tWoA6ffoaTVTrOcY8L1d4VAr7TFrrMf6BvMtSX/T zOqTcKQxP8IQ9k6v7GjA/v679uZaZP/XfXVs3L+823StBrFQPjUb5h/NyNeB +XHrLbfieb3WUnI3JfM5VinewjxPxLdrOJJ6gZWqWiyaM+76ujIQnhYYRN1G HhOBs3JJsMCl5bk08rNRDnAtJfVHMseOID9XBbX33XDTtZ97c+Ejj6fclsn+ hXOOFfCrvPgRFV3Me+xhbwF8Wr1lbC/sncRtC0O9G3TikzDizpxTyljXH7CU yiL7Cx933Mf9hhdjrt0hvuTmZYr+Jlfvyn0E0+uyX5Whf0riaHwH3Nmu2COD +aRjHXf2kv2i3rviMX+bvi27Bw7VFVX4E3mlL2r3tpHz/dRYJPJ0SCn2byLW ZKhLwR6tEQoVpN6Kl7tbpGjOS5HHGVdIPbVXzFwpmpLfFuh1geyPc+emw0oT foY/wQJ9u8li7N98r7UhEObbvA0ahp1WZgUdJOtLq65sx/1G7Ihkd1Jf2Hjo BszbIif6I6kf2OuogO9b3fTNiEOk39r7zNvov+rjKplgYheVR3qYN3pRvSqB 5HXSz7MGXq6If5APT7uaGWoir97VFhbNZL9QMpAL2/zr6opxWOfQknYvPPA0 OGX9d3ify/stl5GnV6GMkTEsOK8hKYrnUTlS/aMvsWC+awLryTG6VsnElkr1 pTj/QtAdWkpczmzch/V2Z70Lv8N8H+1/DyL/y/mbzg3D09Hjmz3QnyUjoHgW ZhSU5rRgHpmT6oXLcKj189+1Ma9nlFUqpYf5/3x2Lw959Jz37Voi5+3VlVl4 Hmu5QXvIeR39GHs+8qw5WK40CnvfULezgtfIHGvuJvu/PzAohufhYNxa3wRX vLBQm2DQnIcNlo1lMMdwJvwdfJhfHJMH01c/qTBxvpPrksQl9WUftrnBumU/ 2yaS+uGXTKrhQwcGBWfJfFu6n6mhn4G7HHmyzjPzzS9Dv6FT7Jg0mJ0wwd6O +b5LCFjmk/XNpnsaYXqHjUMdTI3IGZkjj4XLH+70kXW1zz+VIq9zorKsRdJv 16asFcjzjJXWNwrIgxOv7G6OvG+5eHjYk3w8+xQ84Dm981+dgr1Fs7eR/HPy pUOu6JH3sWmfKtwdhTeWnJdSKBKgvuDiDusRuGlgoC0a/kI+MIP8PyNN/w2m PD7g "]], InsetBox[ TagBox[ StyleBox[ TagBox["g", DisplayForm], FontFamily->"Helvetica", FontSize->23.458909090909092`], StyleForm[#, FontFamily -> "Helvetica", FontSize -> 23.458909090909092`]& ], {16.181801948466052, 3.8774136392623753}, ImageScaled[{Rational[1, 2], 1}]], LineBox[{{6.500000000001819, 10.}, {13., 13.999999999996362`}}], PolygonBox[{{10.260994990022727`, 12.3144584553986}, { 9.448643980243007, 11.344878217919582`}, {9.029366039711539, 12.026204871283216`}}], InsetBox[ TagBox[ StyleBox[ TagBox[ SubscriptBox["d", "l"], DisplayForm], FontFamily->"Helvetica", FontSize->23.458909090909092`], StyleForm[#, FontFamily -> "Helvetica", FontSize -> 23.458909090909092`]& ], {9.332600380984282, 13.056274380900543}, ImageScaled[{1, 0}]], LineBox[{{6.499999999989086, 10.000000000003638`}, { 12.999999999987267`, 6.000000000007276}}], PolygonBox[{{9.239005009977273, 8.3144584553986}, { 10.051356019756993`, 7.3448782179195815`}, {10.470633960288461`, 8.026204871283216}}], InsetBox[ TagBox[ StyleBox[ TagBox[ SubscriptBox["d", "l"], DisplayForm], FontFamily->"Helvetica", FontSize->23.458909090909092`], StyleForm[#, FontFamily -> "Helvetica", FontSize -> 23.458909090909092`]& ], {9.332600380984282, 6.943725619099458}, ImageScaled[{1, 1}]], LineBox[{{13., 14.000000000000908`}, {13., 6.000000000000009}}], PolygonBox[{{13., 9.4}, {12.6, 10.6}, {13.4, 10.6}}], InsetBox[ TagBox[ StyleBox[ TagBox[ SubscriptBox["d", "l"], DisplayForm], FontFamily->"Helvetica", FontSize->23.458909090909092`], StyleForm[#, FontFamily -> "Helvetica", FontSize -> 23.458909090909092`]& ], {14.1493, 10.}, ImageScaled[{0, Rational[1, 2]}]], {PointSize[0.04], PointBox[{6.5, 10.}], PointBox[{13., 14.}], PointBox[{13., 6.}]}}, "\"ad\\\\becf\\\\dedfef.m\"", TooltipStyle->"TextStyling"], Annotation[#, "ad\\becf\\dedfef.m", "Tooltip"]& ], AspectRatio->1, PlotRange->{{-1, 21}, {-1, 21}}], {66, 22}, {0, 0}, {22, 22}], InsetBox[ GraphicsBox[ TagBox[ TooltipBox[ {Thickness[0.005], {Dashing[{0.030000000000000002`, 0.030000000000000002`}], LineBox[{{2.9249935806774374`*^-12, 10.}, {3.5000000000050413`, 10.}}]}, InsetBox[ TagBox[ StyleBox[ TagBox["H", DisplayForm], FontFamily->"Helvetica", FontSize->23.458909090909092`], StyleForm[#, FontFamily -> "Helvetica", FontSize -> 23.458909090909092`]& ], {1.75, 9.3048}, ImageScaled[{Rational[1, 2], 1}]], LineBox[CompressedData[" 1:eJwl1gk01N0bB/BJi6mEf4SERoiyhNCUbSrLZInE25ShepksTTUVpeVksiVK UtmV0kJvMZZqIlGprJFUQ7KULFmOF0nW//f+/85hzufc+7v3eZ55/O5V/fuQ C0eMQqE8wi/5pFDJn1UMyv9+1BkU5rfEefLw2LrqVHu4r7ZbwhRO9JBPjYNL Xaqs98PCjgiDejh1YZLjXXhwlXGfuAbm9zqY/oSDNN43GMDqBfJCo9UMSrnS t/CtcNthC6VQuC5xtrkHLHJpvVQPU3KtOoh586l6NG0GZU+Licw2WP8EV8sP Fmy6IU6HE0Vzft6Hg3LV42Xh29rdJt9h6ddPZHoQD8+pyVZaB3koVtOFsBZl Q5s+HKv4ZiYMppcxPKzgug+mfBcSv0xjsR2scOhduRo8ybt/i4w7zxx5OqGG fVTcbdbCjK8Trc3wyOS+gwrk+Y8JrArYLNDGbRT7lwdX5b+EJdKGYmphraMa 38k4zWRpz124m5ai2woLWJHMYNg5S1lHDPsVTJ8Kd4f5NbHvDODbyeFMCzL+ qdOXCwfcfd6zCk4fKnmbAzfM/7Kd1Ic6GmP/h+R7hd+3gqw/PEK1QT0YreKh hqReDWV9cfDgwCkbJzixeqi9GW6wdX0VBLeVpvymrUQ9euf2PCTPs5zC2bBW 3Er5flLf1832F+Hu0WADI+Qrslh0OReu1l5WyIcji38ZlcOn14sN1sLdMaKS OrhAyuxfFV3Ev7HXpwqmSO5u8SeOeyr5FFYYEpsWwNR/rE1SyPPF7JYBWJ/K HTgKO8zed3SFHtYb4xVZw+z2Zfp2cPn8oWMycEDS9aUcMt5aqNOGfPbstPlw BKYK1vzKhoMSFDKOwpnqyrUhMH+Xz0Ff4vqyk57wHIuybBeYOdi/wwoOO1W7 2whmZKcyTWCm+qtOKbhOpTHJmPRzS9dIF+JL/5gxvIn026rd+0rgup6vzmQ9 Jb9mlSSY8p/ImQjS3xkzP46TfCrdsorI9xE+39oTThxb7T0Ol3+65LOVzH8t rGAgH9rbAoodLF0rt+QCbNSkbeIC+7b2WjXCmZ+l4nzgoF98hoYmPEyfPE/G A35NcWH9t5wiIay1tPjeQ7hgUuvMEMycm1TSAZdF6u43Rj5CRba5tBbiD6fS g+HYgul7enDAmzPWNTBtokrTUovE11aitAbrW5THboSNsvtf+MOMz7XeJjDN 7mJQAazg7lqjQtZTvW/9Gx4LnntxEvvJFZnzFPQRT7vcz/dw8spG4Ro4cdGa uJswq1vuIwOmRew6cRAeeXzJz57Mf5H8yBSOnMfd7wQL5n5gScBbl/bQHIn7 uu2+ox4s81Flazgzv1fjFZw8R9acDlO9J5dkwy5uNVc1Yd6BkOd34Ciqg78s Wb9rVOMf+DE3W5UCKxy2zHoO87nFO0WIn3rS6HcrfDU3eDgfFkpFyUpifyOa /ItrcKR0r48tiVf/2Eo+LErNrTkPm+XFKAfC/Hdb8urhB5v7lY/BzJg/BstR HwePtAVhcGxZuBkXFtUYa94g9fScKnwMM82vyb6F6/58fjQBn7Y9/nGc7Ndy +QQd71Fmu+sBJcRLZ88S+sP1zzSiLeHBmYrbsXCe05UoDhk3jVmYBeu1HJO8 SOrtUuOZDyeXDd0tgEXtj57nwFajut+b4MisxN/X4clly7ymYed6yaAQ2K7n ULeyAf6/PBwt2XCY5wSHDpeq8cv04JNtaRKOcHoZWzSJeDfs2uzmDgtcOSEV JN8Yb3EvuC3t3JcEWDKuxNQb1t/S2eUP60mtdN8NMzgZh63hFhXeUjdYaHC8 cxWcvbCeawPzDhetV4SVymbOGsEKp9jV8rDdCsFDGkzli9zV4I5zhmwJ2DdE 5Y8ZTFFsnxlDPpSjxeLe8NVp25kuuC3kgDWJJz7vawbJX/QxvrEBfndfdUE9 zHSU4yoiv2e2P2RqSX+1aG7iwNRwXw8yHiS7eE8ePDpSZ9wM89OHH06Tc9GC ldJH6r28X9kW51jy/r2msxEPk1H3PhJ2VQk4thx2Ng+1eAF3XO7zYcCUSi/7 Afhk4Kx/SX0yv2hwJfHeXRyQ8Caa5PdyIJ+858/ErzubT+obWtqmDvtv88pu grU4mZ7LyLlnyfs2A0tvOb9pLjlHpKQqVQ3xaffSrAPr1/vd2WAJ00P+Cisk +8vlMnbAQacSiqLgectDtf1g5khG7Q64adfLawGwvq1Dgzp85omD/wlYYKzY MoJ8y9aY/jgOp6c4N1fCzfKTsTxY+v2TANJ/OuH3LL3J82q/vsXBvovaKK5w 5NRMcyTcHf9MdiMcu5Z65gJMP8Zu1oF9fd7TST+mfv1ergAr3NSuL4bVnfO2 zINL19Z4kXuFOie7cJT0V72/zwrEx9xwdnsv6Ved8AovOCokVuEHzPp7zuwH 8EAO710HmV/OoY+RfN38B3/C9MwJtjXqpThw7v5v0n/OF1ix8GRW4OcF2G8s hK/7CRaLdxRTh7slKpVlcc4lLt7A3UTqq1lUbQvvEctawiH1K9FhH4LZUtcr o0h970SHnodtqqMN8gzJey/nxjX4wcbJL40wL6Gw8Ar8l7opi7IW9XuZGB0G H4zX3KxOLDQ44Ac/D9220wpOj3zoSO4lkYGXInbDjL234uVhxUcOwwGw1hIn qU7ESy/vlQwjPuFSmAcf2VccfwEWNkUI+HCEiUlSDCyaqhp3gWN7TAOjyLhM AldHm7wf4z7y4XJfubNS5F6QdjPzCMxPiTebRv2u/xyT3UuccEtmHM5mq+x3 hBO/SjfOxvzMgR1L1sNt67/kk/4sHTaJ0IBpCyyUN8Jmxc9WysKUdSZdR8g9 TzBiNQ8O6l5kn0Pm85pmT5F+eGI1Mwzf/uri+AcWHny93YLUR/XHmwlSz5xF 26NJ/oYlFXPI/s+yOz/D9NO+nmR9kS1nioZzcOssltlqWGHbkMALblA7WmMN Oy/65pcGj4vbGe8j83XOzVTBg7pCd1KPoGs36vvh5AnOuAAuPb6zfRbOSUNW 2AMR+X64Lz6Iw/PIvdmI8f97tB7jvwe4FTk= "]], InsetBox[ TagBox[ StyleBox[ TagBox["g", DisplayForm], FontFamily->"Helvetica", FontSize->23.458909090909092`], StyleForm[#, FontFamily -> "Helvetica", FontSize -> 23.458909090909092`]& ], {15.995014695850895, 13.184877956223659}, ImageScaled[{1, 0}]], LineBox[CompressedData[" 1:eJwt1gk41OseB/B/pUtJ5kSSEkqS0GSLOupfOcZSh3QqZZQaokyZUiQqhMxw S2S59iwdyZGlZWwRKqQaSyJOF2WJ0oSihPN973PneTyej9/7/jb/mWfUDnvY ucykKOoefshv6uc0Xpo09b+XOk0l2ozd/H01TUlxHzVJwiIpA+lkuMJ7X9cM WDPjqsUgzItOafy0gqYUxe7R+lo4p315+hnsJFzschq2kOk+mgS7Tdpcvg0r 7hzO48Dhkmu3vYY7WS6TqnBzQgD3GxxRmtv7ejlNqZcZnpJaQ1P2d2R2hcEV ZvtdZGDhice7NsFnl1mPz4Z5D8ymR9RQJ0XBawT3ef0y1nfgiOCQApJ/3Mio 7xQcqhg5cpfUn7tJeQucs9z21b/hfpP2wiVwqnnVahc47m9G2yy4Wmt+iyns H5sm90OVpoyrS3OV4LMJMb9OwVka7X9MkX24KQTI4ny/duhCsg+hXCxXGx6N jHreDbdOPvthB6vrBzf2kvibkDx/0p+HZvcYrOljV1wA10QfWayA/MyFNrK9 JJ981zBN9ncoLWYR5g0aZ+/whlND/9phRvbTlOfzAJYSrjt+FHZ+wLeZhqnK uLAgOM9P0mI79uMWW1wcBZ927U9MIPvsv5MSDdt3VR0bIPvLDLvEhy0m/mo2 1KYpulyb7QHXvAlb5QuHriqpZ8E/m5wnHsD98+qU5WFGjvzOAXg80F+nBf3W rxBnM3RQ1zbcPoLMv3uNihbMzJpg/warpi7jGMH9NS7G49if+MfbF4aw/WGJ WTmwW9ik/WoS1w6u5cDVhumCBXBr4zHX5XDewQTuCOr5u8Y/bVZBf2bGJ17A zK17M3zhCDkW6yYsepF28lfYoDGk5TzMcGX8VITpns1Te2FqYrroFzjna57/ etjWfODxShIXSb5dRvKleXywg/1T+YYM4vU3hNGwxLUja2TIeXeD0g+wmZVv swJszNrerI7+fj76nqUDW4ymv9wLmzUmXdgJ83xjSwQwV/ueIADWDNwTVAwz urrcS0ncqvLX93BHgMpGCvMqWvK3zibPi6NJuhXZn0vWAfJ8SjRFTMaR/V6q 6FSHPy5qONWvQ/7fQ4Wq8LyFk8pGungu21dy58N0hwbzIjxey7EeQn6nqkVy j2Bb00ubHsEiTVP+d9iCFjWEwp2BNrUaa7FHlU/KLFhK4cB1FszY0ucwiXlH v+r+5gCLNdUrnOFwnmHrIZguswmqW4bnK7t0kMT947VbDWBRvJnQCs67rVN4 Sxn5Z/JmMOGK2e0CXVii3pSaT/L1nJOtWYo9iuNZfehHJGE67AP7laRkPNQl n0f5D8zham/qZwzM/CaMWwtn9DtoeMKd3V6eBjBdqfJ8N8zjDNXvIvGuQsst xHXm7wSwuN0/dD2ZP7L+5SuY987oiwlcsVH2wVr0c93aZ7clid+qk4iC5TdX 97qQevyivO+w1LY5BldJPhbFd8R8XB3VtdWk35L4C0KYUVNrMgvzpGYoiyWw Hz+5DBMyP7Vr3WdTuNNLqSCG7LfK/fxBWLhtwbseWDUzvuwIvD2Pe0aJifxe SxeR54+57c1pGu6cjrJUg4uX3Y7kkLhwJu8V6pmzzaIDYapsxQgPZh+6dyYR Th254z5G+l/sws1jks/TH2eOw/t35v8oY5J5pH1aMb/2gTlfqkl86QhnE/z+ pvHJxyRfUpRz5hK87/uqP5aTfCacBDn4vcdplXuwqlrLyytKeH+tov91k/Sj Ir96KVxpqdYUBTNG3YbKF6O/qJ1vL8J09wW787DXWGG0O+z04pP1Hvhutp67 PSx6I3HeGj4xMVjJgsVPx9ew4dzKOd0byH3X19YhcEGvwn/1yP22hugnJN/3 qOtMYumb+YqoP9+SF2MA2wYaunvDOYs+aG0m8867N9wBH27TYNmSfEsOqG/D PB/NKq+6kvOVOs3psO5nLccgMj8lrfQdHt5fVJVJ5r2fFW+K/QxozkmpI/Pm ptRy4dTrsqlfSP9+EWqXyPOZSDsuXof832JtLsB6ZRMcGlY9OmnjCKdtPGrl AvMMhedUyf2AwYoQOHWu3sVa1HNbuiMtHbbVO2fjAGuFvJtRAlf0D0y0oX89 +XGjerhzYEaAFTy0YOB9C5z38DW/APvgJWZOvyH1knW0FOF4eeP6VpghOBkV oIg9mfr+LSL9fdldM7oIf9elZKphp+u37bzhE8+u8QrJ+eWMaRlYz120PRWO aCq5UapAU5GM8NnhMPM2qy8Y7jyePO8siZsW6LvDVlsVRWQ+J7bJNS483pmU tYfM19l+JxR+aFdfY03my+R/Jfks7nrqmhNbbkiejXr7m9gxxJTTwQFHeGsh 03MHLCo/s68C/kN2uG8/ySf3/pMG5mFPbX9ygsS/dHmFwVY3GiJCyXyM1o4+ eDxkyv9PMs+eMK4R9jF1VhRRR+6reyqfgrXHD10Wk/4DW17GwBbvpiQV9bBv 5fyLN+Blx4bTNsMM38GjEXCkBN3nAqeeV1rOgcX3uaf5sFhQFKsEH5l7XvoW LMpPnluE+oodu5OrSL6A9Z+3wFekKtmtsOp/eqqKMA+b4fewF+bd4rethM3u l/OHyP2+D7+EYz+KvgtaPsPUR+XY4YU09SJHVXoQZvZcvHoQLtYra++E/XOe N7TK01Q2tdW0kZxPUEviwLlNJQ4VcITdRnsJeNjZMyyH9LPFyOGhHE0F5ocY x8F0r9WTKNjpMftVEJlvOsY1GA4KqK/xJL69Nj8SruE1so+QesVj5UWw4Gl2 riPJP9Vzagze4CV3Yz+Z723iNRbqdScdbCDx1D+9qUxYPN191ZXEDcOn56B/ i9YFHd4kbhB3kgfrDoQ5XyFxgceqRlgYNSnIJvs9bKm9Gvtwq6p1fwY7BW+S 5cG/T0z0k/3klR7XSINj9jCECvqY/zC/poTs72nnyU1wxDrJc8Xwx5Wj6S76 5POsWjoJnifY1y2AxVZptziwwTn9thziXcdaZeG0PUqOdbBTrQwnA/1IxYX5 dMPMEl3jlXDHlUK/UXLeI84kFvNNke/P+v///ixP/wO9CB4v "]], InsetBox[ TagBox[ StyleBox[ TagBox["g", DisplayForm], FontFamily->"Helvetica", FontSize->23.458909090909092`], StyleForm[#, FontFamily -> "Helvetica", FontSize -> 23.458909090909092`]& ], {16.504985304149102, 8.184877956223659}, ImageScaled[{0, 0}]], LineBox[CompressedData[" 1:eJxFlAtMU1cYx68ortRMmdNFlIrcezm3UAHRKTVm8kEU6HQEsYjiI1AFZVBg PKImtrZINiJL6Hj5mAiKM8ymQDViJeGh8dGhIkqpuDDXCZiUsYAJlUc0eLol 305ycvPLybnne/z/n78qJyHNg2GYGLrdX9OHWbr8gfl38VBw1vfyHxtYYOJV n6WG8pB3OmXGr5Cy7qLEL5GHLrmk+52FsqgjqDaHh0cT+1YkMhwwuzt+7dTw YPHzzvlEQdkQ1+bU8lARfuDVIwNlx4X7n+bz8HWkpebbPsrjvztNyTzUDJYG di/hgZEazvVu4OHpytBpn28odxojPb0or6u+136Csu5g8/peDmRS18nSy5R7 /hpoPMNBqPigsrWNcsrM9NRuDs63ZIqmn1A+UjjY7sOBNVChyeqlXBK72DzA wnbzqhVN3ZQNC5VHrrBQo3z6VVcn5amqYkU+C7eDQ0aCjO7znZrMbSyUJc5E l5dRZjJ26UJYmJhTUuSRS9lyf/yuhIXv9oa6GuIoOzaXO31YsGkTsh8EU47d FrCSYyFN3WqqXkR5/GbuezkLh0XvP5e/o/mLjMnVySw450WVVw5Snroj0n7P wqXlSbbtLykfe5Xd18qCvfHqD1f7KcfW16tcLCwalem0ryl7g6RhHQer5DsS IiYpL7N1z+ZxUFyRbB34wh1f1OytZg4qi4Q0G7jz19euGeHgWtzysbUFlOWj jklfHuzDfg8vNrnrvcU2FM3DyBbtz+lvKeeqxkLSeVgQc9ReER5A84s9rj/O /6cTnZs9vMQ6HlyWksAs6//nO836Q+cWEryf7u2Qp8YT/H+Sedj7SSnB99Wa /vOyDoLxabJ+CeecBOOXtDeaOkUC5hcitp3USwTMX7Zjz7E9goD1SRlukN0g AtZP+bZNnekrYH3t/8wdfeglYP37S7YmZIwT7E+w3vTTxucE+2e40iNOMhPs r2LiqOZDGcH+N9Z53lbnEtRHsfXZ0j4lQf0cMq65uz6CoL5uxv05FB9GUH+F j1uKKlYT1Gd9ROXk/LUE9fvcdcG4NYqgvu0vxLqC/QT1H/Y4Y1PkKYL+yH7R M//NdYL+qVtcYA/7m6C/WtpjVFVBAvpPbb3k/2WOgP5UOMYMUy0C+jdvTv3Q tVkB/Z3f9jrMK0aK/i8rrPV0nJbifPjx8OB+9jcpzg+le8gwgThfPgLdtL2a "]], InsetBox[ TagBox[ StyleBox[ TagBox["g", DisplayForm], FontFamily->"Helvetica", FontSize->23.458909090909092`], StyleForm[#, FontFamily -> "Helvetica", FontSize -> 23.458909090909092`]& ], {10.75, 8.354800000000001}, ImageScaled[{Rational[1, 2], 1}]], CircleBox[{6.25, 10.618750000000002}, 2.8187500000000005, { 3.3629070959375835`, 6.0618708648317945`}], PolygonBox[{{5.65, 7.8}, {6.85, 7.3999999999999995`}, {6.85, 8.2}}], InsetBox[ TagBox[ StyleBox[ TagBox[ SubscriptBox["u", "l"], DisplayForm], FontFamily->"Helvetica", FontSize->23.458909090909092`], StyleForm[#, FontFamily -> "Helvetica", FontSize -> 23.458909090909092`]& ], {6.25, 6.8548}, ImageScaled[{Rational[1, 2], 1}]], CircleBox[{6.25, 9.381249999999998}, 2.8187500000000005, { 0.2213144423477913, 2.9202782112420023`}], PolygonBox[{{6.85, 12.2}, {5.65, 12.6}, {5.65, 11.799999999999999`}}], InsetBox[ TagBox[ StyleBox[ TagBox[ SubscriptBox["u", "l"], DisplayForm], FontFamily->"Helvetica", FontSize->23.458909090909092`], StyleForm[#, FontFamily -> "Helvetica", FontSize -> 23.458909090909092`]& ], {6.25, 13.145199999999999}, ImageScaled[{Rational[1, 2], 0}]], {PointSize[0.04], PointBox[{3.5, 10.}], PointBox[{12.5, 10.}], PointBox[{9., 10.}]}}, "\"ad\\\\bece\\\\efdfdf.m\"", TooltipStyle->"TextStyling"], Annotation[#, "ad\\bece\\efdfdf.m", "Tooltip"]& ], AspectRatio->1, PlotRange->{{-1, 21}, {-1, 21}}], {88, 22}, {0, 0}, {22, 22}], InsetBox[ GraphicsBox[ TagBox[ TooltipBox[ {Thickness[0.005], {Dashing[{0.030000000000000002`, 0.030000000000000002`}], LineBox[{{2.9249935806774374`*^-12, 10.}, {3.5000000000050413`, 10.}}]}, InsetBox[ TagBox[ StyleBox[ TagBox["H", DisplayForm], FontFamily->"Helvetica", FontSize->23.458909090909092`], StyleForm[#, FontFamily -> "Helvetica", FontSize -> 23.458909090909092`]& ], {1.75, 9.3048}, ImageScaled[{Rational[1, 2], 1}]], LineBox[CompressedData[" 1:eJwl1gk01N0bB/BJi6mEf4SERoiyhNCUbSrLZInE25ShepksTTUVpeVksiVK UtmV0kJvMZZqIlGprJFUQ7KULFmOF0nW//f+/85hzufc+7v3eZ55/O5V/fuQ C0eMQqE8wi/5pFDJn1UMyv9+1BkU5rfEefLw2LrqVHu4r7ZbwhRO9JBPjYNL Xaqs98PCjgiDejh1YZLjXXhwlXGfuAbm9zqY/oSDNN43GMDqBfJCo9UMSrnS t/CtcNthC6VQuC5xtrkHLHJpvVQPU3KtOoh586l6NG0GZU+Licw2WP8EV8sP Fmy6IU6HE0Vzft6Hg3LV42Xh29rdJt9h6ddPZHoQD8+pyVZaB3koVtOFsBZl Q5s+HKv4ZiYMppcxPKzgug+mfBcSv0xjsR2scOhduRo8ybt/i4w7zxx5OqGG fVTcbdbCjK8Trc3wyOS+gwrk+Y8JrArYLNDGbRT7lwdX5b+EJdKGYmphraMa 38k4zWRpz124m5ai2woLWJHMYNg5S1lHDPsVTJ8Kd4f5NbHvDODbyeFMCzL+ qdOXCwfcfd6zCk4fKnmbAzfM/7Kd1Ic6GmP/h+R7hd+3gqw/PEK1QT0YreKh hqReDWV9cfDgwCkbJzixeqi9GW6wdX0VBLeVpvymrUQ9euf2PCTPs5zC2bBW 3Er5flLf1832F+Hu0WADI+Qrslh0OReu1l5WyIcji38ZlcOn14sN1sLdMaKS OrhAyuxfFV3Ev7HXpwqmSO5u8SeOeyr5FFYYEpsWwNR/rE1SyPPF7JYBWJ/K HTgKO8zed3SFHtYb4xVZw+z2Zfp2cPn8oWMycEDS9aUcMt5aqNOGfPbstPlw BKYK1vzKhoMSFDKOwpnqyrUhMH+Xz0Ff4vqyk57wHIuybBeYOdi/wwoOO1W7 2whmZKcyTWCm+qtOKbhOpTHJmPRzS9dIF+JL/5gxvIn026rd+0rgup6vzmQ9 Jb9mlSSY8p/ImQjS3xkzP46TfCrdsorI9xE+39oTThxb7T0Ol3+65LOVzH8t rGAgH9rbAoodLF0rt+QCbNSkbeIC+7b2WjXCmZ+l4nzgoF98hoYmPEyfPE/G A35NcWH9t5wiIay1tPjeQ7hgUuvMEMycm1TSAZdF6u43Rj5CRba5tBbiD6fS g+HYgul7enDAmzPWNTBtokrTUovE11aitAbrW5THboSNsvtf+MOMz7XeJjDN 7mJQAazg7lqjQtZTvW/9Gx4LnntxEvvJFZnzFPQRT7vcz/dw8spG4Ro4cdGa uJswq1vuIwOmRew6cRAeeXzJz57Mf5H8yBSOnMfd7wQL5n5gScBbl/bQHIn7 uu2+ox4s81Flazgzv1fjFZw8R9acDlO9J5dkwy5uNVc1Yd6BkOd34Ciqg78s Wb9rVOMf+DE3W5UCKxy2zHoO87nFO0WIn3rS6HcrfDU3eDgfFkpFyUpifyOa /ItrcKR0r48tiVf/2Eo+LErNrTkPm+XFKAfC/Hdb8urhB5v7lY/BzJg/BstR HwePtAVhcGxZuBkXFtUYa94g9fScKnwMM82vyb6F6/58fjQBn7Y9/nGc7Ndy +QQd71Fmu+sBJcRLZ88S+sP1zzSiLeHBmYrbsXCe05UoDhk3jVmYBeu1HJO8 SOrtUuOZDyeXDd0tgEXtj57nwFajut+b4MisxN/X4clly7ymYed6yaAQ2K7n ULeyAf6/PBwt2XCY5wSHDpeq8cv04JNtaRKOcHoZWzSJeDfs2uzmDgtcOSEV JN8Yb3EvuC3t3JcEWDKuxNQb1t/S2eUP60mtdN8NMzgZh63hFhXeUjdYaHC8 cxWcvbCeawPzDhetV4SVymbOGsEKp9jV8rDdCsFDGkzli9zV4I5zhmwJ2DdE 5Y8ZTFFsnxlDPpSjxeLe8NVp25kuuC3kgDWJJz7vawbJX/QxvrEBfndfdUE9 zHSU4yoiv2e2P2RqSX+1aG7iwNRwXw8yHiS7eE8ePDpSZ9wM89OHH06Tc9GC ldJH6r28X9kW51jy/r2msxEPk1H3PhJ2VQk4thx2Ng+1eAF3XO7zYcCUSi/7 Afhk4Kx/SX0yv2hwJfHeXRyQ8Caa5PdyIJ+858/ErzubT+obWtqmDvtv88pu grU4mZ7LyLlnyfs2A0tvOb9pLjlHpKQqVQ3xaffSrAPr1/vd2WAJ00P+Cisk +8vlMnbAQacSiqLgectDtf1g5khG7Q64adfLawGwvq1Dgzp85omD/wlYYKzY MoJ8y9aY/jgOp6c4N1fCzfKTsTxY+v2TANJ/OuH3LL3J82q/vsXBvovaKK5w 5NRMcyTcHf9MdiMcu5Z65gJMP8Zu1oF9fd7TST+mfv1ergAr3NSuL4bVnfO2 zINL19Z4kXuFOie7cJT0V72/zwrEx9xwdnsv6Ved8AovOCokVuEHzPp7zuwH 8EAO710HmV/OoY+RfN38B3/C9MwJtjXqpThw7v5v0n/OF1ix8GRW4OcF2G8s hK/7CRaLdxRTh7slKpVlcc4lLt7A3UTqq1lUbQvvEctawiH1K9FhH4LZUtcr o0h970SHnodtqqMN8gzJey/nxjX4wcbJL40wL6Gw8Ar8l7opi7IW9XuZGB0G H4zX3KxOLDQ44Ac/D9220wpOj3zoSO4lkYGXInbDjL234uVhxUcOwwGw1hIn qU7ESy/vlQwjPuFSmAcf2VccfwEWNkUI+HCEiUlSDCyaqhp3gWN7TAOjyLhM AldHm7wf4z7y4XJfubNS5F6QdjPzCMxPiTebRv2u/xyT3UuccEtmHM5mq+x3 hBO/SjfOxvzMgR1L1sNt67/kk/4sHTaJ0IBpCyyUN8Jmxc9WysKUdSZdR8g9 TzBiNQ8O6l5kn0Pm85pmT5F+eGI1Mwzf/uri+AcWHny93YLUR/XHmwlSz5xF 26NJ/oYlFXPI/s+yOz/D9NO+nmR9kS1nioZzcOssltlqWGHbkMALblA7WmMN Oy/65pcGj4vbGe8j83XOzVTBg7pCd1KPoGs36vvh5AnOuAAuPb6zfRbOSUNW 2AMR+X64Lz6Iw/PIvdmI8f97tB7jvwe4FTk= "]], InsetBox[ TagBox[ StyleBox[ TagBox["g", DisplayForm], FontFamily->"Helvetica", FontSize->23.458909090909092`], StyleForm[#, FontFamily -> "Helvetica", FontSize -> 23.458909090909092`]& ], {15.995014695850895, 13.184877956223659}, ImageScaled[{1, 0}]], LineBox[CompressedData[" 1:eJwt1gk41OseB/B/pUtJ5kSSEkqS0GSLOupfOcZSh3QqZZQaokyZUiQqhMxw S2S59iwdyZGlZWwRKqQaSyJOF2WJ0oSihPN973PneTyej9/7/jb/mWfUDnvY ucykKOoefshv6uc0Xpo09b+XOk0l2ozd/H01TUlxHzVJwiIpA+lkuMJ7X9cM WDPjqsUgzItOafy0gqYUxe7R+lo4p315+hnsJFzschq2kOk+mgS7Tdpcvg0r 7hzO48Dhkmu3vYY7WS6TqnBzQgD3GxxRmtv7ejlNqZcZnpJaQ1P2d2R2hcEV ZvtdZGDhice7NsFnl1mPz4Z5D8ymR9RQJ0XBawT3ef0y1nfgiOCQApJ/3Mio 7xQcqhg5cpfUn7tJeQucs9z21b/hfpP2wiVwqnnVahc47m9G2yy4Wmt+iyns H5sm90OVpoyrS3OV4LMJMb9OwVka7X9MkX24KQTI4ny/duhCsg+hXCxXGx6N jHreDbdOPvthB6vrBzf2kvibkDx/0p+HZvcYrOljV1wA10QfWayA/MyFNrK9 JJ981zBN9ncoLWYR5g0aZ+/whlND/9phRvbTlOfzAJYSrjt+FHZ+wLeZhqnK uLAgOM9P0mI79uMWW1wcBZ927U9MIPvsv5MSDdt3VR0bIPvLDLvEhy0m/mo2 1KYpulyb7QHXvAlb5QuHriqpZ8E/m5wnHsD98+qU5WFGjvzOAXg80F+nBf3W rxBnM3RQ1zbcPoLMv3uNihbMzJpg/warpi7jGMH9NS7G49if+MfbF4aw/WGJ WTmwW9ik/WoS1w6u5cDVhumCBXBr4zHX5XDewQTuCOr5u8Y/bVZBf2bGJ17A zK17M3zhCDkW6yYsepF28lfYoDGk5TzMcGX8VITpns1Te2FqYrroFzjna57/ etjWfODxShIXSb5dRvKleXywg/1T+YYM4vU3hNGwxLUja2TIeXeD0g+wmZVv swJszNrerI7+fj76nqUDW4ymv9wLmzUmXdgJ83xjSwQwV/ueIADWDNwTVAwz urrcS0ncqvLX93BHgMpGCvMqWvK3zibPi6NJuhXZn0vWAfJ8SjRFTMaR/V6q 6FSHPy5qONWvQ/7fQ4Wq8LyFk8pGungu21dy58N0hwbzIjxey7EeQn6nqkVy j2Bb00ubHsEiTVP+d9iCFjWEwp2BNrUaa7FHlU/KLFhK4cB1FszY0ucwiXlH v+r+5gCLNdUrnOFwnmHrIZguswmqW4bnK7t0kMT947VbDWBRvJnQCs67rVN4 Sxn5Z/JmMOGK2e0CXVii3pSaT/L1nJOtWYo9iuNZfehHJGE67AP7laRkPNQl n0f5D8zham/qZwzM/CaMWwtn9DtoeMKd3V6eBjBdqfJ8N8zjDNXvIvGuQsst xHXm7wSwuN0/dD2ZP7L+5SuY987oiwlcsVH2wVr0c93aZ7clid+qk4iC5TdX 97qQevyivO+w1LY5BldJPhbFd8R8XB3VtdWk35L4C0KYUVNrMgvzpGYoiyWw Hz+5DBMyP7Vr3WdTuNNLqSCG7LfK/fxBWLhtwbseWDUzvuwIvD2Pe0aJifxe SxeR54+57c1pGu6cjrJUg4uX3Y7kkLhwJu8V6pmzzaIDYapsxQgPZh+6dyYR Th254z5G+l/sws1jks/TH2eOw/t35v8oY5J5pH1aMb/2gTlfqkl86QhnE/z+ pvHJxyRfUpRz5hK87/uqP5aTfCacBDn4vcdplXuwqlrLyytKeH+tov91k/Sj Ir96KVxpqdYUBTNG3YbKF6O/qJ1vL8J09wW787DXWGG0O+z04pP1Hvhutp67 PSx6I3HeGj4xMVjJgsVPx9ew4dzKOd0byH3X19YhcEGvwn/1yP22hugnJN/3 qOtMYumb+YqoP9+SF2MA2wYaunvDOYs+aG0m8867N9wBH27TYNmSfEsOqG/D PB/NKq+6kvOVOs3psO5nLccgMj8lrfQdHt5fVJVJ5r2fFW+K/QxozkmpI/Pm ptRy4dTrsqlfSP9+EWqXyPOZSDsuXof832JtLsB6ZRMcGlY9OmnjCKdtPGrl AvMMhedUyf2AwYoQOHWu3sVa1HNbuiMtHbbVO2fjAGuFvJtRAlf0D0y0oX89 +XGjerhzYEaAFTy0YOB9C5z38DW/APvgJWZOvyH1knW0FOF4eeP6VpghOBkV oIg9mfr+LSL9fdldM7oIf9elZKphp+u37bzhE8+u8QrJ+eWMaRlYz120PRWO aCq5UapAU5GM8NnhMPM2qy8Y7jyePO8siZsW6LvDVlsVRWQ+J7bJNS483pmU tYfM19l+JxR+aFdfY03my+R/Jfks7nrqmhNbbkiejXr7m9gxxJTTwQFHeGsh 03MHLCo/s68C/kN2uG8/ySf3/pMG5mFPbX9ygsS/dHmFwVY3GiJCyXyM1o4+ eDxkyv9PMs+eMK4R9jF1VhRRR+6reyqfgrXHD10Wk/4DW17GwBbvpiQV9bBv 5fyLN+Blx4bTNsMM38GjEXCkBN3nAqeeV1rOgcX3uaf5sFhQFKsEH5l7XvoW LMpPnluE+oodu5OrSL6A9Z+3wFekKtmtsOp/eqqKMA+b4fewF+bd4rethM3u l/OHyP2+D7+EYz+KvgtaPsPUR+XY4YU09SJHVXoQZvZcvHoQLtYra++E/XOe N7TK01Q2tdW0kZxPUEviwLlNJQ4VcITdRnsJeNjZMyyH9LPFyOGhHE0F5ocY x8F0r9WTKNjpMftVEJlvOsY1GA4KqK/xJL69Nj8SruE1so+QesVj5UWw4Gl2 riPJP9Vzagze4CV3Yz+Z723iNRbqdScdbCDx1D+9qUxYPN191ZXEDcOn56B/ i9YFHd4kbhB3kgfrDoQ5XyFxgceqRlgYNSnIJvs9bKm9Gvtwq6p1fwY7BW+S 5cG/T0z0k/3klR7XSINj9jCECvqY/zC/poTs72nnyU1wxDrJc8Xwx5Wj6S76 5POsWjoJnifY1y2AxVZptziwwTn9thziXcdaZeG0PUqOdbBTrQwnA/1IxYX5 dMPMEl3jlXDHlUK/UXLeI84kFvNNke/P+v///ixP/wO9CB4v "]], InsetBox[ TagBox[ StyleBox[ TagBox["g", DisplayForm], FontFamily->"Helvetica", FontSize->23.458909090909092`], StyleForm[#, FontFamily -> "Helvetica", FontSize -> 23.458909090909092`]& ], {16.504985304149102, 8.184877956223659}, ImageScaled[{0, 0}]], LineBox[CompressedData[" 1:eJxFlAtMU1cYx68ortRMmdNFlIrcezm3UAHRKTVm8kEU6HQEsYjiI1AFZVBg PKImtrZINiJL6Hj5mAiKM8ymQDViJeGh8dGhIkqpuDDXCZiUsYAJlUc0eLol 305ycvPLybnne/z/n78qJyHNg2GYGLrdX9OHWbr8gfl38VBw1vfyHxtYYOJV n6WG8pB3OmXGr5Cy7qLEL5GHLrmk+52FsqgjqDaHh0cT+1YkMhwwuzt+7dTw YPHzzvlEQdkQ1+bU8lARfuDVIwNlx4X7n+bz8HWkpebbPsrjvztNyTzUDJYG di/hgZEazvVu4OHpytBpn28odxojPb0or6u+136Csu5g8/peDmRS18nSy5R7 /hpoPMNBqPigsrWNcsrM9NRuDs63ZIqmn1A+UjjY7sOBNVChyeqlXBK72DzA wnbzqhVN3ZQNC5VHrrBQo3z6VVcn5amqYkU+C7eDQ0aCjO7znZrMbSyUJc5E l5dRZjJ26UJYmJhTUuSRS9lyf/yuhIXv9oa6GuIoOzaXO31YsGkTsh8EU47d FrCSYyFN3WqqXkR5/GbuezkLh0XvP5e/o/mLjMnVySw450WVVw5Snroj0n7P wqXlSbbtLykfe5Xd18qCvfHqD1f7KcfW16tcLCwalem0ryl7g6RhHQer5DsS IiYpL7N1z+ZxUFyRbB34wh1f1OytZg4qi4Q0G7jz19euGeHgWtzysbUFlOWj jklfHuzDfg8vNrnrvcU2FM3DyBbtz+lvKeeqxkLSeVgQc9ReER5A84s9rj/O /6cTnZs9vMQ6HlyWksAs6//nO836Q+cWEryf7u2Qp8YT/H+Sedj7SSnB99Wa /vOyDoLxabJ+CeecBOOXtDeaOkUC5hcitp3USwTMX7Zjz7E9goD1SRlukN0g AtZP+bZNnekrYH3t/8wdfeglYP37S7YmZIwT7E+w3vTTxucE+2e40iNOMhPs r2LiqOZDGcH+N9Z53lbnEtRHsfXZ0j4lQf0cMq65uz6CoL5uxv05FB9GUH+F j1uKKlYT1Gd9ROXk/LUE9fvcdcG4NYqgvu0vxLqC/QT1H/Y4Y1PkKYL+yH7R M//NdYL+qVtcYA/7m6C/WtpjVFVBAvpPbb3k/2WOgP5UOMYMUy0C+jdvTv3Q tVkB/Z3f9jrMK0aK/i8rrPV0nJbifPjx8OB+9jcpzg+le8gwgThfPgLdtL2a "]], InsetBox[ TagBox[ StyleBox[ TagBox["g", DisplayForm], FontFamily->"Helvetica", FontSize->23.458909090909092`], StyleForm[#, FontFamily -> "Helvetica", FontSize -> 23.458909090909092`]& ], {10.75, 8.354800000000001}, ImageScaled[{Rational[1, 2], 1}]], CircleBox[{6.25, 10.618750000000002}, 2.8187500000000005, { 3.3629070959375835`, 6.0618708648317945`}], PolygonBox[{{5.65, 7.8}, {6.85, 7.3999999999999995`}, {6.85, 8.2}}], InsetBox[ TagBox[ StyleBox[ TagBox[ SubscriptBox["d", "l"], DisplayForm], FontFamily->"Helvetica", FontSize->23.458909090909092`], StyleForm[#, FontFamily -> "Helvetica", FontSize -> 23.458909090909092`]& ], {6.25, 6.8548}, ImageScaled[{Rational[1, 2], 1}]], CircleBox[{6.25, 9.381249999999998}, 2.8187500000000005, { 0.2213144423477913, 2.9202782112420023`}], PolygonBox[{{6.85, 12.2}, {5.65, 12.6}, {5.65, 11.799999999999999`}}], InsetBox[ TagBox[ StyleBox[ TagBox[ SubscriptBox["d", "l"], DisplayForm], FontFamily->"Helvetica", FontSize->23.458909090909092`], StyleForm[#, FontFamily -> "Helvetica", FontSize -> 23.458909090909092`]& ], {6.25, 13.145199999999999}, ImageScaled[{Rational[1, 2], 0}]], {PointSize[0.04], PointBox[{3.5, 10.}], PointBox[{12.5, 10.}], PointBox[{9., 10.}]}}, "\"ad\\\\bece\\\\efdfdf.m\"", TooltipStyle->"TextStyling"], Annotation[#, "ad\\bece\\efdfdf.m", "Tooltip"]& ], AspectRatio->1, PlotRange->{{-1, 21}, {-1, 21}}], {0, 0}, {0, 0}, {22, 22}]}, AspectRatio->NCache[ Rational[2, 5], 0.4], ImageSize->{1024, 512}, PlotRange->{{0, 110}, {0, 44}}], TraditionalForm]], "Print", CellChangeTimes->{3.7570838790111485`*^9}] }, Open ]], Cell["Define the kinematics here", "Item", CellChangeTimes->{{3.757328279135769*^9, 3.7573283064143286`*^9}}], Cell[BoxData[{ RowBox[{"FCClearScalarProducts", "[", "]"}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"SPD", "[", "pG1", "]"}], "=", "0"}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"SPD", "[", "pG2", "]"}], "=", "0"}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"SPD", "[", "pH", "]"}], "=", RowBox[{ RowBox[{"SMP", "[", "\"\\"", "]"}], "^", "2"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"SPD", "[", RowBox[{"pG1", ",", "pG2"}], "]"}], "=", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"SMP", "[", "\"\\"", "]"}], "^", "2"}], ")"}], "/", "2"}]}], ";"}]}], "Input", CellChangeTimes->{{3.7570839301010704`*^9, 3.7570839687392807`*^9}, { 3.757149845120349*^9, 3.757149847872506*^9}, 3.757237325264517*^9}], Cell["\<\ Translate from FeynArts notation to the notation which is used in FeynCalc\ \>", "Item", CellChangeTimes->{{3.7573283172169466`*^9, 3.757328379544512*^9}, { 3.757328417477681*^9, 3.7573284224639664`*^9}}], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"amps", "=", RowBox[{"FCFAConvert", "[", RowBox[{ RowBox[{"CreateFeynAmp", "[", RowBox[{"diags", ",", RowBox[{"PreFactor", "\[Rule]", "1"}]}], "]"}], ",", RowBox[{"IncomingMomenta", "->", RowBox[{"{", "pH", "}"}]}], ",", "\n", RowBox[{"OutgoingMomenta", "->", RowBox[{"{", RowBox[{"pG1", ",", "pG2"}], "}"}]}], ",", RowBox[{"LoopMomenta", "\[Rule]", RowBox[{"{", "k", "}"}]}], ",", RowBox[{"List", "\[Rule]", "True"}], ",", RowBox[{"ChangeDimension", "\[Rule]", "D"}], ",", "\n", RowBox[{"DropSumOver", "\[Rule]", "True"}], ",", RowBox[{"SMP", "\[Rule]", "True"}], ",", RowBox[{"UndoChiralSplittings", "\[Rule]", "True"}], ",", RowBox[{"TransversePolarizationVectors", "\[Rule]", RowBox[{"{", RowBox[{"pG1", ",", "pG2"}], "}"}]}], ",", RowBox[{"FinalSubstitutions", "\[Rule]", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"MQU", "[", RowBox[{"Index", "[", RowBox[{"Generation", ",", "4"}], "]"}], "]"}], "\[Rule]", "mU"}], ",", RowBox[{ RowBox[{"FCGV", "[", "\"\\"", "]"}], "\[Rule]", RowBox[{"SMP", "[", "\"\\"", "]"}]}]}], "}"}]}]}], "]"}]}], ";"}]], "Input", CellChangeTimes->{{3.757083993102674*^9, 3.757084002266198*^9}, { 3.75708408516794*^9, 3.757084235899561*^9}, {3.757084325425682*^9, 3.7570843865171757`*^9}}], Cell[BoxData[ FormBox[ InterpretationBox[ RowBox[{"\<\"in total: \"\>", "\[InvisibleSpace]", "\<\"6 Classes amplitudes\"\>"}], SequenceForm["in total: ", "6 Classes amplitudes"], Editable->False], TraditionalForm]], "Print", CellChangeTimes->{3.7570843267317567`*^9, 3.7570843888013067`*^9, 3.757149856462998*^9, 3.757152050803507*^9, 3.7571521337562513`*^9, 3.757237843971185*^9}] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"amps", "[", RowBox[{"[", "1", "]"}], "]"}]], "Input", CellChangeTimes->{{3.75708401488792*^9, 3.757084017592075*^9}}], Cell[BoxData[ FormBox[ FractionBox[ RowBox[{"\[ImaginaryI]", " ", RowBox[{ SuperscriptBox[ SuperscriptBox[ FormBox["\<\"\[CurlyEpsilon]\"\>", TraditionalForm], "*"], FormBox[ FormBox["Lor1", TraditionalForm], TraditionalForm]], "(", FormBox["pG1", TraditionalForm], ")"}], " ", RowBox[{ SuperscriptBox[ SuperscriptBox[ FormBox["\<\"\[CurlyEpsilon]\"\>", TraditionalForm], "*"], FormBox[ FormBox["Lor2", TraditionalForm], TraditionalForm]], "(", FormBox["pG2", TraditionalForm], ")"}], " ", RowBox[{"tr", "(", FormBox[ RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"\[Gamma]", "\[CenterDot]", "(", FormBox[ FormBox[ RowBox[{ FormBox["k", TraditionalForm], "-", FormBox["pG1", TraditionalForm], "-", FormBox["pG2", TraditionalForm]}], TraditionalForm], TraditionalForm], ")"}], "+", "mU"}], ")"}], ".", RowBox[{"(", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["g", "s"], " ", SuperscriptBox["\[Gamma]", FormBox[ FormBox["Lor2", TraditionalForm], TraditionalForm]], " ", SubsuperscriptBox["T", RowBox[{ FormBox[ FormBox["Col5", TraditionalForm], TraditionalForm], FormBox[ FormBox["Col4", TraditionalForm], TraditionalForm]}], FormBox[ FormBox["Glu3", TraditionalForm], TraditionalForm]]}], ")"}], ".", RowBox[{"(", RowBox[{ RowBox[{"\[Gamma]", "\[CenterDot]", "(", FormBox[ FormBox[ RowBox[{ FormBox["k", TraditionalForm], "-", FormBox["pG1", TraditionalForm]}], TraditionalForm], TraditionalForm], ")"}], "+", "mU"}], ")"}], ".", RowBox[{"(", RowBox[{"\[ImaginaryI]", " ", SubscriptBox["g", "s"], " ", SuperscriptBox["\[Gamma]", FormBox[ FormBox["Lor1", TraditionalForm], TraditionalForm]], " ", SubsuperscriptBox["T", RowBox[{ FormBox[ FormBox["Col4", TraditionalForm], TraditionalForm], FormBox[ FormBox["Col5", TraditionalForm], TraditionalForm]}], FormBox[ FormBox["Glu2", TraditionalForm], TraditionalForm]]}], ")"}], ".", RowBox[{"(", RowBox[{ RowBox[{"\[Gamma]", "\[CenterDot]", FormBox[ FormBox["k", TraditionalForm], TraditionalForm]}], "+", "mU"}], ")"}], ".", RowBox[{"(", RowBox[{"-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", "\<\"e\"\>", " ", "mU"}], RowBox[{"2", " ", SubscriptBox["m", "W"], " ", RowBox[{"(", RowBox[{ RowBox[{"sin", "("}], SubscriptBox["\[Theta]", "W"], ")"}], ")"}]}]]}], ")"}]}], TraditionalForm], ")"}]}], RowBox[{ RowBox[{"(", InterpretationBox[ RowBox[{ SuperscriptBox[ FormBox[ FormBox["k", TraditionalForm], TraditionalForm], "2"], "\[InvisibleSpace]", "\<\"-\"\>", "\[InvisibleSpace]", SuperscriptBox["mU", "2"]}], SequenceForm[ FeynCalc`Pair[ FeynCalc`Momentum[$CellContext`k, D], FeynCalc`Momentum[$CellContext`k, D]], "-", $CellContext`mU^2], Editable->False], ")"}], ".", RowBox[{"(", InterpretationBox[ RowBox[{ SuperscriptBox[ RowBox[{ FormBox["\<\"(\"\>", TraditionalForm], FormBox[ FormBox[ RowBox[{ FormBox["k", TraditionalForm], "-", FormBox["pG1", TraditionalForm]}], TraditionalForm], TraditionalForm], FormBox["\<\")\"\>", TraditionalForm]}], "2"], "\[InvisibleSpace]", "\<\"-\"\>", "\[InvisibleSpace]", SuperscriptBox["mU", "2"]}], SequenceForm[ FeynCalc`Pair[ FeynCalc`Momentum[$CellContext`k - $CellContext`pG1, D], FeynCalc`Momentum[$CellContext`k - $CellContext`pG1, D]], "-", $CellContext`mU^2], Editable->False], ")"}], ".", RowBox[{"(", InterpretationBox[ RowBox[{ SuperscriptBox[ RowBox[{ FormBox["\<\"(\"\>", TraditionalForm], FormBox[ FormBox[ RowBox[{ FormBox["k", TraditionalForm], "-", FormBox["pG1", TraditionalForm], "-", FormBox["pG2", TraditionalForm]}], TraditionalForm], TraditionalForm], FormBox["\<\")\"\>", TraditionalForm]}], "2"], "\[InvisibleSpace]", "\<\"-\"\>", "\[InvisibleSpace]", SuperscriptBox["mU", "2"]}], SequenceForm[ FeynCalc`Pair[ FeynCalc`Momentum[$CellContext`k - $CellContext`pG1 - \ $CellContext`pG2, D], FeynCalc`Momentum[$CellContext`k - $CellContext`pG1 - \ $CellContext`pG2, D]], "-", $CellContext`mU^2], Editable->False], ")"}]}]], TraditionalForm]], "Output", CellChangeTimes->{3.757084018469125*^9, 3.7570842561287184`*^9, 3.757084329986943*^9, 3.757084391359453*^9, 3.7571498619543123`*^9, 3.7572379738166122`*^9}] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["Calculation of amplitude", "Section", CellChangeTimes->{{3.757084507478095*^9, 3.7570845097792263`*^9}, { 3.7571491942671223`*^9, 3.7571492023355837`*^9}}], Cell["Here I perform all Dirac and color algebra simplification ", "Item", CellChangeTimes->{{3.757328446421337*^9, 3.757328498843335*^9}}], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"expr1", "=", RowBox[{ RowBox[{ RowBox[{ RowBox[{ RowBox[{ RowBox[{"amps", "[", RowBox[{"[", "1", "]"}], "]"}], "+", RowBox[{"amps", "[", RowBox[{"[", "2", "]"}], "]"}]}], "//", "DiracSimplify"}], "//", "DotSimplify"}], "//", "Simplify"}], "//", "SUNSimplify"}]}]], "Input", CellChangeTimes->{{3.757084555379834*^9, 3.757084669305351*^9}, { 3.7570847205222797`*^9, 3.757084725537567*^9}, 3.7573284429541388`*^9}], Cell[BoxData[ FormBox[ RowBox[{"-", FractionBox[ RowBox[{"\<\"e\"\>", " ", SuperscriptBox["mU", "2"], " ", SubsuperscriptBox["g", "s", "2"], " ", SuperscriptBox["\[Delta]", RowBox[{ FormBox[ FormBox["Glu2", TraditionalForm], TraditionalForm], FormBox[ FormBox["Glu3", TraditionalForm], TraditionalForm]}]], " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"(", RowBox[{ FormBox[ RowBox[{ SuperscriptBox[ FormBox["\<\"\[CurlyEpsilon]\"\>", TraditionalForm], "*"], "(", FormBox["pG1", TraditionalForm], ")"}], TraditionalForm], FormBox["\<\"\[CenterDot]\"\>", TraditionalForm], FormBox[ RowBox[{ SuperscriptBox[ FormBox["\<\"\[CurlyEpsilon]\"\>", TraditionalForm], "*"], "(", FormBox["pG2", TraditionalForm], ")"}], TraditionalForm]}], ")"}], " ", RowBox[{"(", RowBox[{ RowBox[{"-", SubsuperscriptBox["m", "H", "2"]}], "+", RowBox[{"4", " ", RowBox[{"(", RowBox[{ FormBox[ FormBox["k", TraditionalForm], TraditionalForm], FormBox["\<\"\[CenterDot]\"\>", TraditionalForm], FormBox[ FormBox["pG1", TraditionalForm], TraditionalForm]}], ")"}]}], "-", RowBox[{"2", " ", SuperscriptBox[ FormBox[ FormBox["k", TraditionalForm], TraditionalForm], "2"]}], "+", RowBox[{"2", " ", SuperscriptBox["mU", "2"]}]}], ")"}]}], "+", RowBox[{"8", " ", RowBox[{"(", RowBox[{ FormBox[ FormBox["k", TraditionalForm], TraditionalForm], FormBox["\<\"\[CenterDot]\"\>", TraditionalForm], FormBox[ RowBox[{ SuperscriptBox[ FormBox["\<\"\[CurlyEpsilon]\"\>", TraditionalForm], "*"], "(", FormBox["pG1", TraditionalForm], ")"}], TraditionalForm]}], ")"}], " ", RowBox[{"(", RowBox[{ RowBox[{ FormBox[ FormBox["k", TraditionalForm], TraditionalForm], FormBox["\<\"\[CenterDot]\"\>", TraditionalForm], FormBox[ RowBox[{ SuperscriptBox[ FormBox["\<\"\[CurlyEpsilon]\"\>", TraditionalForm], "*"], "(", FormBox["pG2", TraditionalForm], ")"}], TraditionalForm]}], "-", RowBox[{ FormBox[ FormBox["pG1", TraditionalForm], TraditionalForm], FormBox["\<\"\[CenterDot]\"\>", TraditionalForm], FormBox[ RowBox[{ SuperscriptBox[ FormBox["\<\"\[CurlyEpsilon]\"\>", TraditionalForm], "*"], "(", FormBox["pG2", TraditionalForm], ")"}], TraditionalForm]}]}], ")"}]}], "+", RowBox[{"2", " ", RowBox[{"(", RowBox[{ FormBox[ FormBox["pG1", TraditionalForm], TraditionalForm], FormBox["\<\"\[CenterDot]\"\>", TraditionalForm], FormBox[ RowBox[{ SuperscriptBox[ FormBox["\<\"\[CurlyEpsilon]\"\>", TraditionalForm], "*"], "(", FormBox["pG2", TraditionalForm], ")"}], TraditionalForm]}], ")"}], " ", RowBox[{"(", RowBox[{ FormBox[ FormBox["pG2", TraditionalForm], TraditionalForm], FormBox["\<\"\[CenterDot]\"\>", TraditionalForm], FormBox[ RowBox[{ SuperscriptBox[ FormBox["\<\"\[CurlyEpsilon]\"\>", TraditionalForm], "*"], "(", FormBox["pG1", TraditionalForm], ")"}], TraditionalForm]}], ")"}]}]}], ")"}]}], RowBox[{ SubscriptBox["m", "W"], " ", RowBox[{"(", RowBox[{ RowBox[{"sin", "("}], SubscriptBox["\[Theta]", "W"], ")"}], ")"}], " ", RowBox[{ RowBox[{"(", InterpretationBox[ RowBox[{ SuperscriptBox[ FormBox[ FormBox["k", TraditionalForm], TraditionalForm], "2"], "\[InvisibleSpace]", "\<\"-\"\>", "\[InvisibleSpace]", SuperscriptBox["mU", "2"]}], SequenceForm[ FeynCalc`Pair[ FeynCalc`Momentum[$CellContext`k, D], FeynCalc`Momentum[$CellContext`k, D]], "-", $CellContext`mU^2], Editable->False], ")"}], ".", RowBox[{"(", InterpretationBox[ RowBox[{ SuperscriptBox[ RowBox[{ FormBox["\<\"(\"\>", TraditionalForm], FormBox[ FormBox[ RowBox[{ FormBox["k", TraditionalForm], "-", FormBox["pG1", TraditionalForm]}], TraditionalForm], TraditionalForm], FormBox["\<\")\"\>", TraditionalForm]}], "2"], "\[InvisibleSpace]", "\<\"-\"\>", "\[InvisibleSpace]", SuperscriptBox["mU", "2"]}], SequenceForm[ FeynCalc`Pair[ FeynCalc`Momentum[$CellContext`k, D] - FeynCalc`Momentum[$CellContext`pG1, D], FeynCalc`Momentum[$CellContext`k, D] - FeynCalc`Momentum[$CellContext`pG1, D]], "-", $CellContext`mU^2], Editable->False], ")"}], ".", RowBox[{"(", InterpretationBox[ RowBox[{ SuperscriptBox[ RowBox[{ FormBox["\<\"(\"\>", TraditionalForm], FormBox[ FormBox[ RowBox[{ FormBox["k", TraditionalForm], "-", FormBox["pG1", TraditionalForm], "-", FormBox["pG2", TraditionalForm]}], TraditionalForm], TraditionalForm], FormBox["\<\")\"\>", TraditionalForm]}], "2"], "\[InvisibleSpace]", "\<\"-\"\>", "\[InvisibleSpace]", SuperscriptBox["mU", "2"]}], SequenceForm[ FeynCalc`Pair[ FeynCalc`Momentum[$CellContext`k, D] - FeynCalc`Momentum[$CellContext`pG1, D] - FeynCalc`Momentum[$CellContext`pG2, D], FeynCalc`Momentum[$CellContext`k, D] - FeynCalc`Momentum[$CellContext`pG1, D] - FeynCalc`Momentum[$CellContext`pG2, D]], "-", $CellContext`mU^2], Editable->False], ")"}]}]}]]}], TraditionalForm]], "Output", CellChangeTimes->{{3.7570846154842725`*^9, 3.7570846250318184`*^9}, 3.7570846706314263`*^9, 3.7570847265496244`*^9, 3.75714988150043*^9, 3.7571520710016623`*^9, 3.7571521370384393`*^9, 3.7571521867052803`*^9, 3.75723797919692*^9}] }, Open ]], Cell["Decomposition into Passarino-Veltman (PaVe) base", "Item", CellChangeTimes->{{3.7573285036986127`*^9, 3.7573285611088963`*^9}, { 3.7573287614783573`*^9, 3.7573287666256514`*^9}, 3.7573347161402597`*^9}], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"expr2", "=", RowBox[{"TID", "[", RowBox[{"expr1", ",", "k", ",", RowBox[{"UsePaVeBasis", "\[Rule]", "True"}], ",", RowBox[{"ToPaVe", "\[Rule]", "True"}]}], "]"}]}]], "Input", CellChangeTimes->{{3.75708476091159*^9, 3.757084798238725*^9}}], Cell[BoxData[ FormBox[ RowBox[{ FractionBox[ RowBox[{"2", " ", "\[ImaginaryI]", " ", SuperscriptBox["\[Pi]", "2"], " ", "\<\"e\"\>", " ", SuperscriptBox["mU", "2"], " ", SubsuperscriptBox["g", "s", "2"], " ", SuperscriptBox["\[Delta]", RowBox[{ FormBox[ FormBox["Glu2", TraditionalForm], TraditionalForm], FormBox[ FormBox["Glu3", TraditionalForm], TraditionalForm]}]], " ", RowBox[{"(", RowBox[{ FormBox[ RowBox[{ SuperscriptBox[ FormBox["\<\"\[CurlyEpsilon]\"\>", TraditionalForm], "*"], "(", FormBox["pG1", TraditionalForm], ")"}], TraditionalForm], FormBox["\<\"\[CenterDot]\"\>", TraditionalForm], FormBox[ RowBox[{ SuperscriptBox[ FormBox["\<\"\[CurlyEpsilon]\"\>", TraditionalForm], "*"], "(", FormBox["pG2", TraditionalForm], ")"}], TraditionalForm]}], ")"}], " ", FormBox[ TagBox[ FormBox[ RowBox[{ SubscriptBox["\<\"B\"\>", "\<\"0\"\>"], "(", RowBox[{ SubsuperscriptBox["m", "H", "2"], ",", SuperscriptBox["mU", "2"], ",", SuperscriptBox["mU", "2"]}], ")"}], TraditionalForm], HoldForm], TraditionalForm]}], RowBox[{ SubscriptBox["m", "W"], " ", RowBox[{"(", RowBox[{ RowBox[{"sin", "("}], SubscriptBox["\[Theta]", "W"], ")"}], ")"}]}]], "-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[Pi]", "2"], " ", "\<\"e\"\>", " ", SuperscriptBox["mU", "2"], " ", SubsuperscriptBox["g", "s", "2"], " ", SuperscriptBox["\[Delta]", RowBox[{ FormBox[ FormBox["Glu2", TraditionalForm], TraditionalForm], FormBox[ FormBox["Glu3", TraditionalForm], TraditionalForm]}]], " ", FormBox[ TagBox[ FormBox[ RowBox[{ SubscriptBox["\<\"C\"\>", "\<\"0\"\>"], "(", RowBox[{"0", ",", "0", ",", SubsuperscriptBox["m", "H", "2"], ",", SuperscriptBox["mU", "2"], ",", SuperscriptBox["mU", "2"], ",", SuperscriptBox["mU", "2"]}], ")"}], TraditionalForm], HoldForm], TraditionalForm], " ", RowBox[{"(", RowBox[{ RowBox[{"2", " ", RowBox[{"(", RowBox[{ FormBox[ FormBox["pG1", TraditionalForm], TraditionalForm], FormBox["\<\"\[CenterDot]\"\>", TraditionalForm], FormBox[ RowBox[{ SuperscriptBox[ FormBox["\<\"\[CurlyEpsilon]\"\>", TraditionalForm], "*"], "(", FormBox["pG2", TraditionalForm], ")"}], TraditionalForm]}], ")"}], " ", RowBox[{"(", RowBox[{ FormBox[ FormBox["pG2", TraditionalForm], TraditionalForm], FormBox["\<\"\[CenterDot]\"\>", TraditionalForm], FormBox[ RowBox[{ SuperscriptBox[ FormBox["\<\"\[CurlyEpsilon]\"\>", TraditionalForm], "*"], "(", FormBox["pG1", TraditionalForm], ")"}], TraditionalForm]}], ")"}]}], "-", RowBox[{ SubsuperscriptBox["m", "H", "2"], " ", RowBox[{"(", RowBox[{ FormBox[ RowBox[{ SuperscriptBox[ FormBox["\<\"\[CurlyEpsilon]\"\>", TraditionalForm], "*"], "(", FormBox["pG1", TraditionalForm], ")"}], TraditionalForm], FormBox["\<\"\[CenterDot]\"\>", TraditionalForm], FormBox[ RowBox[{ SuperscriptBox[ FormBox["\<\"\[CurlyEpsilon]\"\>", TraditionalForm], "*"], "(", FormBox["pG2", TraditionalForm], ")"}], TraditionalForm]}], ")"}]}]}], ")"}]}], RowBox[{ SubscriptBox["m", "W"], " ", RowBox[{"(", RowBox[{ RowBox[{"sin", "("}], SubscriptBox["\[Theta]", "W"], ")"}], ")"}]}]], "-", FractionBox[ RowBox[{"8", " ", "\[ImaginaryI]", " ", SuperscriptBox["\[Pi]", "2"], " ", "\<\"e\"\>", " ", SuperscriptBox["mU", "2"], " ", SubsuperscriptBox["g", "s", "2"], " ", SuperscriptBox["\[Delta]", RowBox[{ FormBox[ FormBox["Glu2", TraditionalForm], TraditionalForm], FormBox[ FormBox["Glu3", TraditionalForm], TraditionalForm]}]], " ", RowBox[{"(", RowBox[{ FormBox[ RowBox[{ SuperscriptBox[ FormBox["\<\"\[CurlyEpsilon]\"\>", TraditionalForm], "*"], "(", FormBox["pG1", TraditionalForm], ")"}], TraditionalForm], FormBox["\<\"\[CenterDot]\"\>", TraditionalForm], FormBox[ RowBox[{ SuperscriptBox[ FormBox["\<\"\[CurlyEpsilon]\"\>", TraditionalForm], "*"], "(", FormBox["pG2", TraditionalForm], ")"}], TraditionalForm]}], ")"}], " ", FormBox[ RowBox[{ SubscriptBox["\<\"C\"\>", "\<\"00\"\>"], "(", RowBox[{"0", ",", SubsuperscriptBox["m", "H", "2"], ",", "0", ",", SuperscriptBox["mU", "2"], ",", SuperscriptBox["mU", "2"], ",", SuperscriptBox["mU", "2"]}], ")"}], TraditionalForm]}], RowBox[{ SubscriptBox["m", "W"], " ", RowBox[{"(", RowBox[{ RowBox[{"sin", "("}], SubscriptBox["\[Theta]", "W"], ")"}], ")"}]}]], "+", FractionBox[ RowBox[{"8", " ", "\[ImaginaryI]", " ", SuperscriptBox["\[Pi]", "2"], " ", "\<\"e\"\>", " ", SuperscriptBox["mU", "2"], " ", SubsuperscriptBox["g", "s", "2"], " ", SuperscriptBox["\[Delta]", RowBox[{ FormBox[ FormBox["Glu2", TraditionalForm], TraditionalForm], FormBox[ FormBox["Glu3", TraditionalForm], TraditionalForm]}]], " ", RowBox[{"(", RowBox[{ FormBox[ FormBox["pG1", TraditionalForm], TraditionalForm], FormBox["\<\"\[CenterDot]\"\>", TraditionalForm], FormBox[ RowBox[{ SuperscriptBox[ FormBox["\<\"\[CurlyEpsilon]\"\>", TraditionalForm], "*"], "(", FormBox["pG2", TraditionalForm], ")"}], TraditionalForm]}], ")"}], " ", RowBox[{"(", RowBox[{ FormBox[ FormBox["pG2", TraditionalForm], TraditionalForm], FormBox["\<\"\[CenterDot]\"\>", TraditionalForm], FormBox[ RowBox[{ SuperscriptBox[ FormBox["\<\"\[CurlyEpsilon]\"\>", TraditionalForm], "*"], "(", FormBox["pG1", TraditionalForm], ")"}], TraditionalForm]}], ")"}], " ", FormBox[ RowBox[{ SubscriptBox["\<\"C\"\>", "\<\"12\"\>"], "(", RowBox[{"0", ",", SubsuperscriptBox["m", "H", "2"], ",", "0", ",", SuperscriptBox["mU", "2"], ",", SuperscriptBox["mU", "2"], ",", SuperscriptBox["mU", "2"]}], ")"}], TraditionalForm]}], RowBox[{ SubscriptBox["m", "W"], " ", RowBox[{"(", RowBox[{ RowBox[{"sin", "("}], SubscriptBox["\[Theta]", "W"], ")"}], ")"}]}]]}], TraditionalForm]], "Output", CellChangeTimes->{3.7570847993867908`*^9, 3.757149893146096*^9, 3.757152189964466*^9, 3.757237983872187*^9}] }, Open ]], Cell[TextData[{ "This decompose denominators ", Cell[BoxData[ FormBox[ SuperscriptBox[ RowBox[{"(", RowBox[{"k", "+", "p"}], ")"}], "2"], TraditionalForm]], FormatType->"TraditionalForm"], " --> ", Cell[BoxData[ FormBox[ RowBox[{ SuperscriptBox["k", "2"], "+", RowBox[{"2", "k", " ", "p"}], " ", "+", " ", SuperscriptBox["p", "2"]}], TraditionalForm]], FormatType->"TraditionalForm"] }], "Item", CellChangeTimes->{{3.75732857008341*^9, 3.7573286625676994`*^9}}], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"expr3", "=", RowBox[{"expr2", "//", "PropagatorDenominatorExplicit"}]}]], "Input", CellChangeTimes->{{3.757084805599146*^9, 3.75708482315215*^9}}], Cell[BoxData[ FormBox[ RowBox[{ FractionBox[ RowBox[{"2", " ", "\[ImaginaryI]", " ", SuperscriptBox["\[Pi]", "2"], " ", "\<\"e\"\>", " ", SuperscriptBox["mU", "2"], " ", SubsuperscriptBox["g", "s", "2"], " ", SuperscriptBox["\[Delta]", RowBox[{ FormBox[ FormBox["Glu2", TraditionalForm], TraditionalForm], FormBox[ FormBox["Glu3", TraditionalForm], TraditionalForm]}]], " ", RowBox[{"(", RowBox[{ FormBox[ RowBox[{ SuperscriptBox[ FormBox["\<\"\[CurlyEpsilon]\"\>", TraditionalForm], "*"], "(", FormBox["pG1", TraditionalForm], ")"}], TraditionalForm], FormBox["\<\"\[CenterDot]\"\>", TraditionalForm], FormBox[ RowBox[{ SuperscriptBox[ FormBox["\<\"\[CurlyEpsilon]\"\>", TraditionalForm], "*"], "(", FormBox["pG2", TraditionalForm], ")"}], TraditionalForm]}], ")"}], " ", FormBox[ TagBox[ FormBox[ RowBox[{ SubscriptBox["\<\"B\"\>", "\<\"0\"\>"], "(", RowBox[{ SubsuperscriptBox["m", "H", "2"], ",", SuperscriptBox["mU", "2"], ",", SuperscriptBox["mU", "2"]}], ")"}], TraditionalForm], HoldForm], TraditionalForm]}], RowBox[{ SubscriptBox["m", "W"], " ", RowBox[{"(", RowBox[{ RowBox[{"sin", "("}], SubscriptBox["\[Theta]", "W"], ")"}], ")"}]}]], "-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[Pi]", "2"], " ", "\<\"e\"\>", " ", SuperscriptBox["mU", "2"], " ", SubsuperscriptBox["g", "s", "2"], " ", SuperscriptBox["\[Delta]", RowBox[{ FormBox[ FormBox["Glu2", TraditionalForm], TraditionalForm], FormBox[ FormBox["Glu3", TraditionalForm], TraditionalForm]}]], " ", FormBox[ TagBox[ FormBox[ RowBox[{ SubscriptBox["\<\"C\"\>", "\<\"0\"\>"], "(", RowBox[{"0", ",", "0", ",", SubsuperscriptBox["m", "H", "2"], ",", SuperscriptBox["mU", "2"], ",", SuperscriptBox["mU", "2"], ",", SuperscriptBox["mU", "2"]}], ")"}], TraditionalForm], HoldForm], TraditionalForm], " ", RowBox[{"(", RowBox[{ RowBox[{"2", " ", RowBox[{"(", RowBox[{ FormBox[ FormBox["pG1", TraditionalForm], TraditionalForm], FormBox["\<\"\[CenterDot]\"\>", TraditionalForm], FormBox[ RowBox[{ SuperscriptBox[ FormBox["\<\"\[CurlyEpsilon]\"\>", TraditionalForm], "*"], "(", FormBox["pG2", TraditionalForm], ")"}], TraditionalForm]}], ")"}], " ", RowBox[{"(", RowBox[{ FormBox[ FormBox["pG2", TraditionalForm], TraditionalForm], FormBox["\<\"\[CenterDot]\"\>", TraditionalForm], FormBox[ RowBox[{ SuperscriptBox[ FormBox["\<\"\[CurlyEpsilon]\"\>", TraditionalForm], "*"], "(", FormBox["pG1", TraditionalForm], ")"}], TraditionalForm]}], ")"}]}], "-", RowBox[{ SubsuperscriptBox["m", "H", "2"], " ", RowBox[{"(", RowBox[{ FormBox[ RowBox[{ SuperscriptBox[ FormBox["\<\"\[CurlyEpsilon]\"\>", TraditionalForm], "*"], "(", FormBox["pG1", TraditionalForm], ")"}], TraditionalForm], FormBox["\<\"\[CenterDot]\"\>", TraditionalForm], FormBox[ RowBox[{ SuperscriptBox[ FormBox["\<\"\[CurlyEpsilon]\"\>", TraditionalForm], "*"], "(", FormBox["pG2", TraditionalForm], ")"}], TraditionalForm]}], ")"}]}]}], ")"}]}], RowBox[{ SubscriptBox["m", "W"], " ", RowBox[{"(", RowBox[{ RowBox[{"sin", "("}], SubscriptBox["\[Theta]", "W"], ")"}], ")"}]}]], "-", FractionBox[ RowBox[{"8", " ", "\[ImaginaryI]", " ", SuperscriptBox["\[Pi]", "2"], " ", "\<\"e\"\>", " ", SuperscriptBox["mU", "2"], " ", SubsuperscriptBox["g", "s", "2"], " ", SuperscriptBox["\[Delta]", RowBox[{ FormBox[ FormBox["Glu2", TraditionalForm], TraditionalForm], FormBox[ FormBox["Glu3", TraditionalForm], TraditionalForm]}]], " ", RowBox[{"(", RowBox[{ FormBox[ RowBox[{ SuperscriptBox[ FormBox["\<\"\[CurlyEpsilon]\"\>", TraditionalForm], "*"], "(", FormBox["pG1", TraditionalForm], ")"}], TraditionalForm], FormBox["\<\"\[CenterDot]\"\>", TraditionalForm], FormBox[ RowBox[{ SuperscriptBox[ FormBox["\<\"\[CurlyEpsilon]\"\>", TraditionalForm], "*"], "(", FormBox["pG2", TraditionalForm], ")"}], TraditionalForm]}], ")"}], " ", FormBox[ RowBox[{ SubscriptBox["\<\"C\"\>", "\<\"00\"\>"], "(", RowBox[{"0", ",", SubsuperscriptBox["m", "H", "2"], ",", "0", ",", SuperscriptBox["mU", "2"], ",", SuperscriptBox["mU", "2"], ",", SuperscriptBox["mU", "2"]}], ")"}], TraditionalForm]}], RowBox[{ SubscriptBox["m", "W"], " ", RowBox[{"(", RowBox[{ RowBox[{"sin", "("}], SubscriptBox["\[Theta]", "W"], ")"}], ")"}]}]], "+", FractionBox[ RowBox[{"8", " ", "\[ImaginaryI]", " ", SuperscriptBox["\[Pi]", "2"], " ", "\<\"e\"\>", " ", SuperscriptBox["mU", "2"], " ", SubsuperscriptBox["g", "s", "2"], " ", SuperscriptBox["\[Delta]", RowBox[{ FormBox[ FormBox["Glu2", TraditionalForm], TraditionalForm], FormBox[ FormBox["Glu3", TraditionalForm], TraditionalForm]}]], " ", RowBox[{"(", RowBox[{ FormBox[ FormBox["pG1", TraditionalForm], TraditionalForm], FormBox["\<\"\[CenterDot]\"\>", TraditionalForm], FormBox[ RowBox[{ SuperscriptBox[ FormBox["\<\"\[CurlyEpsilon]\"\>", TraditionalForm], "*"], "(", FormBox["pG2", TraditionalForm], ")"}], TraditionalForm]}], ")"}], " ", RowBox[{"(", RowBox[{ FormBox[ FormBox["pG2", TraditionalForm], TraditionalForm], FormBox["\<\"\[CenterDot]\"\>", TraditionalForm], FormBox[ RowBox[{ SuperscriptBox[ FormBox["\<\"\[CurlyEpsilon]\"\>", TraditionalForm], "*"], "(", FormBox["pG1", TraditionalForm], ")"}], TraditionalForm]}], ")"}], " ", FormBox[ RowBox[{ SubscriptBox["\<\"C\"\>", "\<\"12\"\>"], "(", RowBox[{"0", ",", SubsuperscriptBox["m", "H", "2"], ",", "0", ",", SuperscriptBox["mU", "2"], ",", SuperscriptBox["mU", "2"], ",", SuperscriptBox["mU", "2"]}], ")"}], TraditionalForm]}], RowBox[{ SubscriptBox["m", "W"], " ", RowBox[{"(", RowBox[{ RowBox[{"sin", "("}], SubscriptBox["\[Theta]", "W"], ")"}], ")"}]}]]}], TraditionalForm]], "Output", CellChangeTimes->{3.7570848248592477`*^9, 3.7571498967723036`*^9, 3.757152193365661*^9, 3.7572379874443913`*^9}] }, Open ]], Cell["Reduce complicated PaVe functions into simple one", "Item", CellChangeTimes->{{3.757328679295656*^9, 3.757328721824089*^9}, 3.757328775395153*^9}], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"expr4", "=", RowBox[{ RowBox[{"expr3", "//", "PaVeReduce"}], "//", RowBox[{ RowBox[{"Collect2", "[", RowBox[{"#", ",", "PaVe", ",", RowBox[{"Factoring", "\[Rule]", "Simplify"}]}], "]"}], "&"}]}]}]], "Input", CellChangeTimes->{{3.757084837619978*^9, 3.757084881766503*^9}}], Cell[BoxData[ FormBox[ RowBox[{ FractionBox[ RowBox[{"2", " ", "\[ImaginaryI]", " ", SuperscriptBox["\[Pi]", "2"], " ", RowBox[{"(", RowBox[{"D", "-", "4"}], ")"}], " ", "\<\"e\"\>", " ", SuperscriptBox["mU", "2"], " ", SubsuperscriptBox["g", "s", "2"], " ", SuperscriptBox["\[Delta]", RowBox[{ FormBox["Glu2", TraditionalForm], FormBox["Glu3", TraditionalForm]}]], " ", FormBox[ RowBox[{ SubscriptBox["\<\"B\"\>", "\<\"0\"\>"], "(", RowBox[{ SubsuperscriptBox["m", "H", "2"], ",", SuperscriptBox["mU", "2"], ",", SuperscriptBox["mU", "2"]}], ")"}], TraditionalForm], " ", RowBox[{"(", RowBox[{ RowBox[{ SubsuperscriptBox["m", "H", "2"], " ", RowBox[{"(", FormBox[ RowBox[{ FormBox[ RowBox[{ SuperscriptBox[ FormBox["\<\"\[CurlyEpsilon]\"\>", TraditionalForm], "*"], "(", FormBox["pG1", TraditionalForm], ")"}], TraditionalForm], FormBox["\<\"\[CenterDot]\"\>", TraditionalForm], FormBox[ RowBox[{ SuperscriptBox[ FormBox["\<\"\[CurlyEpsilon]\"\>", TraditionalForm], "*"], "(", FormBox["pG2", TraditionalForm], ")"}], TraditionalForm]}], TraditionalForm], ")"}]}], "-", RowBox[{"2", " ", RowBox[{"(", FormBox[ RowBox[{ FormBox[ FormBox["pG1", TraditionalForm], TraditionalForm], FormBox["\<\"\[CenterDot]\"\>", TraditionalForm], FormBox[ RowBox[{ SuperscriptBox[ FormBox["\<\"\[CurlyEpsilon]\"\>", TraditionalForm], "*"], "(", FormBox["pG2", TraditionalForm], ")"}], TraditionalForm]}], TraditionalForm], ")"}], " ", RowBox[{"(", FormBox[ RowBox[{ FormBox[ FormBox["pG2", TraditionalForm], TraditionalForm], FormBox["\<\"\[CenterDot]\"\>", TraditionalForm], FormBox[ RowBox[{ SuperscriptBox[ FormBox["\<\"\[CurlyEpsilon]\"\>", TraditionalForm], "*"], "(", FormBox["pG1", TraditionalForm], ")"}], TraditionalForm]}], TraditionalForm], ")"}]}]}], ")"}]}], RowBox[{ RowBox[{"(", RowBox[{"D", "-", "2"}], ")"}], " ", SubsuperscriptBox["m", "H", "2"], " ", SubscriptBox["m", "W"], " ", RowBox[{"(", RowBox[{ RowBox[{"sin", "("}], SubscriptBox["\[Theta]", "W"], ")"}], ")"}]}]], "+", FractionBox[ RowBox[{"\[ImaginaryI]", " ", SuperscriptBox["\[Pi]", "2"], " ", "\<\"e\"\>", " ", SuperscriptBox["mU", "2"], " ", SubsuperscriptBox["g", "s", "2"], " ", SuperscriptBox["\[Delta]", RowBox[{ FormBox["Glu2", TraditionalForm], FormBox["Glu3", TraditionalForm]}]], " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"(", RowBox[{"D", "-", "2"}], ")"}], " ", SubsuperscriptBox["m", "H", "2"]}], "-", RowBox[{"8", " ", SuperscriptBox["mU", "2"]}]}], ")"}], " ", FormBox[ RowBox[{ SubscriptBox["\<\"C\"\>", "\<\"0\"\>"], "(", RowBox[{"0", ",", "0", ",", SubsuperscriptBox["m", "H", "2"], ",", SuperscriptBox["mU", "2"], ",", SuperscriptBox["mU", "2"], ",", SuperscriptBox["mU", "2"]}], ")"}], TraditionalForm], " ", RowBox[{"(", RowBox[{ RowBox[{ SubsuperscriptBox["m", "H", "2"], " ", RowBox[{"(", FormBox[ RowBox[{ FormBox[ RowBox[{ SuperscriptBox[ FormBox["\<\"\[CurlyEpsilon]\"\>", TraditionalForm], "*"], "(", FormBox["pG1", TraditionalForm], ")"}], TraditionalForm], FormBox["\<\"\[CenterDot]\"\>", TraditionalForm], FormBox[ RowBox[{ SuperscriptBox[ FormBox["\<\"\[CurlyEpsilon]\"\>", TraditionalForm], "*"], "(", FormBox["pG2", TraditionalForm], ")"}], TraditionalForm]}], TraditionalForm], ")"}]}], "-", RowBox[{"2", " ", RowBox[{"(", FormBox[ RowBox[{ FormBox[ FormBox["pG1", TraditionalForm], TraditionalForm], FormBox["\<\"\[CenterDot]\"\>", TraditionalForm], FormBox[ RowBox[{ SuperscriptBox[ FormBox["\<\"\[CurlyEpsilon]\"\>", TraditionalForm], "*"], "(", FormBox["pG2", TraditionalForm], ")"}], TraditionalForm]}], TraditionalForm], ")"}], " ", RowBox[{"(", FormBox[ RowBox[{ FormBox[ FormBox["pG2", TraditionalForm], TraditionalForm], FormBox["\<\"\[CenterDot]\"\>", TraditionalForm], FormBox[ RowBox[{ SuperscriptBox[ FormBox["\<\"\[CurlyEpsilon]\"\>", TraditionalForm], "*"], "(", FormBox["pG1", TraditionalForm], ")"}], TraditionalForm]}], TraditionalForm], ")"}]}]}], ")"}]}], RowBox[{ RowBox[{"(", RowBox[{"D", "-", "2"}], ")"}], " ", SubsuperscriptBox["m", "H", "2"], " ", SubscriptBox["m", "W"], " ", RowBox[{"(", RowBox[{ RowBox[{"sin", "("}], SubscriptBox["\[Theta]", "W"], ")"}], ")"}]}]]}], TraditionalForm]], "Output", CellChangeTimes->{3.7570848830745773`*^9, 3.757149900431513*^9, 3.7571521971548777`*^9, 3.7572380171460905`*^9}] }, Open ]], Cell["Rewrite PaVe in analytic form", "Item", CellChangeTimes->{{3.7573287412091975`*^9, 3.757328755199998*^9}, { 3.7573287996605406`*^9, 3.7573288130793085`*^9}}], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"expr5", "=", RowBox[{ RowBox[{"PaXEvaluate", "[", RowBox[{"expr4", ",", RowBox[{"PaXC0Expand", "\[Rule]", "True"}], ",", " ", RowBox[{"PaXImplicitPrefactor", "\[Rule]", RowBox[{"1", "/", RowBox[{ RowBox[{"(", RowBox[{"2", "Pi"}], ")"}], "^", "D"}]}]}]}], "]"}], "//", "Simplify"}]}]], "Input", CellChangeTimes->{{3.7570849235138903`*^9, 3.7570849646182413`*^9}}], Cell[BoxData[ FormBox[ RowBox[{"-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", "\<\"e\"\>", " ", SuperscriptBox["mU", "2"], " ", SubsuperscriptBox["g", "s", "2"], " ", SuperscriptBox["\[Delta]", RowBox[{ FormBox[ FormBox["Glu2", TraditionalForm], TraditionalForm], FormBox[ FormBox["Glu3", TraditionalForm], TraditionalForm]}]], " ", RowBox[{"(", RowBox[{ RowBox[{"4", " ", SuperscriptBox["mU", "2"], " ", RowBox[{ SuperscriptBox["log", "2"], "(", FractionBox[ RowBox[{ SqrtBox[ RowBox[{ SubsuperscriptBox["m", "H", "4"], "-", RowBox[{"4", " ", SuperscriptBox["mU", "2"], " ", SubsuperscriptBox["m", "H", "2"]}]}]], "-", SubsuperscriptBox["m", "H", "2"], "+", RowBox[{"2", " ", SuperscriptBox["mU", "2"]}]}], RowBox[{"2", " ", SuperscriptBox["mU", "2"]}]], ")"}]}], "-", RowBox[{ SubsuperscriptBox["m", "H", "2"], " ", RowBox[{"(", RowBox[{ RowBox[{ SuperscriptBox["log", "2"], "(", FractionBox[ RowBox[{ SqrtBox[ RowBox[{ SubsuperscriptBox["m", "H", "4"], "-", RowBox[{"4", " ", SuperscriptBox["mU", "2"], " ", SubsuperscriptBox["m", "H", "2"]}]}]], "-", SubsuperscriptBox["m", "H", "2"], "+", RowBox[{"2", " ", SuperscriptBox["mU", "2"]}]}], RowBox[{"2", " ", SuperscriptBox["mU", "2"]}]], ")"}], "-", "4"}], ")"}]}]}], ")"}], " ", RowBox[{"(", RowBox[{ RowBox[{ SubsuperscriptBox["m", "H", "2"], " ", RowBox[{"(", RowBox[{ FormBox[ RowBox[{ SuperscriptBox[ FormBox["\<\"\[CurlyEpsilon]\"\>", TraditionalForm], "*"], "(", FormBox["pG1", TraditionalForm], ")"}], TraditionalForm], FormBox["\<\"\[CenterDot]\"\>", TraditionalForm], FormBox[ RowBox[{ SuperscriptBox[ FormBox["\<\"\[CurlyEpsilon]\"\>", TraditionalForm], "*"], "(", FormBox["pG2", TraditionalForm], ")"}], TraditionalForm]}], ")"}]}], "-", RowBox[{"2", " ", RowBox[{"(", RowBox[{ FormBox[ FormBox["pG1", TraditionalForm], TraditionalForm], FormBox["\<\"\[CenterDot]\"\>", TraditionalForm], FormBox[ RowBox[{ SuperscriptBox[ FormBox["\<\"\[CurlyEpsilon]\"\>", TraditionalForm], "*"], "(", FormBox["pG2", TraditionalForm], ")"}], TraditionalForm]}], ")"}], " ", RowBox[{"(", RowBox[{ FormBox[ FormBox["pG2", TraditionalForm], TraditionalForm], FormBox["\<\"\[CenterDot]\"\>", TraditionalForm], FormBox[ RowBox[{ SuperscriptBox[ FormBox["\<\"\[CurlyEpsilon]\"\>", TraditionalForm], "*"], "(", FormBox["pG1", TraditionalForm], ")"}], TraditionalForm]}], ")"}]}]}], ")"}]}], RowBox[{"32", " ", SuperscriptBox["\[Pi]", "2"], " ", SubsuperscriptBox["m", "H", "4"], " ", SubscriptBox["m", "W"], " ", RowBox[{"(", RowBox[{ RowBox[{"sin", "("}], SubscriptBox["\[Theta]", "W"], ")"}], ")"}]}]]}], TraditionalForm]], "Output", CellChangeTimes->{{3.7570849578708553`*^9, 3.757084965604298*^9}, 3.7571499076169233`*^9, 3.7571522003120584`*^9, 3.7572380251475477`*^9}] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["Cross section", "Section", CellChangeTimes->{{3.7571493601186085`*^9, 3.757149366173955*^9}}], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"crossSec", "=", RowBox[{ RowBox[{"expr5", ".", RowBox[{"ComplexConjugate", "[", "expr5", "]"}]}], "//", "Simplify"}]}]], "Input", CellChangeTimes->{{3.7571493840099754`*^9, 3.7571494219401445`*^9}, { 3.757149471126958*^9, 3.757149481027524*^9}, {3.7571571611558027`*^9, 3.757157165116029*^9}}, ExpressionUUID -> "9cba3474-88b8-4005-80a1-5f55e6957d14"], Cell[BoxData[ FormBox[ RowBox[{ RowBox[{"(", RowBox[{"-", FractionBox[ RowBox[{"\[ImaginaryI]", " ", "\<\"e\"\>", " ", SuperscriptBox["mU", "2"], " ", SubsuperscriptBox["g", "s", "2"], " ", SuperscriptBox["\[Delta]", RowBox[{ FormBox[ FormBox["Glu2", TraditionalForm], TraditionalForm], FormBox[ FormBox["Glu3", TraditionalForm], TraditionalForm]}]], " ", RowBox[{"(", RowBox[{ RowBox[{"4", " ", SuperscriptBox["mU", "2"], " ", RowBox[{ SuperscriptBox["log", "2"], "(", FractionBox[ RowBox[{ SqrtBox[ RowBox[{ SubsuperscriptBox["m", "H", "4"], "-", RowBox[{"4", " ", SuperscriptBox["mU", "2"], " ", SubsuperscriptBox["m", "H", "2"]}]}]], "-", SubsuperscriptBox["m", "H", "2"], "+", RowBox[{"2", " ", SuperscriptBox["mU", "2"]}]}], RowBox[{"2", " ", SuperscriptBox["mU", "2"]}]], ")"}]}], "-", RowBox[{ SubsuperscriptBox["m", "H", "2"], " ", RowBox[{"(", RowBox[{ RowBox[{ SuperscriptBox["log", "2"], "(", FractionBox[ RowBox[{ SqrtBox[ RowBox[{ SubsuperscriptBox["m", "H", "4"], "-", RowBox[{"4", " ", SuperscriptBox["mU", "2"], " ", SubsuperscriptBox["m", "H", "2"]}]}]], "-", SubsuperscriptBox["m", "H", "2"], "+", RowBox[{"2", " ", SuperscriptBox["mU", "2"]}]}], RowBox[{"2", " ", SuperscriptBox["mU", "2"]}]], ")"}], "-", "4"}], ")"}]}]}], ")"}], " ", RowBox[{"(", RowBox[{ RowBox[{ SubsuperscriptBox["m", "H", "2"], " ", RowBox[{"(", RowBox[{ FormBox[ RowBox[{ SuperscriptBox[ FormBox["\<\"\[CurlyEpsilon]\"\>", TraditionalForm], "*"], "(", FormBox["pG1", TraditionalForm], ")"}], TraditionalForm], FormBox["\<\"\[CenterDot]\"\>", TraditionalForm], FormBox[ RowBox[{ SuperscriptBox[ FormBox["\<\"\[CurlyEpsilon]\"\>", TraditionalForm], "*"], "(", FormBox["pG2", TraditionalForm], ")"}], TraditionalForm]}], ")"}]}], "-", RowBox[{"2", " ", RowBox[{"(", RowBox[{ FormBox[ FormBox["pG1", TraditionalForm], TraditionalForm], FormBox["\<\"\[CenterDot]\"\>", TraditionalForm], FormBox[ RowBox[{ SuperscriptBox[ FormBox["\<\"\[CurlyEpsilon]\"\>", TraditionalForm], "*"], "(", FormBox["pG2", TraditionalForm], ")"}], TraditionalForm]}], ")"}], " ", RowBox[{"(", RowBox[{ FormBox[ FormBox["pG2", TraditionalForm], TraditionalForm], FormBox["\<\"\[CenterDot]\"\>", TraditionalForm], FormBox[ RowBox[{ SuperscriptBox[ FormBox["\<\"\[CurlyEpsilon]\"\>", TraditionalForm], "*"], "(", FormBox["pG1", TraditionalForm], ")"}], TraditionalForm]}], ")"}]}]}], ")"}]}], RowBox[{"32", " ", SuperscriptBox["\[Pi]", "2"], " ", SubsuperscriptBox["m", "H", "4"], " ", SubscriptBox["m", "W"], " ", RowBox[{"(", RowBox[{ RowBox[{"sin", "("}], SubscriptBox["\[Theta]", "W"], ")"}], ")"}]}]]}], ")"}], ".", FractionBox[ RowBox[{"\[ImaginaryI]", " ", "\<\"e\"\>", " ", SuperscriptBox["mU", "2"], " ", SubsuperscriptBox["g", "s", "2"], " ", SuperscriptBox["\[Delta]", RowBox[{ FormBox[ FormBox["Glu2", TraditionalForm], TraditionalForm], FormBox[ FormBox["Glu3", TraditionalForm], TraditionalForm]}]], " ", RowBox[{"(", RowBox[{ RowBox[{"4", " ", SuperscriptBox["mU", "2"], " ", RowBox[{ SuperscriptBox["log", "2"], "(", FractionBox[ RowBox[{ SqrtBox[ RowBox[{ SubsuperscriptBox["m", "H", "4"], "-", RowBox[{"4", " ", SuperscriptBox["mU", "2"], " ", SubsuperscriptBox["m", "H", "2"]}]}]], "-", SubsuperscriptBox["m", "H", "2"], "+", RowBox[{"2", " ", SuperscriptBox["mU", "2"]}]}], RowBox[{"2", " ", SuperscriptBox["mU", "2"]}]], ")"}]}], "-", RowBox[{ SubsuperscriptBox["m", "H", "2"], " ", RowBox[{"(", RowBox[{ RowBox[{ SuperscriptBox["log", "2"], "(", FractionBox[ RowBox[{ SqrtBox[ RowBox[{ SubsuperscriptBox["m", "H", "4"], "-", RowBox[{"4", " ", SuperscriptBox["mU", "2"], " ", SubsuperscriptBox["m", "H", "2"]}]}]], "-", SubsuperscriptBox["m", "H", "2"], "+", RowBox[{"2", " ", SuperscriptBox["mU", "2"]}]}], RowBox[{"2", " ", SuperscriptBox["mU", "2"]}]], ")"}], "-", "4"}], ")"}]}]}], ")"}], " ", RowBox[{"(", RowBox[{ RowBox[{ SubsuperscriptBox["m", "H", "2"], " ", RowBox[{"(", RowBox[{ FormBox[ RowBox[{ FormBox["\<\"\[CurlyEpsilon]\"\>", TraditionalForm], "(", FormBox["pG1", TraditionalForm], ")"}], TraditionalForm], FormBox["\<\"\[CenterDot]\"\>", TraditionalForm], FormBox[ RowBox[{ FormBox["\<\"\[CurlyEpsilon]\"\>", TraditionalForm], "(", FormBox["pG2", TraditionalForm], ")"}], TraditionalForm]}], ")"}]}], "-", RowBox[{"2", " ", RowBox[{"(", RowBox[{ FormBox[ FormBox["pG1", TraditionalForm], TraditionalForm], FormBox["\<\"\[CenterDot]\"\>", TraditionalForm], FormBox[ RowBox[{ FormBox["\<\"\[CurlyEpsilon]\"\>", TraditionalForm], "(", FormBox["pG2", TraditionalForm], ")"}], TraditionalForm]}], ")"}], " ", RowBox[{"(", RowBox[{ FormBox[ FormBox["pG2", TraditionalForm], TraditionalForm], FormBox["\<\"\[CenterDot]\"\>", TraditionalForm], FormBox[ RowBox[{ FormBox["\<\"\[CurlyEpsilon]\"\>", TraditionalForm], "(", FormBox["pG1", TraditionalForm], ")"}], TraditionalForm]}], ")"}]}]}], ")"}]}], RowBox[{"32", " ", SuperscriptBox["\[Pi]", "2"], " ", SubsuperscriptBox["m", "H", "4"], " ", SubscriptBox["m", "W"], " ", RowBox[{"(", RowBox[{ RowBox[{"sin", "("}], SubscriptBox["\[Theta]", "W"], ")"}], ")"}]}]]}], TraditionalForm]], "Output", CellChangeTimes->{3.757149423386227*^9, 3.7571494825196095`*^9, 3.757149947099182*^9, 3.757152209809602*^9, 3.7571560030155606`*^9, 3.757156307840996*^9, 3.7571571660490828`*^9, 3.7572380321869507`*^9}] }, Open ]], Cell["Pay attention how performed the Polarization sum. ", "Item", CellChangeTimes->{{3.757328881726235*^9, 3.7573289337302094`*^9}}], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"crossSec2", "=", RowBox[{ RowBox[{ RowBox[{ RowBox[{"crossSec", "//", RowBox[{ RowBox[{"DoPolarizationSums", "[", RowBox[{"#", ",", "pG1", ",", "pG2"}], "]"}], "&"}]}], "//", RowBox[{ RowBox[{"DoPolarizationSums", "[", RowBox[{"#", ",", "pG2", ",", "pG1"}], "]"}], "&"}]}], "//", "Simplify"}], "//", "\n", RowBox[{ RowBox[{"SUNSimplify", "[", RowBox[{"#", ",", RowBox[{"SUNNToCACF", "->", "False"}]}], "]"}], "&"}]}]}]], "Input", CellChangeTimes->{{3.7571494851067576`*^9, 3.757149501008667*^9}, { 3.757149584682453*^9, 3.7571495880826473`*^9}, {3.757149631779147*^9, 3.75714963376026*^9}, {3.7571508005169945`*^9, 3.7571508029081316`*^9}, 3.757152239914324*^9, {3.7571572104316206`*^9, 3.7571572201251755`*^9}}], Cell[BoxData[ FormBox[ FractionBox[ RowBox[{ RowBox[{"(", RowBox[{"D", "-", "2"}], ")"}], " ", SuperscriptBox["\<\"e\"\>", "2"], " ", SuperscriptBox["mU", "4"], " ", RowBox[{"(", RowBox[{ SuperscriptBox["N", "2"], "-", "1"}], ")"}], " ", SubsuperscriptBox["g", "s", "4"], " ", SuperscriptBox[ RowBox[{"(", RowBox[{ RowBox[{ SubsuperscriptBox["m", "H", "2"], " ", RowBox[{"(", RowBox[{ RowBox[{ SuperscriptBox["log", "2"], "(", FractionBox[ RowBox[{ SqrtBox[ RowBox[{ SubsuperscriptBox["m", "H", "4"], "-", RowBox[{"4", " ", SuperscriptBox["mU", "2"], " ", SubsuperscriptBox["m", "H", "2"]}]}]], "-", SubsuperscriptBox["m", "H", "2"], "+", RowBox[{"2", " ", SuperscriptBox["mU", "2"]}]}], RowBox[{"2", " ", SuperscriptBox["mU", "2"]}]], ")"}], "-", "4"}], ")"}]}], "-", RowBox[{"4", " ", SuperscriptBox["mU", "2"], " ", RowBox[{ SuperscriptBox["log", "2"], "(", FractionBox[ RowBox[{ SqrtBox[ RowBox[{ SubsuperscriptBox["m", "H", "4"], "-", RowBox[{"4", " ", SuperscriptBox["mU", "2"], " ", SubsuperscriptBox["m", "H", "2"]}]}]], "-", SubsuperscriptBox["m", "H", "2"], "+", RowBox[{"2", " ", SuperscriptBox["mU", "2"]}]}], RowBox[{"2", " ", SuperscriptBox["mU", "2"]}]], ")"}]}]}], ")"}], "2"]}], RowBox[{"1024", " ", SuperscriptBox["\[Pi]", "4"], " ", SubsuperscriptBox["m", "H", "4"], " ", SubsuperscriptBox["m", "W", "2"], " ", SuperscriptBox[ RowBox[{"(", RowBox[{ RowBox[{"sin", "("}], SubscriptBox["\[Theta]", "W"], ")"}], ")"}], "2"]}]], TraditionalForm]], "Output", CellChangeTimes->{ 3.75714950228074*^9, 3.757149589066704*^9, 3.7571496352913475`*^9, 3.75714995650772*^9, 3.7571508035731697`*^9, {3.757152213544815*^9, 3.7571522407683725`*^9}, 3.757156007098794*^9, 3.757156312236247*^9, { 3.757157213721809*^9, 3.7571572213222437`*^9}, 3.7572380361751785`*^9}] }, Open ]], Cell["\<\ From here I use Vlad Shtabovenko example (look on the head of this \ calculation) substituted my result and transformed it in appropriate form to \ compare it with literature.\ \>", "Item", CellChangeTimes->{{3.757328943390762*^9, 3.757329069665984*^9}, { 3.7573291060680666`*^9, 3.7573291621122723`*^9}}], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{ RowBox[{"$Assumptions", "=", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"SMP", "[", "\"\\"", "]"}], ">", "0"}], ",", RowBox[{ RowBox[{"SMP", "[", "\"\\"", "]"}], ">", "0"}]}], "}"}]}], ";"}], "\n", RowBox[{"crossSec3", "=", RowBox[{ RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"1", "/", "2"}], "*", RowBox[{"1", "/", RowBox[{"(", RowBox[{"16", " ", "Pi", " ", RowBox[{"SMP", "[", "\"\\"", "]"}]}], ")"}]}], "*", RowBox[{"(", RowBox[{"crossSec2", "/.", RowBox[{"SUNN", "->", "3"}]}], ")"}]}], ")"}], "//", RowBox[{ RowBox[{"ReplaceAll", "[", RowBox[{"#", ",", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{ RowBox[{"SMP", "[", "\"\\"", "]"}], "^", "2"}], "->", RowBox[{"4", " ", "Pi", " ", RowBox[{"SMP", "[", "\"\\"", "]"}]}]}], ",", RowBox[{ RowBox[{ RowBox[{"SMP", "[", "\"\\"", "]"}], "^", "4"}], "->", "\n", RowBox[{"16", " ", RowBox[{"Pi", "^", "2"}], " ", RowBox[{ RowBox[{"SMP", "[", "\"\\"", "]"}], "^", "2"}]}]}]}], "}"}]}], "]"}], "&"}]}], "//", "Simplify"}]}]}], "Input", CellChangeTimes->{{3.75715728961915*^9, 3.7571572959325113`*^9}, 3.7571575568914375`*^9}], Cell[BoxData[ FormBox[ FractionBox[ RowBox[{"\[Alpha]", " ", RowBox[{"(", RowBox[{"D", "-", "2"}], ")"}], " ", SuperscriptBox["mU", "4"], " ", SubsuperscriptBox["\[Alpha]", "s", "2"], " ", SuperscriptBox[ RowBox[{"(", RowBox[{ RowBox[{ SubsuperscriptBox["m", "H", "2"], " ", RowBox[{"(", RowBox[{ RowBox[{ SuperscriptBox["log", "2"], "(", FractionBox[ RowBox[{ RowBox[{ SubscriptBox["m", "H"], " ", SqrtBox[ RowBox[{ SubsuperscriptBox["m", "H", "2"], "-", RowBox[{"4", " ", SuperscriptBox["mU", "2"]}]}]]}], "-", SubsuperscriptBox["m", "H", "2"], "+", RowBox[{"2", " ", SuperscriptBox["mU", "2"]}]}], RowBox[{"2", " ", SuperscriptBox["mU", "2"]}]], ")"}], "-", "4"}], ")"}]}], "-", RowBox[{"4", " ", SuperscriptBox["mU", "2"], " ", RowBox[{ SuperscriptBox["log", "2"], "(", FractionBox[ RowBox[{ RowBox[{ SubscriptBox["m", "H"], " ", SqrtBox[ RowBox[{ SubsuperscriptBox["m", "H", "2"], "-", RowBox[{"4", " ", SuperscriptBox["mU", "2"]}]}]]}], "-", SubsuperscriptBox["m", "H", "2"], "+", RowBox[{"2", " ", SuperscriptBox["mU", "2"]}]}], RowBox[{"2", " ", SuperscriptBox["mU", "2"]}]], ")"}]}]}], ")"}], "2"]}], RowBox[{"64", " ", SuperscriptBox["\[Pi]", "2"], " ", SubsuperscriptBox["m", "H", "5"], " ", SubsuperscriptBox["m", "W", "2"], " ", SuperscriptBox[ RowBox[{"(", RowBox[{ RowBox[{"sin", "("}], SubscriptBox["\[Theta]", "W"], ")"}], ")"}], "2"]}]], TraditionalForm]], "Output", CellChangeTimes->{3.75715730483302*^9, 3.75715757337238*^9, 3.7572380406474347`*^9}] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"crossSec4", "=", RowBox[{"Simplify", "[", RowBox[{"crossSec3", "/.", RowBox[{"{", " ", RowBox[{ RowBox[{"mU", "->", " ", RowBox[{ RowBox[{"SMP", "[", "\"\\"", "]"}], "/", RowBox[{"(", RowBox[{"2", " ", RowBox[{"Sqrt", "[", "\[Tau]", "]"}]}], ")"}]}]}], ",", RowBox[{ RowBox[{"SMP", "[", "\"\\"", "]"}], "->", RowBox[{ RowBox[{ RowBox[{"Sqrt", "[", "2", "]"}], "/", "Pi"}], " ", RowBox[{ RowBox[{"SMP", "[", "\"\\"", "]"}], "^", "2"}], " ", RowBox[{ RowBox[{"SMP", "[", "\"\\"", "]"}], "^", "2"}], " ", RowBox[{"SMP", "[", "\"\\"", "]"}]}]}]}], "}"}]}], "]"}]}]], "Input", CellChangeTimes->{{3.757157381193388*^9, 3.757157384505577*^9}, 3.7571575649278965`*^9, {3.7572380768165035`*^9, 3.757238077622549*^9}}], Cell[BoxData[ FormBox[ FractionBox[ RowBox[{ RowBox[{"(", RowBox[{"D", "-", "2"}], ")"}], " ", SubscriptBox["G", "F"], " ", SubsuperscriptBox["m", "H", "3"], " ", SubsuperscriptBox["\[Alpha]", "s", "2"], " ", SuperscriptBox[ RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"(", RowBox[{"\[Tau]", "-", "1"}], ")"}], " ", RowBox[{ SuperscriptBox["log", "2"], "(", RowBox[{ RowBox[{"2", " ", RowBox[{"(", RowBox[{ SqrtBox[ FractionBox[ RowBox[{"\[Tau]", "-", "1"}], "\[Tau]"]], "-", "1"}], ")"}], " ", "\[Tau]"}], "+", "1"}], ")"}]}], "-", RowBox[{"4", " ", "\[Tau]"}]}], ")"}], "2"]}], RowBox[{"512", " ", SqrtBox["2"], " ", SuperscriptBox["\[Pi]", "3"], " ", SuperscriptBox["\[Tau]", "4"]}]], TraditionalForm]], "Output", CellChangeTimes->{3.7571573944771476`*^9, 3.757157569727171*^9, 3.757238043702609*^9, 3.757238078942625*^9}] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["Compare with hep-ph/9504378", "Section", CellChangeTimes->{{3.7571576367090025`*^9, 3.757157642748348*^9}}], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"aSq", "=", RowBox[{ RowBox[{"crossSec4", "/", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"SMP", "[", "\"\\"", "]"}], "^", "2"}], " ", RowBox[{"SMP", "[", "\"\\"", "]"}], RowBox[{ RowBox[{ RowBox[{"SMP", "[", "\"\\"", "]"}], "^", "3"}], "/", RowBox[{"(", RowBox[{"36", " ", RowBox[{"Sqrt", "[", "2", "]"}], RowBox[{"Pi", "^", "3"}]}], ")"}]}], " ", RowBox[{"9", "/", "16"}]}], ")"}]}], "//.", RowBox[{"D", "\[Rule]", "4"}]}]}]], "Input", CellChangeTimes->{ 3.7571576894590197`*^9, {3.7572381862827644`*^9, 3.7572381904470024`*^9}}], Cell[BoxData[ FormBox[ FractionBox[ SuperscriptBox[ RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"(", RowBox[{"\[Tau]", "-", "1"}], ")"}], " ", RowBox[{ SuperscriptBox["log", "2"], "(", RowBox[{ RowBox[{"2", " ", RowBox[{"(", RowBox[{ SqrtBox[ FractionBox[ RowBox[{"\[Tau]", "-", "1"}], "\[Tau]"]], "-", "1"}], ")"}], " ", "\[Tau]"}], "+", "1"}], ")"}]}], "-", RowBox[{"4", " ", "\[Tau]"}]}], ")"}], "2"], RowBox[{"4", " ", SuperscriptBox["\[Tau]", "4"]}]], TraditionalForm]], "Output", CellChangeTimes->{3.7571576918661575`*^9, 3.757238083272873*^9, 3.757238190894028*^9}] }, Open ]], Cell[BoxData[ RowBox[{ RowBox[{"aSqLit", "[", "x_", "]"}], ":=", RowBox[{"Piecewise", "[", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"(", RowBox[{"2", RowBox[{ RowBox[{"(", RowBox[{"x", "+", RowBox[{ RowBox[{"(", RowBox[{"x", "-", "1"}], ")"}], RowBox[{ RowBox[{"ArcSin", "[", RowBox[{"Sqrt", "[", "x", "]"}], "]"}], "^", "2"}]}]}], ")"}], "/", RowBox[{"x", "^", "2"}]}]}], ")"}], "^", "2"}], ",", RowBox[{"0", "<", "x", "<=", "1"}]}], "}"}], ",", "\n", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"(", RowBox[{"2", RowBox[{ RowBox[{"(", RowBox[{"x", "+", RowBox[{ RowBox[{"(", RowBox[{"x", "-", "1"}], ")"}], RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "1"}], "/", "4"}], RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"Log", "[", RowBox[{ RowBox[{"(", RowBox[{"1", "+", RowBox[{"\[Sqrt]", RowBox[{"(", RowBox[{"1", "-", RowBox[{"1", "/", "x"}]}], ")"}]}]}], ")"}], "/", RowBox[{"(", RowBox[{"1", "-", RowBox[{"\[Sqrt]", RowBox[{"(", RowBox[{"1", "-", RowBox[{"1", "/", "x"}]}], ")"}]}]}], ")"}]}], "]"}], "-", " ", RowBox[{"I", " ", "Pi"}]}], ")"}], "^", "2"}]}], ")"}]}]}], ")"}], "/", RowBox[{"x", "^", "2"}]}]}], ")"}], "^", "2"}], ",", RowBox[{"x", ">", "1"}]}], "}"}]}], "}"}], "]"}]}]], "Input"], Cell["the result which is given from the paper", "Item", CellChangeTimes->{{3.7573295462892456`*^9, 3.7573295746498675`*^9}}], Cell[BoxData[{ RowBox[{ RowBox[{"aSqLitBT", "=", RowBox[{ RowBox[{"(", RowBox[{"2", RowBox[{ RowBox[{"(", RowBox[{"\[Tau]", "+", RowBox[{ RowBox[{"(", RowBox[{"\[Tau]", "-", "1"}], ")"}], RowBox[{ RowBox[{"ArcSin", "[", RowBox[{"Sqrt", "[", "\[Tau]", "]"}], "]"}], "^", "2"}]}]}], ")"}], "/", RowBox[{"\[Tau]", "^", "2"}]}]}], ")"}], "^", "2"}]}], ";"}], "\n", RowBox[{ RowBox[{"aSqLitAT", "=", RowBox[{ RowBox[{"(", RowBox[{"2", RowBox[{ RowBox[{"(", RowBox[{"\[Tau]", "+", RowBox[{ RowBox[{"(", RowBox[{"\[Tau]", "-", "1"}], ")"}], RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "1"}], "/", "4"}], RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"Log", "[", RowBox[{ RowBox[{"(", RowBox[{"1", "+", RowBox[{"\[Sqrt]", RowBox[{"(", RowBox[{"1", "-", RowBox[{"1", "/", "\[Tau]"}]}], ")"}]}]}], ")"}], "/", RowBox[{"(", RowBox[{"1", "-", RowBox[{"\[Sqrt]", RowBox[{"(", RowBox[{"1", "-", RowBox[{"1", "/", "\[Tau]"}]}], ")"}]}]}], ")"}]}], "]"}], "-", " ", RowBox[{"I", " ", "Pi"}]}], ")"}], "^", "2"}]}], ")"}]}]}], ")"}], "/", RowBox[{"\[Tau]", "^", "2"}]}]}], ")"}], "^", "2"}]}], ";"}]}], "Input"], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{"plot1", "=", RowBox[{"Plot", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"Re", "[", "aSq", "]"}], ",", RowBox[{"Re", "[", RowBox[{"aSqLit", "[", "\[Tau]", "]"}], "]"}]}], "}"}], ",", RowBox[{"{", RowBox[{"\[Tau]", ",", "0", ",", "2"}], "}"}], ",", RowBox[{"PlotStyle", "->", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"Dashed", ",", "Red"}], "}"}], ",", RowBox[{"{", RowBox[{"DotDashed", ",", "Blue"}], "}"}]}], "}"}]}], ",", "\n", RowBox[{"PlotLegends", "->", RowBox[{"{", RowBox[{ RowBox[{"Re", "[", RowBox[{ RowBox[{"Subscript", "[", RowBox[{"A", ",", " ", "FeynCalc"}], "]"}], "^", "2"}], "]"}], ",", RowBox[{"Re", "[", RowBox[{ RowBox[{"Subscript", "[", RowBox[{"A", ",", " ", "Literature"}], "]"}], "^", "2"}], "]"}]}], "}"}]}], ",", RowBox[{"AxesLabel", "->", RowBox[{"{", RowBox[{"\[Tau]", ",", RowBox[{"Re", "[", RowBox[{"A", "^", "2"}], "]"}]}], "}"}]}]}], "]"}]}], "\n", RowBox[{"plot2", "=", RowBox[{"Plot", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"Im", "[", "aSq", "]"}], ",", RowBox[{"Im", "[", RowBox[{"aSqLit", "[", "\[Tau]", "]"}], "]"}]}], "}"}], ",", RowBox[{"{", RowBox[{"\[Tau]", ",", "0", ",", "2"}], "}"}], ",", RowBox[{"PlotStyle", "->", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"Dashed", ",", "Cyan"}], "}"}], ",", RowBox[{"{", RowBox[{"DotDashed", ",", "\n", "Black"}], "}"}]}], "}"}]}], ",", RowBox[{"PlotLegends", "->", RowBox[{"{", RowBox[{ RowBox[{"Im", "[", RowBox[{ RowBox[{"Subscript", "[", RowBox[{"A", ",", " ", "FeynCalc"}], "]"}], "^", "2"}], "]"}], ",", RowBox[{"Im", "[", RowBox[{ RowBox[{"Subscript", "[", RowBox[{"A", ",", " ", "Literature"}], "]"}], "^", "2"}], "]"}]}], "}"}]}], ",", RowBox[{"AxesLabel", "->", RowBox[{"{", RowBox[{"\[Tau]", ",", RowBox[{"Im", "[", RowBox[{"A", "^", "2"}], "]"}]}], "}"}]}]}], "]"}]}]}], "Input"], Cell[BoxData[ FormBox[ TemplateBox[{GraphicsBox[{{{{}, {}, { Directive[ Opacity[1.], AbsoluteThickness[1.6], Dashing[{Small, Small}], RGBColor[1, 0, 0]], LineBox[CompressedData[" 1:eJwBUQGu/iFib1JlAgAAABQAAAACAAAASmXo0cDpZT7/H+Anx3H8PwRDGnDf GUQ/FSXW7dxz/D8zn5icsxlUPzvGLw7zdfw/S83Xsp0ZZD+S42lXIHr8P1dk 972SGXQ/H/WjDn+C/D/dL4dDjRmEPx2UrSVNk/w/oBVPhooZlD/VEhCkLLX8 P4EIsyeJGaQ/VzZgc/75/D9YWaGv8PG0P7RumLVYlP0/C/+BXEcevz+8TVIi Oyv+PyVR7ujDi8Q/CznNsQDG/j93zjk/mPTJP3tjDD8ydv8/F7QR3gEBzz8z KV7TjBEAQLbiQ8zPPNI/8NKJ+0h0AEDCap0bWezUP7e0v+fR2gBA9SY9D61t 1z868EPr+D8BQAL5qxAbJdo/C4H9S060AUA2/2C2U67cP5Umj5XWJwJAzIQ0 zsYq3z+qnzj0V6ACQH1orA+N9d8/IfSB4GDIAkAmo5pQ "]], LineBox[CompressedData[" 1:eJwB8QIO/SFib1JlAgAAAC4AAAACAAAAwcspeDkF4D/eOWZHjcwCQOv3397V MOI/i2M/4F64A0Ck6rvKDo7jP+IEp8ZfXARADh2n7+Tk5D9+GcksgAsFQIxp tWagJOY/WyLHwJO9BUD2QKvkaH/nPxc+IWHVkQZAdDLEtBbD6D9eBrd3lG0H QN+uxIvRIeo/A8z9yfx4CED7atSbKXrrPze3rTGfpQlAVDZdkS5/6z/G0+xy V6oJQKwB5oYzhOs/FTKCdhKvCUBemPdxPY7rP6nIeNKQuAlAwcUaSFGi6z9v N7A/r8sJQIcgYfR4yus/d80uGXbyCUAT1u1MyBrsP/0xS8lGQgpAK0EH/ma7 7D/Ksmcv7OsKQLCqqyfYwOw/kqcKVe3xCkA0FFBRScbsPxSB1hXz9wpAPOeY pCvR7D9LIxGJDAQLQE6NKkvw5uw/0xqhHHgcC0By2U2YeRLtPwjlbIM5TgtA uXGUMoxp7T+bg1rFp7ULQD7bOFz9bu0/toXn+U28C0DCRN2FbnTtPyr75QP6 wgtAyhcm2VB/7T/H/ivJY9ALQNy9t38Vle0/I4TceX/rC0AACtvMnsDtP1vc PiLjIgxAR6IhZ7EX7j9/BnUexZYMQDSYDibGHO4//p7uasKdDEAgjvvk2iHu P/y0hITGpAxA+nnVYgQs7j8e/PVi47IMQK1RiV5XQO4/NDk/unHPDEATAfFV /WjuP6d1mmHxCQ1A31/AREm67j+3DwZRF4UNQMxVrQNev+4/qgzJjhaNDUC4 S5rCcsTuP+GT5osflQ1Akjd0QJzO7j/t4ftLT6UNQEUPKDzv4u4/Ntf8zinG DUCrvo8zlQvvP5jzc8/tCQ5Adx1fIuFc7z8H35wSGJsOQGJQMFbcYe8/+zwF CHqkDkBOgwGK12bvP04ILlrsrQ5AJumj8c1w7z9/z16rA8EOQNS06MC6hO8/ VCvyYgnoDkAwTHJflKzvP4l2ezDuOQ9APzTWh8b67z8mc7mHePEPQHXpX3c= "]], LineBox[CompressedData[" 1:eJwV1nk0VF8cAHCFHxKNmdeCJJQiRUW/qHyvUskkOyFLJbJVpKKSVISIkpQl IelXaSyJ7JREtpKobFEoycx7M4x1frc/3nnnc+457y7f5T6lQ8ctjswVEhL6 iJ+/728/iNLkuWx4n/jMNEuMhpgqP3TkxNlw+1Xus6zFNKQccTWFRmeDfGiS vZs2DbVYNXjPrGSDeK3+cKU3DWn8tpZsN2EDPShf0N1BQ0VWeysizdjwh3M+ crKHhnaUbT+pb8mG/I6vDdKDNGR/XfNr5n42WNvt8Ffi0VCElsQT/8NsSFh+ THuUJoMG/EuN6YFs+PFTrnfNbhl0f0Y50uQBXp9P5uCqZzJIw01Wf04WG+Jc 55yxey6DCpsWkM//Y0PSitTCy8UyqCl12m4piw0l1TTT6jcyaMbgk9rwSzaM zm79Ndgtg+zDIurCm9lQV2QX0yZFR4wFbPHXk3j+hI4L293o6ENZ5NU9M2zY cHr1n/VedHTTe+U/zQI2mL45oiR/go7o9fbCX0Q48CLP7vOXQOzQmplRaQ70 tuoWLYimI9pUIimvgscbLaPM8uho/uDOzpNMDlh6K3jr8emoIb7XfsKEA+z9 yy4cmaajKMNzny+YcUCqlXktUoiBJNNzPkVYc0DM3CC1WpyB5jnKv0915sCQ rdDgryUMJN7Krnl3kgO1CahRYTMDiVQksVSSOSA4lXB4qR8DfdlqaNRzjwOp XnqeH08xEKv4d29iGgcOSL/LCw1kIPsX2+j0LA6smxFf9PEiA+Vm9/gL5XHg KCF0fnkMAzklq+h11XIggVMZfvYxA2nLNXy4U88Bvmi76ttsBpK44+9l1cgB Ee8U3QW5DPQ8rib53QcOJDtb1EcU4vVfcxe87OLAn72xXK3XDFQU+OT1bYoD mW4T1sadDHR93NLRYowD65VHGrR6GOjwqWme1AQHAodE/9D6GEja12RV6CwH LneZbi0fZKAjR0cjTkqQUPLB1KORZCC67UZTM0USIlYvlKwSI5CXdslnCSYJ U8mKfxauJVBlS9vTIhMS/C9onV2nSaCFPuxgdzMSQmbUbQ3WE6gic6VqjTUJ HnVeMjY6BGIsjvW76ELCBp7GwJZtBCqZcJUcP0WCz8wWyWkmgWi3g7szA0ho ypneVmJCoCMbEnOtzpGgaqvG9zcl0AKvZtu8iyS8SjhD67Ag0OFO3Qc+10jI +tCi5WhHIMkK6W3f75NQfOCSltsRArk4qNHiMkhgcI1ONbsRqGB8R7/BQxJ+ x9sFbDxKIGetwIjUJySYaRO1w54Eyk/rb7N/QcLbaMlBhRMEEteffSTxkoQT QnDB0ZdAjl+WnC8qIWHpufWjCX4EEmPsU15URcLMpKT3jD+BHK4UHXv/joTR PwnrrwUSKGd5q8HFJjxuUzOWdpZAomUjhOZ7vH4bhdz8cwRi8ZRLoj6RICI/ S38bRCBh92gxo28kcOJ2Dz8PIdB+4UdfxvpJSA6JfZlxiUDZqdXZmQMkZCg5 3om+TCDbjnFL4d8kDBaqxluEEujJnkP3y8dIcG8e+JUWTiBtDSV9mCCBm6Nu dSCCQOXSvV8rpkiwP10WQY8kUEur4+IqIQqevWxz9btGIK6j3fVX8yiweNy/ Sug6gYLQEg1DKQqe8/PRXex/VNrrXi+gQHS4dcu6GALJDlmJviEoiLSc7GfG Ekjfz+z822UUHLGONLK5SaBaqwVye5QouK5zpbIJ2+zfpsI6FQps01laO+II dGiaSdWvpqBpNERk+S0CDXfPu8FcQ8GGpkSfcGz/qrp1DWspCNCq+/wb+2rY bs/GDRToyRq++S8e54vHP+L7dCiYGplhzr1NoERmTWbTvxQo9WT12GA/pe34 1ryVgk9jqVu42DrUnGAzoCDrnI3EtgR8Hm2VS98bUHChrXE0BLslUX//h10U zOa9lRG6QyC7oBmexR4KVN1ZFrrYfc6lca1MCu6bKBQew/bafm691T68f/Nq g/vY3BV6zR/NKFjMMuE1YgeJTXhbW1LQxvH5OI79z6/CeZ+sKegiW74p3CVQ bMPpRzb7KVjVrrIcYcuydHa121PwXopx0wk7/Qa339aRgsP7jPUCsTX880M6 nCnYlOAvH4tdYOOnaHeIgrI1WzdnYOvrri/77ErByE3juDzsWnm2vb07BSnx Rprl2Gazz/hfPCgY3dot/Qb7c6/PbQdvCopb8rTrsQ+90tDuPEaByCfvjL8e zhx+f8CXAk+pPMdabP/wx8e7TlLA8l3lVok96+kh5XSagpWbfCsKsK+arH7S HUCBUc0G7yxsmtagkfM5CgwqpI/HYyfSHw70BFHgyH9YH4ytwnO94nKRgvoz ySFu2E/bVZS/XaJA7HTM7T3YOsV9FQdDKbjhoDhfDbs8Oc2x7yoFURW/votg 7w52mToUScEetxiVLny+LQcV7/ZH4fNHj+tz/8bPsHuTawwFNe7tnZf+xk81 5eP3GxScU8o7YIbNG5ajDdymYKHyZ1Yvjv+tlMHa5LsUKHu90r6HvdH0ebBl MgVacd9u2mL75pmMVqZRMDAxMliG84nmKpd15gEFvn4nf3hisxYOOq3LomCb nkMdA3sk4GJT0lMKgmr8zO1wvkapm4RZsChIm9Kc5uF8XtMpqy+RR4HwYc/E 69gekJ99upCCvMnD5fm4Pn6IDkSZV1Mwf8VFQeMNAl0pzDMUr6GgwGdnmjG2 ikfwdHktBccdQsxe4fo72LDEW6ORgqEzBt8f4frsuslkinVQ8Ka5XW9nNIHO Gy4RLv9CQauTWXp6FIHkx74X+3fh+iQGtKZx/dvZXVDv66NAYlq5JQP3hzbF XImyEQqGT2Qfr7mK4/8+qOokm4Id2/uPimAzLhsHqlMUVC2+mg5hBDIf6B9K 4OP47Mnqf3yFQI1PF731E+bC15RvXCvcz2p0z4etluXCFl13yUncH12HjfR7 5LngOLQ3ZDYA97+UhWPxy7hw9N/NHoIzBDIQYh0RXsGFt6Rl0tgpApW9+WbY vY4LDk2lXcW4HxdY7ha+ZciFlUEBwSm4n4czi0KX7uaC5AUhsWB3Ah3YoSae uYcL3386pzri/j93o6TUi31cyB/YNZ/uSqB99OZFHfu54P6gX3a/M4GGWmzU l/pwQX6CIedgTSC5fW7mD+K5UHHdc7kJ4HjubG/VuIP349pp24bvr8ptRjYF iVyQeyoxbL+VQG5r1R3epHJBU+HhWiddfJ/M/+M69B8XjNPoh3duJNDed6cC NMq5EOVkcuWOKoGCjUJTnw9woWARe8FBSQJ9cDp6QOsnF74V2UulSxBoxSmm 7NNhLiSMOL3uxfdvfZpMXAabC/4u691tRQhETKWE3ZzE+01iFarNMNCj7Bc+ J6R5cCl3kb7rHwZqoQ9t0djEg6WsuAD9ZgZS6jLuyAjlwdndOwbZkQwUWb2F ZR3Og0iH8GUXwhmIzNIIE7vGg0OJ49oSYQxU7Set7RXLg+i7muKyIQzkKv4h ZkMSDwZe54UqnsHzbbTbXZXDgxq1mpq6Qwy0LtL9RfdXHkSMzbVJx/9Lev9e uSW7YQy+eLeLtXfT0YFlzRNzWsfgeKzvrnhVOuLVR/edCBkHf1HVlAKmDLoj 4uRvsYIPOmdfNYT50RCjuyB97ms+/J459lZ3zQIkGhRipes7AXYnHJhnDKSQ 0H9OrD76JCyzZkqt9pdEfomsaHr1JESoLTJtuCiBytaEi8scmwKy9sRvvSQx JGPsp3FJehrefo87erBLFHWubWkNLJ2GJdaNgatFRFDOPVjx3WkGOtPvmuRY z0WOrE0yCrMz8DO7qzu0RAhdDE0L6Xw8CyErOueGys5C9pBCkvReAbAUCdVU mSkITwl16d4ngIMdnW7WIlPgajGy8pm5AMLStrVKjU/C0tLSHBNbAWy6FakZ 2jkJkTEOb6IOCWBHZ8RUdNYkHN10lzMvUABPbeQkxPUnQfkKYST2UACRXR3L Ur0nYHbzean2RwIom1m9Ksl5Aj6P9H94+EQAFjvVXe5aTECsbb7jrlwBtEVV uSZvngCBusXJ0FIBXH2ZU1IqMgGd72PuCbcKQK3Sp9gthQ9FYeOHW9sEoDyX /zU0lg+3tjirZXQIYExhjlbWZT4wM9c9394tgCY2eZztwYfigMa6kJ8CyKll m6ds4sPttTox5r8FUN9Jm9ekxgffvmQrpVH8PYYnT0iBD6v3evdUcgVQfX6p m48wH0TmfHwQOy6AxO57ww/HxqG3YIuny6QAMqqePuj7OQ6lnhmaWjMCeJJu d2N51zgkKEryBAIBaMQU5bq0jMP/VYNbvg== "]]}, { Directive[ Opacity[1.], AbsoluteThickness[1.6], Dashing[{0, Small, Small, Small}], RGBColor[0, 0, 1]], LineBox[CompressedData[" 1:eJwdxQk01AkcwPEZV8YcwmJHytFixSIU3srvJ2xaR9isakWI4m3KfWzvSUae HBH2zSuiGk9LUhqR1prE1Mix7k3KGTIz/yHKYkZ7fN/7vK9B6Fm/cDkSibT/ X//9+/D5Pt77cCeWorXh8xgpKLjonBtnuoI+DovH4qRgU84ufcg8DK6Tlozl BCl4dI/UlzFPgv9CZIB+qhQCTq62XGXGQyBxm5F2UQpvLLNc8pgs6CmpNfIq kkKF5qFLl5nFMKC+lWPeIIV05Ycm2UwOCPeciNtck8KRozfrFpe4oHuW3XCk WAbUz+mBB3a0QpKXn+G3Zptg5EvMP8tpB7pD9wMSfxOSehyAvSKA3DAaWCd+ Bm2u2lsyuRfcTIMGctVI+GjKpavXsR8k/dkb7vEkbIsq23ZUNAg8butc3ygJ PxrvU609MwJuiy7Cv4GMcms1W7cZjQItXebhzSXj3s8nHv1wbwxKjK+UDJvI YRfLtoe/axzulNuvBFTIIen/JiDOx90566Uc6hUI134jJsC+K/OTjbk8ClfH 3w5ZTUFBGEwENckjZ+FJJyN/GqYUqvjBgQrI2F4lmZmZgfNMgfkFqiLmRjZE VHw1Cz8ZPucVtSjiJ6yZOZ02B9pOBiFDhUoYb93O1Xo2D8eVGpOKz2zB8Xvt OX0GC0Dukgmkycq4ETV43TRVCHaNtbvLKyl4eO/xQos0IXQMiGIDqil4lzx7 yYYlBC3ri4nqdRQMYq/G7MsXwp0Xyf0FTRR82qHj7ntLCNF296HuJQWz9ENW kjuFkNxtwUz8QEGNYbHnCx0RyHZ7CL7br4Jmzls2I56IQFB/ylIkVMH71TUm f/FEUFil4i9eUkHbL3x8D/JFoJE+rLm8qoKOc2yOWZ8IPHeqZdMUqOidt8tj cVYE/To3dZN1qRj7youdoi4G5Xc/Zzh4U/FxTLF1bqQYSjOOdVQ1UNHptX2g LFoMDZlza16/U7HN9U1mdLwYTDfeya+3UbFT2/iVT5oY+JtmgrA/qTjW0pim WSKGnayxlDQhFUkqr7tu8MQQOOZkOG1IwwO3DE490CbgvFLCjo5faWjLZhjz dQnYuEFEtZXRUD9/Y2bUgAAZl8Xic2i4njIUqmBOgJ70Y+h0PQ1rfbODApCA PQ7QHNNLQw3ykr/sNAGVCddClih0HA/muR5sJqBZVclXO5OOXf618kGtBFTT BPlaeXRs8rjWFttOwHTRbI5eCR2v2sVjaQ8B4skNj0OVdHRT/dpRMkWAw4i0 x5RPx5o/rtiUUCXAXo7rFVMYmLQ92HAyUAIK46XqX15nYKiP1Y9jIRLYdFRU TuUw0DuDfHkkQgKeyhbHRLUMNH5/e6n7nAQu9AbVyD9l4CB3ntfMkoCf2YdQ yjwDrTxjg4vvSiA78RcrwkEVnW2Hs/jrEvgm7nFW8pIq/gMd4/Ud "]], LineBox[CompressedData[" 1:eJwV1nk8VFscAHCFhzyMubeFqFCiVCp6UfkdpcgksmaviGyVraiEiqxRKrIk SnqlbInKlpLIFgllKQovycy9M3bmnf64n/v5/nPvOb/tHIUjJ0yPzhcQEPiI nz/vvh9kaep8NrQmPzHOFmEgltIPTVlRNiS+zn+SvZiBFCMvpzGYbFgalmLj osFAzeb1nrOr2CBSozNc6clAar8sxNuN2MAMKuT3dDBQifm+iigTNoxwzkVN 9TLQrrKdvjpmbHja8aVecpCBbK5s+JJ1kA0W1rv8FHgMFKku9sjPiQ1JK45r jDKk0YBfqSEzkA3f/5P9ulZfGt2ZVYwyuseGFq+swdVPpJGai4zOvGw2JDjP O239VBoVN0pRT/9lQ+rK9OKLL6RRY/qMtVwuG0qrGMZVb6XRrO4n1eHnbBid 2/5zsEca2YRH1kY0saGuxDquTYKJCCm26JspvN/EjvM7XZiopSzq8t5ZNqif Uvm90YOJrnmu+quJzwbjt0cVlp5kImadjeBnIQ48K7Du/ByIHVY9OyrJgd5W rRKpWCZiTCdTS5U4UNxgFmNSwER/D+7u8mVxwMxT3lN7gonqb3y1mTTiAOfg svNHZ5goRu9s53kTDki1sqKjBAgknpn3KdKCAyIHdNOrRAm0wH7ph3RHDgxZ CQz+XEIg0VZ29XtfDtQkogb5rQQSqkjJVUrlAN8/0UnOh0Cft+sZ9N7mwG0P bfeP/gTKffHra3IGBxwk3xeEBRLI5tkOJjObAxtmRRd9DCFQ/uNeP4ECDhwj Bc6tiCOQQ6qSdncNBxI5lRFnHhJIQ7a+JamOA+PC7crvHhNILMnPw7wBr88z TUsqn0BPE6pT37dwINnRtC6yGK8/2pX/vJsDI/viuepvCFQS+OjNTZoDWS6T FoZdBLoybmZvOsaBjYoj9eq9BHLyn+FJTHLgzJDwb0YfgSS9jVaHzXHgYrfx 9vJBAh09NhrpK0bBixZjtwaKQEyrzcYmyymIUFko/kqERB4aLzvFWBRMpy7/ vXAdiSqb23JKjCjwPa9+Zv0GEi30Yge7mlAQMrvGSncjiSqyVilXW1DgVush balJImJxvE/IIQo28dQGtu0g0ctJZ/Fxfwo8ZreJz7BIxLgZ3JMVQEFj3syO l0YkOropOd/8LAWrrVQn/IxJJOXRZFUQQsHrxNOMDlMSOXVp3fOKpiCrpVnd 3ppE4hWSO77foeC53QV1l6MkOmSryki4SwHBNfBvciFR0fiuft37FPy6YR2w +RiJHNUDI9MfUWCiQdYMu5OoMKO/zeYZBbWx4oPyJ0kkqjP3QOw5Bd4CcN7e m0T2n5ecK3lJgdzZjaOJPiQSIfYrLnpFwcyUuOesH4lsL5Uc//CegtHfiRuj A0mUt6JVN6SRgjnL6rGMMyQSLhshN3zA67eUzy88S6JcnuLLmE8UCC+dY74L IpGga6yIwTcKOAn6w09DSXRQ8MHnsX4KUkLjn9+9QKLH6VWPswYoyFSwT4q9 SCKrjnEzwV8UDBYr3zANI9GjvUfulI9R4No08DMjgkQaago6MEnBWN4ac7tI EpVLfv1SMU2BzamySGYUiZpb7Re/EqAh53mbs080ibj21ldeL6DB+GH/aoEr JApCS9T0JGgomihEt7D/UmqvfSNFg/Bw67b1cSSSGTIXfkvSEGU21c+KJ5GO j8m5d8tocLaIMrC8RqIacynZvQo0xGpeqmzENvmnsbhWiQarzFz1XQkkOjLD outUaKgfDRVacZ1Ewz0LrrLW0rC5MdkrAtvvVe36+nU0BKjXdv7Cvhyu796w iQZtGb23/97A9eL2l+h+TRpmRmZZ82+SKJlVndX4Dw0rerN7LbFzGLu+NW2n oW0sfRsXW5OeF2wCNGSftRTbkYjj0VYp90GXhqC2htFQ7OZknYMte2iYLXgn LZBEIuugWZ7pXhpUXHNNtbD7HEsTWlk0ZBjJFx/H9th5dqP5frz/A1W6d7C5 K7WbPprQIJNrxGvADhKZ9LQwo6GV4/VxHPuvn8ULPlnQ0EM1f5O/RaL4+lMP LA/SsKpdaQXClsnV3NNuQ8MHCeKaA3bmVW6/lT0NTvsNtQOx1fwKQzscadBM 9Fsaj11k6bPc+ggNZWu3b72LraO1sazTmYbf1wwTCrBrlrJtbFxpSL9hsKEc 22TuycRnNxo423sk32J3fvW6aetJQ2lzgUYd9pHXahpdx3F+P3ne/ePhrOEP dt40HJMosK/B9ot4eKLbl4Yn3qtdKrHn3N0kHE7RoLzFu6II+7KRyqOeABr2 Vm/yzMZmqA8aOJ6lASokT9zATmbeH+gNosFu4n5dMLYSz/nSoRAa6k6nhrpg 57QrKX67QIPIqbibe7E1X/RVHA6jIcF2+d+q2OWpGfZ9l2mIrvj5XQhbP/jQ 9JEoGgxd4pS6cXybDy+/1R9DwyL0sC7/T/70erY4x9FQ7dredeFP/pTTPn6/ SkOgQoGdCTZvWJYxcJOGxYqduV9x/q+nDdak3qJBweO1xm3szcZPg81SadiY 8O2aFbZ3gdFoZQYNg5Mjg2W4nhjOstmn79Hg4+P7wx07d+Ggw/psGnS0bWsJ 7JGAkMaUHFxf1T4HrHG9xqwxCjfNpeHO9IYZHq7ntV0yOmIFON5O7slXsN2g 8PGpYhoKppzKC3F//BAeiDlQRYP4yhB+w1USXSou0BOtpqHQa3eGIbaSW/BM eQ0NHrahJq9x/x2uX+Kp1kDDj9O63x/g/uy+xmKJdNBQ09SuvTuWROf0lgiW f8b16GCSmRlDoqVj31/4ddMQRw6oz+D+t7Y+v6avD8d/RrH5Lp4PbcvzxcpG cD2dfHyi+jLO/4egV75sGnR39h8TwiYuGgauoWmoWnw5E8JJdGCgfyhxAvfD 3uz+h5dI1JCz6J2PIBe+pH3jmuN5Vq11LlxFhgs7tFzFp/B8dB420OldygXb oX2hcwF4/qUtHLuxjAtH/9nqxj9NIl2B3KOCK7nwljJLGfMnUdnbb3o967lg 11ja/QLP4yIzfcHrelxYFRQQnIbneQSrJExOnwsS5wVEgl1JZLdLVTRrLxff bxzT7fH8n79ZXOLZfi4UDOz5m+lMov3MpkUdB7ngeq9f5qAjiYaaLdfIeXFB dpKQtbUgkex+lwP3bnCh/Ir7CiPA+dzd3qqWxIVu5y6rNnx+Ve4wsCxK5oJM jtiwzXYSuaxbY/s2nQvr5e+vc9DC58nfv52H/uXC3gym0+7NJNr33j9ArZwL sQ5Gl5KUSRRsEJb+dIALhYvYUofFSdTicMxO/T8u9JXYSGSKkWilP0smZ5gL SSMOb77i87cuQzrhLpsL/oc2uloJkYicTgu/NsUFsZTcYtVZAj14/MzrpCQP LuQv0nH+TaBm5tA2tS08kMtNCNBpIpBCt2HH3TAenNXfNciOIlBU1bZciwge RNtGLDsfQSAqWy1cJJoHTsnjGmLhBKrykdTwiOdBzK0NojKhBHIWbYnblMKD gTcFYctP4/9tttZ/lceDN6rV1bVHCLQ+yvVZzxceRIzNt8zE9yXtfy5dl9k0 Bj2e7SLtPUxkt6xpcl7rGHjHe++5ocxEvLrYvpOh4+AnrJxWxJJGSUIOfqYr J0DzzOv6cB8GInqKMue/mYBfs8ffaa2VQsJBoeZa3pNgedKWdVpXAgn865Db x5wCaQuWhIqfOPJJzo1lVk1BtOoi4/oQMVS2NkJU+vg0UDUnf2mniCBpQx+1 C5Iz8Pp7wrHD3cKoa11za2DpDJAWDYEqQkIo7zas/O4wC22Zt4zyLOYj+9wt 0vJzs8B73N0T9lIAhYRlhHY9nIPQlV3zw2Tm4PGQfIrkPj5ULSeV06WnISIt 7FDPfj5YdXS5WAhNg7PpyKonB/hwKWNHq8T4FMiVluYZWfFB/3rUhrCuKYiK s30bc4QPO7sip2Ozp+DYllucBYF8KLOUFRPVmQLFS6SByH0+RHR3LEv3nIS5 reck2h/woXNWZXWK4yR0jvS33H/EB+fdaw7dMp2EeKtC+z35fBiOeeWcunUS +GtMfcNK+eDyPO9lqdAkdH2Iuy3Yyge9Sq8XLmkTUBI+7tTaxgfR+RNfwuIn 4Po2R9W7HXwYl5+nnn1xAlhZ65/u7OFDBps6wXabgBcBDbWh//HhYw37QNqW Cbi5TjPuwC8+5HQxFjSqToB3X6q5wigfDAl3noD8BKjs8+yt5PIh7Zyci5fg BAjN+3gvfpwPqT23h++PjcPXom3uh6b4EP0q517ff+NQ6n53g/os/l6m9dUV 3eOQuFycx+fzQSquJP9Q8zj8D25bW5w= "]]}, {}}, {{}, {}, {}, {}}}, {}, {}}, { DisplayFunction -> Identity, Ticks -> {Automatic, Automatic}, AxesOrigin -> {0, 1.4883734647964422`}, FrameTicks -> {{Automatic, Automatic}, {Automatic, Automatic}}, GridLines -> {None, None}, DisplayFunction -> Identity, PlotRangePadding -> {{ Scaled[0.02], Scaled[0.02]}, { Scaled[0.05], Scaled[0.05]}}, PlotRangeClipping -> True, ImagePadding -> All, DisplayFunction -> Identity, AspectRatio -> NCache[GoldenRatio^(-1), 0.6180339887498948], Axes -> {True, True}, AxesLabel -> { FormBox["\[Tau]", TraditionalForm], FormBox[ RowBox[{"Re", "(", SuperscriptBox["A", "2"], ")"}], TraditionalForm]}, AxesOrigin -> {0, 1.4883734647964422`}, DisplayFunction :> Identity, Frame -> {{False, False}, {False, False}}, FrameLabel -> {{None, None}, {None, None}}, FrameTicks -> {{Automatic, Automatic}, {Automatic, Automatic}}, GridLines -> {None, None}, GridLinesStyle -> Directive[ GrayLevel[0.5, 0.4]], Method -> { "DefaultBoundaryStyle" -> Automatic, "DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> None, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ (Part[{{Identity, Identity}, {Identity, Identity}}, 1, 2][#]& )[ Part[#, 1]], (Part[{{Identity, Identity}, {Identity, Identity}}, 2, 2][#]& )[ Part[#, 2]]}& ), "CopiedValueFunction" -> ({ (Part[{{Identity, Identity}, {Identity, Identity}}, 1, 2][#]& )[ Part[#, 1]], (Part[{{Identity, Identity}, {Identity, Identity}}, 2, 2][#]& )[ Part[#, 2]]}& )}}, PlotRange -> {{0, 2}, {1.4883734647964422`, 5.150187066572021}}, PlotRangeClipping -> True, PlotRangePadding -> {{ Scaled[0.02], Scaled[0.02]}, { Scaled[0.02], Scaled[0.02]}}, Ticks -> {Automatic, Automatic}}],FormBox[ FormBox[ TemplateBox[{ RowBox[{"Re", "(", SubsuperscriptBox["A", "FeynCalc", "2"], ")"}], RowBox[{"Re", "(", SubsuperscriptBox["A", "Literature", "2"], ")"}]}, "LineLegend", DisplayFunction -> (FormBox[ StyleBox[ StyleBox[ PaneBox[ TagBox[ GridBox[{{ TagBox[ GridBox[{{ GraphicsBox[{{ Directive[ EdgeForm[ Directive[ Opacity[0.3], GrayLevel[0]]], PointSize[0.5], Opacity[1.], AbsoluteThickness[1.6], Dashing[{Small, Small}], RGBColor[1, 0, 0]], { LineBox[{{0, 10}, {40, 10}}]}}, { Directive[ EdgeForm[ Directive[ Opacity[0.3], GrayLevel[0]]], PointSize[0.5], Opacity[1.], AbsoluteThickness[1.6], Dashing[{Small, Small}], RGBColor[1, 0, 0]], {}}}, AspectRatio -> Full, ImageSize -> {40, 10}, PlotRangePadding -> None, ImagePadding -> Automatic, BaselinePosition -> (Scaled[0.1] -> Baseline)], #}, { GraphicsBox[{{ Directive[ EdgeForm[ Directive[ Opacity[0.3], GrayLevel[0]]], PointSize[0.5], Opacity[1.], AbsoluteThickness[1.6], Dashing[{0, Small, Small, Small}], RGBColor[0, 0, 1]], { LineBox[{{0, 10}, {40, 10}}]}}, { Directive[ EdgeForm[ Directive[ Opacity[0.3], GrayLevel[0]]], PointSize[0.5], Opacity[1.], AbsoluteThickness[1.6], Dashing[{0, Small, Small, Small}], RGBColor[0, 0, 1]], {}}}, AspectRatio -> Full, ImageSize -> {40, 10}, PlotRangePadding -> None, ImagePadding -> Automatic, BaselinePosition -> (Scaled[0.1] -> Baseline)], #2}}, GridBoxAlignment -> { "Columns" -> {Center, Left}, "Rows" -> {{Baseline}}}, AutoDelete -> False, GridBoxDividers -> { "Columns" -> {{False}}, "Rows" -> {{False}}}, GridBoxItemSize -> { "Columns" -> {{All}}, "Rows" -> {{All}}}, GridBoxSpacings -> { "Columns" -> {{0.5}}, "Rows" -> {{0.8}}}], "Grid"]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> {"Columns" -> {{1}}, "Rows" -> {{0}}}], "Grid"], Alignment -> Left, AppearanceElements -> None, ImageMargins -> {{5, 5}, {5, 5}}, ImageSizeAction -> "ResizeToFit"], LineIndent -> 0, StripOnInput -> False], { FontFamily -> "Arial"}, Background -> Automatic, StripOnInput -> False], TraditionalForm]& ), InterpretationFunction :> (RowBox[{"LineLegend", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"Directive", "[", RowBox[{ RowBox[{"Opacity", "[", "1.`", "]"}], ",", RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}], ",", RowBox[{"Dashing", "[", RowBox[{"{", RowBox[{"Small", ",", "Small"}], "}"}], "]"}], ",", InterpretationBox[ ButtonBox[ TooltipBox[ GraphicsBox[{{ GrayLevel[0], RectangleBox[{0, 0}]}, { GrayLevel[0], RectangleBox[{1, -1}]}, { RGBColor[1, 0, 0], RectangleBox[{0, -1}, {2, 1}]}}, AspectRatio -> 1, Frame -> True, FrameStyle -> RGBColor[0.6666666666666666, 0., 0.], FrameTicks -> None, PlotRangePadding -> None, ImageSize -> Dynamic[{ Automatic, 1.35 CurrentValue["FontCapHeight"]/ AbsoluteCurrentValue[Magnification]}]], "RGBColor[1, 0, 0]"], Appearance -> None, BaseStyle -> {}, BaselinePosition -> Baseline, DefaultBaseStyle -> {}, ButtonFunction :> With[{Typeset`box$ = EvaluationBox[]}, If[ Not[ AbsoluteCurrentValue["Deployed"]], SelectionMove[Typeset`box$, All, Expression]; FrontEnd`Private`$ColorSelectorInitialAlpha = 1; FrontEnd`Private`$ColorSelectorInitialColor = RGBColor[1, 0, 0]; FrontEnd`Private`$ColorSelectorUseMakeBoxes = True; MathLink`CallFrontEnd[ FrontEnd`AttachCell[Typeset`box$, FrontEndResource["RGBColorValueSelector"], { 0, {Left, Bottom}}, {Left, Top}, "ClosingActions" -> { "SelectionDeparture", "ParentChanged", "EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator -> Automatic, Method -> "Preemptive"], RGBColor[1, 0, 0], Editable -> False, Selectable -> False]}], "]"}], ",", RowBox[{"Directive", "[", RowBox[{ RowBox[{"Opacity", "[", "1.`", "]"}], ",", RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}], ",", RowBox[{"Dashing", "[", RowBox[{"{", RowBox[{"0", ",", "Small", ",", "Small", ",", "Small"}], "}"}], "]"}], ",", InterpretationBox[ ButtonBox[ TooltipBox[ GraphicsBox[{{ GrayLevel[0], RectangleBox[{0, 0}]}, { GrayLevel[0], RectangleBox[{1, -1}]}, { RGBColor[0, 0, 1], RectangleBox[{0, -1}, {2, 1}]}}, AspectRatio -> 1, Frame -> True, FrameStyle -> RGBColor[0., 0., 0.6666666666666666], FrameTicks -> None, PlotRangePadding -> None, ImageSize -> Dynamic[{ Automatic, 1.35 CurrentValue["FontCapHeight"]/ AbsoluteCurrentValue[Magnification]}]], "RGBColor[0, 0, 1]"], Appearance -> None, BaseStyle -> {}, BaselinePosition -> Baseline, DefaultBaseStyle -> {}, ButtonFunction :> With[{Typeset`box$ = EvaluationBox[]}, If[ Not[ AbsoluteCurrentValue["Deployed"]], SelectionMove[Typeset`box$, All, Expression]; FrontEnd`Private`$ColorSelectorInitialAlpha = 1; FrontEnd`Private`$ColorSelectorInitialColor = RGBColor[0, 0, 1]; FrontEnd`Private`$ColorSelectorUseMakeBoxes = True; MathLink`CallFrontEnd[ FrontEnd`AttachCell[Typeset`box$, FrontEndResource["RGBColorValueSelector"], { 0, {Left, Bottom}}, {Left, Top}, "ClosingActions" -> { "SelectionDeparture", "ParentChanged", "EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator -> Automatic, Method -> "Preemptive"], RGBColor[0, 0, 1], Editable -> False, Selectable -> False]}], "]"}]}], "}"}], ",", RowBox[{"{", RowBox[{#, ",", #2}], "}"}], ",", RowBox[{"LegendMarkers", "\[Rule]", "None"}], ",", RowBox[{"LabelStyle", "\[Rule]", RowBox[{"{", "}"}]}], ",", RowBox[{"LegendLayout", "\[Rule]", "\"Column\""}]}], "]"}]& ), Editable -> True], TraditionalForm], TraditionalForm]}, "Legended", DisplayFunction->(FormBox[ GridBox[{{ TagBox[ ItemBox[ PaneBox[ TagBox[#, "SkipImageSizeLevel"], Alignment -> {Center, Baseline}, BaselinePosition -> Baseline], DefaultBaseStyle -> "Labeled"], "SkipImageSizeLevel"], ItemBox[#2, DefaultBaseStyle -> "LabeledLabel"]}}, GridBoxAlignment -> {"Columns" -> {{Center}}, "Rows" -> {{Center}}}, AutoDelete -> False, GridBoxItemSize -> Automatic, BaselinePosition -> {1, 1}], TraditionalForm]& ), Editable->True, InterpretationFunction->(FormBox[ RowBox[{"Legended", "(", RowBox[{#, ",", RowBox[{"Placed", "[", RowBox[{#2, ",", "After"}], "]"}]}], ")"}], TraditionalForm]& )], TraditionalForm]], "Output", CellChangeTimes->{3.7571577664204216`*^9, 3.7572380975196877`*^9, 3.7572382020016637`*^9}], Cell[BoxData[ FormBox[ TemplateBox[{GraphicsBox[{{{{}, {}, { Directive[ Opacity[1.], AbsoluteThickness[1.6], Dashing[{Small, Small}], RGBColor[0, 1, 1]], LineBox[CompressedData[" 1:eJxN1nk0VW3Dx3EUmUIyZypDCJEM6WyXWYlCwqm4CUnGJJFUx5RClDlTjnnK lHlvjjnzTCFDSWbKkPl+3netZ53r2f/s9Vnf31p77T/2XtfJOy5GtlQUFBR3 KSko/v+uazvbS5qzVdHwIUbQNC3UHNbgcZ3g1gS0e9NPXehLMbnk2IQSbmPA LvJuVfbEK2SaV5jwWNQCFLhneDNFumBXOoeLE7ltQMNpvoMDTgImHMKX/q+A PWi2Fvs8lOOK7Olax1iJOgPe7ScHhDkcNu8/0GgV/QCMnNqUNf5sh5na/MXe cbuDd0uvZr3O2CKNGjzlDQkeYLY94VLImiIiI4QUrgt4gQwipaI6oymWQGWZ LZLqDWgzW7wjNy0R2u++RBPRZ8BuxeZ4+LAWUjXZ19lg/AKktftdDWVXx1wN bHRvRxNAU+eFXcIhPCZK2mheH/YFPQ6iw4wyGsi3sy81Qrn9gX62uKFXiCgW mcxFErkVAC6JiDfQ617DdJlzcDUJgUDZXDhFxV8HoXh+sdJk/CXwTyS1Koly YWXLHfIrAq9ArJz90zNM2pijhUXxS6vXIDXtCAcxQQc51bUiLZgaDPT3LYf2 woWQLwght2I6BIh3vKM9Ja6IvclnFTMUfQOC/ApCPmmpIVp8aWlzdmGgeEDw t8O9k8iz5vcsdcbhwMei1cO+6hSGf/bjauhGOJDBosYpUy5g5xUkQ/HRb8FN frEmpr5zCPOye7uI4jugtN/1N3ueEplPx+j+DL8DyyJsf3oV5LAmc5pLNZ4R 4G2+zbhh9lnkA/u1wNfckaAD49fJ6VlBvTtjGk2qIsEIfcBrbnMpzCRgkkro VhSgP1LyUP6XHCKLiKut7EYBZNVs1N+TBmHcePC8OiEa/Ai/GaBYLov9yqvC XiIxgKno60RnkgxSb3No7/p4DHijflZ3Jo0dSeTVUxZ8HgvYjp1TUlg+jXkO RHouCsSBHP/5XictGex6yLeyClIcUBOQ0i5JEEKkNUU3/K3eA495g6nuYmqM bs9ZzpAqHhSES3BhnhLYdEn5A77UeHDGqdmpUYMLqXWgKJzTSADhg67HFa5R Yu+FLi+XTicAcFbp4uR1Ccxj9K2kb0AiWOzTSIy3lUAMI0buXxVNArFvDRvx ciSc5BWhbJ6WJMAXEPulN5odoz3k+GvGLhnoXtz+OUgli7iZj7zDH/4ARJwM gihDjyL/VB4U1Rp/ALf3fRGaokVUj12oVyT9A0j9rpAjhZfAlB/orAZvfAB7 U2N0PozHEbFOB+Y/WilgSUtM7icvFcYuHi5tFp0CrgUWap5LEcWoAj7p18yk gDA/TWMebWFkdfKLo7AiETjvSLvOvziMjOP2g1+/JIKgwlq1obrfaHvsydzV YSJID8MZve3gRCrWtdpMxFJBCT3RV//kIi7D4P4c6pkKZjdrNMKLubDIvDe0 Qq2pYEgmgqO6WRwh0JacfsWdBohnLLfEjh3gJHTeBhW7poETRKmGVLljSF+A y9xoSxpYYrlHsKihRrwb9XWpBdKBkgnP0KNWVkT4kGSutEc66F5IE6HoEUI6 1OgZzTrTQRj1jfcP6gSwRy9mHQnCGWDAOrbC9T0fxl/b3JnjnQFYbSJP8yJc WPN+mvRAXwboPhIcqlTIibng/ML2xTNBYK95xpETNBiXt9WqKCETEKxudfh5 rqKkSmBo8OX/PBs21iS9g7Pf4iv2OpsFppSniA4ZRxBWxT3W1MAs4K1CMPFR Y0OqHo087PiWBdysLjf45QzhrD9VDGyczwZvYpxj+aM5Eca1aHmBkGxQVE8y u2MtjJXKPoq+9CMb0P4baLsYdByzcL3+94FyDnBdnr09+nUBpSmQNYt/mwOs Llj/6WpixQqWmCsbZ3PAzZhDeCP2aZyZ5DL3MsgFeyPWHNPJWzgKh44nnDG5 YIziYVGE1S6anZ0zqrqcC7bF8QQaa0rEaDYId18rD1iN2sjkijIgu6J2iREJ ecDD7ZLHnAcTkmardYCu5YHWp0ycWqzHEb00oX9mdPPBTiO/QgQdB7bxnZLE TMwHJZOmM2tqdFjSyUnBC9v5QIRY5PMjcBvVtqwh3DH4CPDX6kcCs5fRlaSE 78GZH0GjDChrDDmMxX57olF68BHM1N/I91OZRdV48WnjNwpAkleDrElrN27+ piI1bX4BOBG/sEbJTYu0ddCXcFEVgo2JJoLaHhfCv+hlnS9VCBr0b9Qec6bG 3BjmjqvjC0GuFIFprIYFaZYwaxzyLwQS49VV9bKcGI9ui7tDYSFwf5u+f/CB HXGxVxChGCsEBubFYVdp6LHGoPTByCNFIFQk/MXp9VEcVxZboLhcEaD47+XY 4qdQYwFNmvkzY/Qamo3mTsyvUmh7kV6dp1PQrDYFWelKxWTf9ePHK9sUA/vH LsT9YEGsmhhK1x0Gu82Uw/2tGehSCzHJK1ElZJvhUwpWf38ie2XUmJ7IU0p2 oAWt7XUNaN6p6trDjtAl1i48ZZGlIKxd6rBaHzemO3PqkR0G++S9oW6uGejH C68k2pjKyGZyRgK8FcvAj8JP1RQfubD01dUJSUvYcQ/TlMeDoPs3TKPCiqDv ezKsqo5AU+7W6P6hKgeUmWde05hzYrE+bumpZ8rJvcn3600aH+hzecdoeGmr yG6VbrLslIG2LPKsfoaHDi2bcJ3KgZ4l5Y9m6FeTnTR4uUg2AiVb3myf4Uc1 dMdI4d3IaejtCU7ev/IY2cbzPwPRL9ALjnFTTpQ1ZPuu6OEEJKAL10t+E7yh dR7b6cmlQY9v82ROd9SAsaLM0p6Qo5j70y7K6A3YGf4l3NbhrwV3Kg5oC1iP YrH2phaS2rXkLjwgaXnMGbpIherOZhS0Svaw9SgG3X4835b0sxaEVsaZaKwz YJKgrqSPhkTuldnRpeXS0BT/EBRy1KG12RzLE0yg+5+pVRKeQS9dX0SvdEGf pxtGVL5DP6mpq5HZJAFvVZlxHTM6jPQwDwjR14HP8eU/qMXpsCPiMSR2/jry /uSBWuOEE/SNrJj2h0fryU4w99W7exL6O6tTp5k8tIuPejdiDv3KaKnvSD40 tqc+Eq/XQLaI4fJsQ3Aj2TzPdZTtUqBZ8j8E05dD79Belzb8Dt1DKn84rtQE 31eGcLD1E7qLmY1NWrWF7AbEybb3RgsINfBGrLUP0AqH5jJ3B9g/xgnQchGg U1s88dXRLaDDwnZWqGYfjd3ozbHIg/2N0Jk9ynpoP0N//fRhaM/n35IuLUE7 5SusLlB9JvvOaJhaGBe0vqL69KAGtLptvLwX/jNgfJI80a28hypFrAfyusAu Vaf/pdYf+tRKhrj1+8+AdX6J1560i3LyUXjTFH4Gn4a8jxrG7qKMV/Ad2U1w T+VVzKc/Cv03g8FldfUzkPidYc51ahddHLAhRdC0gpSLtk9v7+6g36lqjiny tpL3wzKc1iOy0B0Wrp98dKDrQ1qpT5pDl1edMm10gyZyDG7TJ0HHaEpf+VjS Cj6WCb9k7N1GQ9xeJhi2wu77YXJpfRz6cdcFELveCrTjLjXg7m6jTNKlP1tp 28g9LVQmZJe3DTRg0js8Ituo8lLuOSlZ2Hv1Tn+10IK+l0d8Ho6HPmDgF613 agMZl1fY29K30EiHuI41Auxn2tkeikS3gVpG1SfhdltovUQ4t2kO7GavGUhB NW2gfq4+S1NiC12eC7xb1Qd7wGWqo4sz0LzZPiV8u23AQHeKnabnL1pMu42/ xtxO7hMtKxnFitAepx30p6+0A3m+Bcnmm39Rxpcza+yWsF/Q/qbqFQTdk272 KycB+i71QOhYIfSezbXzTE3QEY1tI+BrO+BKEfDOjNpEJYS1CQ+WYCf51Z1O pewg2+QHrmuAvQPkHQ0VldTcRJfUK9xpJGD3J8qdUFKB5qEqqLM3gtapS2fq fAI9Lniy9OANtPuLhFsyqdApICIroh1aKZnpWtMEdNfBq43NNWgbC+oEMdpO snexF+o3eTtBQevo4K3NdfQd395ssAzsYj6PwzBN6JqxP/IrZtA3cM5jgk7Q i/FzvkYEaN9dG3H/KOiCqlsevzBobZ5hXu6+TrBxmeXLWcF1dMzLqEF3phMc 52WRPku3jrp97bR/ugP3dBcus3xk6iLbulwhx/0f6B2OYoOMh9DhHlJ/h192 gUbr37zvTNZQ0aGsRLoE2DF5Yc2LhdDGUcnzjo1dYJI9smGHfQ2dX+d5m/QF 9hfG0Yo9i9Ccn46NU1J2Ax7mZIbUoT/o7ZBd42mObvh92/xsb5aE/oXrVs9W h5Zkr6wMNoN2WyLKODtDlzeFZBr4d4PqfNlLXoZ/0L1ED36597Cre1hGsRdC B13VZdxqgu4UPe83Mgqdt+BX0X2oh2yFBNOMyLPQ+KCOqQBl6KfuanyPtaDr 9M5E4m9B6+0fEPhfQltZZJhnjUP7656Ii5uDzlAIH3i9Dr3I9OSKE30v2Uy7 y4EW7NCyv6zrrwlCG/d/2Vc90wvkkK9HsPgV1KNW/8I5hV4Q75wqNuW5gsbl 1rsLqcE9GqNYyKbXCyZbSlR65VbQcb+8BWpT2CldT57+awUtfDv6zqwjtPYl hqSvj6FDBDfY0FDosu8aHd24PrKHLhF+h+pAb36s4dAz6gNb5VwRBoqLKAf7 3kV6c9gVvS9YfbbrA1oP5gxc9hdQsymPwEA32D11PuVq+kDH5v/uoQqCrjh+ dpP0DvqLl+OJ54nQWxPZqkgWtFKecHAlBm3Geqfw8ef/eZ5n8qB8fx/4vdVz tf/nPBo7Praz9g32Sk0eweLZPsByTlu1rWAeHckx1XJdg32HJeq+9AE0z+O+ sEXafrKVvzGX5hyHvqmhP3KPH/pJ9ut/RcWhqx5R66aqQI+MqrtYXYbeUXsR KWDcDwgrfWr+OXMoTxZW+c0C9otMu+Px9tC33ZUO33SHfjrySJzreT+gyzL3 ONCaQxNUS64OvYIdzVh9GBnZD4xzzF1D2ebQMUbpOKNk2PfcHGpYcqB5v2b9 6PoEjYAZ2tDafiAr1kLULJlFLdKFpK+0wf6Mweo63SB00oMkz5YJ6Jrh0cSA eehxhLtBYwP6INVklpJigGwV195zz9ihLYaYzHCC0M9wej47EtBJxFfECnno WtqWFg/VAWDKHVuYFv8LnXQ+vHT+CuwUg2qsazegBS8+VyyyhFZNQW+7OEBb HtkhSHlAv3BSzFx4MQD6H726b8bxC/3Q796RHQw76ULxb7to6MnkFQ7RlAHQ fXkDURmcQSlopHDTubCr9WUGWtZB199PPIFfhN4QRZjznYbheW87l+WEyAj8 //1rWXb94xg8v/mf72qWmCDb514ec+gG9H8A7PnvZQ== "]], LineBox[CompressedData[" 1:eJxN1Hk01G0bwHFbJaGeUqmXQiVFoiay5CYkQtak7MuIRykJj6WEpBCFkK0H lSzZl7gxY2uyF5EoZsbMGMmSEpHe3nPe4zL/zPmc73Xfv3VG3MHDxJmLg4ND lZOD43/f5NZ9vkqrhpHtfNBgPKEb2xzeZFk9N4w4/v9J6VWubOOiLltY9K73 5BbwxhypGQICF/njjGNaYCMDI5MTulS0acm5rVmmC0/tGOE8bUhFCfcrxnrE u3D0lE+RhSnMy9avs7c7S0XJCueaefm7cEds+gZXa+gXnQ+TrjiA+RVfefi5 UJGQwcRxib5OnMt7fmeIO3S9DxMdEVfA7Nzg63He4PDALbKp/lT069LhQeeb nXhVo/N4XTQV7fc8kJ4i04mz4ueTKXEwr+USdepNEph+VHyhPw0czFeWQ8sE iw+ePPc5G0zKH1z7LZ+K2FZPRWQLOrDtjcsvF4uhLxnxuK6qBKdKJAoL1oBV v0lTttSD/RNM90q1gec+ZjD0hsEJBQrxpgwq4gudlgvtaMcKN1u0rMaoSPNO b4R7VTvuNbH55jQJ89d2f828+A381U3DIYaXtuz7qu/+ShIAywm6kv/dSENn U+ON0v/TjjuHFi/nbIV+qShGrEQELBCyu6taHJxnVnmjURKsL6l/sF0a/PnH 0Kd3cjQ0axeWgJ+24XKX6Ho9BehBfWpP61TAp3Qm7hA0wFsqUi8+P0FDJ2tX BbubtmGqpIHxDv0Vx3+4SIg1BvuszhPmtaAh1U75gzGb2/Bx7/OLAVYrzp/J NzxtD35vXtVAdKEhfC2pX/l9K85scn024L7i+o9sizDypKFrBlev/FvQipWe UC41+UDn2exrohwI7gzdq1AQTEMdjlTDfVdb8aNvvdt2h0N3dgr7lRi14v73 HKEKxIIXNBmNwYk09NJI4Z3prlbcXBKX/SOVhj5zV2gEr2/F93dpRbpnwrxV 7IwHNRssyZ1peuYFeNrTRLG1BHxyut3Mcwi8yT7wKGuEhp4WFp/v2diCP3XJ iFiNQfcqjKBrfwene+h6bltHX7bb0Jz5vQ1gwulsJe4t4BbZNZxfxMDxaeUj 9pJgO0EipVcaLH19c94pefDsl8ZokgIdPcm9NaTzk4LJ1l5Xj6hCj2zfZZGj QUeSkQMJVe8o2OJYt/JOHegS+cE74vTBX0QOca01AVdGUhmBFuDgxZjXX63A Bu7q+S4OdMS5WZVPzZWChQcnYwZd6IjV7uJsZkHBtFPpXsYX6UjmCO+UtzYF +0ovqaj40pFOoZj9sDgFaybn7ywMhP0E11lz7wkB9/vxs5LCwVlj1S2C98CX Ek7vcosFK2rR/ZsSwRzT3j1iaSvudyrfgYBMOgp39SY8f/gKx+ml3erLhm7z Q/7ToRdgqawmhXsldLRmx9q6XMdXeNrIMppdSUf7RCcG6k1e4apf4yytWpgP zQlSf9xAR+S1949ulH+FDS2EkhYof/qqrQ56Yq+wME/29JkOmKcVqugVd9MR U8DJa2CpGedad2YI9EP34nNcuPAJrFYxa9pIp6NzpQJ6q9ubMa/T3bydbOhv N+xY5T8BTqkpsu6doaMGPtX4+8nN2NlNu1x+no48u30f7o9oxrJb+wWjlujo RnDr7g6/ZjzX4O4yyj2yvL7+MgdJc+0I4j2QUUs414wjReOE0wWhn2nZe+Xn JvBOn+rX5tvAxV00P/7d4P4Q+Y//KIEFRZ9NjoyA1c+EfKSzwZ7Rtq20iRH0 8MIBm7LGBpxFUXlJnYHeyyn8bHgOnMYMtxnkZyy7a6ez/sBfDNQ3xZ3c7tyA uSw1lD9sgU54ICrV/x8wsXV+83sxBtKIeK/24FgDTuTp5e7bA73lWPH0u/3g Re97Qz0HwbKFbu3dBAYSaKhMMedtwHbsE9VvlaA/kNj1/I0auPH874ddmgx0 Q/a2aNlwPZ6NGwjtPAldqqPCs8MAfG5NnF27Cbj2H33VVivwVLHU/hZ7BkpI YggpPqjHEuM8wq+J0MNsamaaL4MNNGVz60PB1wP4ksh3wIVlzDDSPbCQVLpD bSL4hL2/UU0qA2VE3F5HmCNj30cWajgDek73YZnqZ+BB/g3bq/IYSIkHcxq+ JWPBE+NrXhYx0LZPutdfNpGx+g3K94pymPeszKKXV4OzpoPelJHAvfut60qb GKj5s61RTiz5z+9BKb+khYEO62jtVLxNxsqpm5OLOxnonHRkWIsfGbv3TocX 9cD6tPUd3oX9DLSxYXL1Kgcy7jqZ41TwacX7Ue2gnj+64nmnd//IXlzxvPsL GM84mfB/vTGy++lqJnouUP+6bYaEH5y6QH6yjokmRb3i8lkk3BiqVZC1gYkE xozz4wZIeLZGLDVzM6yX+rF4N2M7EwkqWJZcayDhSNcy4uPdTHRJKK3AI5eE x9Tzw9ft/7P/kZsMzzQS1hF+kuN9ENZnTaa0UQl/9ifkCUWHdmGuV3ET+sor zi8tckMlYiJNP93tFDcSrr0WemiXNhMpC52xmrQmYRGDALN7ejD/z24v7/nT 4N6FvxOdzJloTDe3PVqRhAndjlWd56BP3TRdeuIMJg4dCjPxBzeW78+uCQJL 3JNokQoDBzlvH4+NAH9U3Sj4O4aJcEme/GfLOqwsxCfn9hB64mdOk3fJTMTJ rruhIFWHZ+vnr6r/C93s0XR87lOwhnnhE5634DSZ7FcefeBF7sfsD4PgyuLo A0UssOwGjzLrX+BIFrGPwsVa9litzfxhXvCTi4bH+DaBubRP2F4TZqG6N16O +gsY24mo3RwWhV47cyTz1C6wSOuBpnIpFpoVjQmIL8XYL2MPS1wWet8/omuj DrOQo9nxmfxbGBOMN0vPHYX+QErAwFENPPWbx6NDE2zYtxijpAteGzbes94M TLQemfWzBDcSBoWZNiwU6tgaMdVajSX4e5SNnaAH0VutsCt4Vj135MINMM76 nOwTykLn1siLnT1QjYN5ZUzD7kAX7MojZ8aCew5/8S1OBD9KOCBHTgXbLVxk dWaAJW1fpH16xkIDpGnyYFIVHq+fMP+Sx0IOFwOsv4ZW4WLJgwKLRTDve9ej ka8CrDZR4L8Ng3lMpg5JkVloR4nRrefyVbilTG5MoRn6mcCis2Zd4LKXFW1I fHTZfqJzIYaSYPWbR1WspcFtJ18+9zsCHumrCivTBeeoLBxrNARfTlf5/tYU vEjEjlPW4PqWxe2/HcDhssfeClwAGz4IvCNycRQ9e5/TJHSrAgvN1qhLe46i Ia+NE5FXKvAHy6UfSj4w/7hGreBkAJgofoNocRMsc6tOlBgG/jr6u8crAlyp rx4ZEgPWEiL/fPwIzOfLWVyQDu4a0HCtzRpFFGVf13WF5fghChZrfw7dKrO+ b+AFWGINd/RYyShiciiNpHmX41E3zRPzlaOon5Q0cdexHL/oCPm1phbmvQ41 lm5pGEVRhZb7/I+VYyJB7PF9CvSzCgER/B1gvaPvvW93jyKF+TBF2u8yrKJM cODqX3H9qjEGgZ/AO9TGj87RwVzHs9ZPTIC/aXIsXPg2ir7+SNqWc6sMM7St mPT5UXR8+7jt31fKcK9O5Rub3zBP0RWq6edhLzvaONStaTs4yHTYXF0M7Gmu qlG9h40qZga+V3SVYieLRBkFaehnLL9tLZIDi9g7NaWcAAs6kgq36rOR+8do J5Z2KeZwFkl5YAz9K9H3toAFmH6hxzPcio2OiyQz2HyluMdNzobbAXqze6Tu dRc2SrF0syPRS3DOZS0xL082Gjm+83glLsEpno/XTfrAfJTX4qxrIPi691na SDD4sm9pu2042MFvw8sPUWwUSNKxLD1fgs0C3LPMY6ErBu32P5UGlgoOIjZn greHDhprPAcv3Y6TUiwFN0bz9Eq0gMvv25FTO8HZsThP+B0b8S0cKpFwLMaP 4oUTYz9Aj0jwChEcBpukj8j9/A4eetEY8UZ8DN7/Lzzjh/aCSTLa+nEyYyjH fpd699EiXPj3rbzv8tAf5zTxWyiCHZ42Rw3qg5mplGiWD/hLZFvsr3bwgltP 8j6/z8uW1lizRKweR+LSefu3hWVgnQxxl6KtE8hArVO6MTEe+4jaSlCtJuF4 RnJnBu3BhiGcd/uIYEl25nT7ZXBP6SipKhQsp+9pG5cHRoTe280/wf8FqJOz zA== "]], LineBox[CompressedData[" 1:eJwd1Hk4Ft0bB3CRLFmfGYUoW72S4u0thNwnrVKSFGWLJCGJyB7KkiwlW0iU pZJdKTuRJKkIb4XSGwl5JOFZZn7H74+55vpc19xnzv0994yiw1mzk7w8PDxf 8PX/+zeyJoOXCRnpgiqSl3XBWPnbZllBJijtttHNXuYADTUdnSnCTKiKFlQz FHAFrSOPT0uJMqFnjUJIR7QnPJzM5LshzgT+4NnNEgxfULoSeUuCwQSJyH4t G7FgSFXy0I4jmaBbcqLmkl4YiNVYvl26nAkqQltdQu6Ew/zPtfwCckxoeFbG kubGgHsU4/bllXg/Bfc8+XyuwX+KbB1eRSa8zr3hIRyWAG/MX7lxVzNhx4ri 0qDuZNj1s2JJgCoTvqg06vvJ3ISayFtZc2pMuGrcc1/OIx3yq9y7pzWYsE7l 3GEJ1SwIVpDU/7GFCYzr4VOfnXJBffzw0t79THAsuFf/I60Enpjvq482ZYJW jPLVpAulsL3W0MvgEBNE2oYPN1iUwbE4jY+5lkwwnPcoMFGqgCuaQgXnTzCh U0V36tJAJQyfr9nL8GOCsK538+BwPWRxlaL35zChO840Zt/vF6DuJGOwKJ8J n+UuapJxbVD5WvxXxX0mCO7sXTmq+hJe3+YclStmwsiUQ8lD+3bgbutZO/aU CaPNpev1BjvgWMSVtqhO/L6uF57vL70FQpwp2MxigsP2rixebg+8q42ONOLi /CsNvlUd7IUEt9VLOmkm+Mw+L27M6wXGy2N8HxZPwdvNVcaVB/uAEd7CnRSb ArklQtZqBf+CBDvt1wrlKTj/MTrM2/UTiIzs/ORlPAVFstqx8mJfYHF9erFy xhSYShH2/iIj4Lqp+l8h419wjUi5eMPjFxQYOWTV/fkFAgMSiqbO8zAzJisx nDwNLDnGWa12Gh4d2s2XuOM3bH/3qPrsJj50cU/47Yrh39D8qHu9ivQSpNi/ t+9u+AyQ0gr+9o8Fka725USZjX9AIU1k9YF9S5H1ys75RV1/YN0KWaf7F0TR zMvYIY/QWZDW/eQ2ESeOUhfbnjdTmYMcNfP4dXclEDHw6A5v8xyMGfSde2Qn ifiDQs23nJsHhY8JsvwSDFQxNT5f7zUP/nsL7B0YDOToZHl7l888vIuoX19H MlDzAY0fhwLmIXA6/8g5GQa6rNR/0T0cP18iOdeixECLX+gU3L05DwRSHFDd zEC8BHORWNM8fOE8sO2zZCCe+7bFQwwWHEslPGbTGej5eK/7bSkWhF/g91bJ ZKAYzYMbrKVZ0GbXMnAgi4GWP9le+F4e22FuKDuHgTa0qha8UGUB+Uy1bmMh A1l/+5VXZMCCjskgEKxjoKeKkZn+LizwbWGejhhgIM+04lhGEwtG3cTFJ2UJ VMlJi2xqZoFbU4lTqRyBOLYRoZ6tLDD93mnuuZJAkco23u9esSD1+J0/k4oE yngobJPQy4KsKhO7D6oEaqk7qc6YYIGKnraumxaBpL+uaJeUZsNnSe/aSFMC 1a6LEpR0Z4PUremRqhACaXUv70jwYMMK5fMxYmEEKgnMv056sSHOSYSwv0Sg Ox3PZaV92WCjseYFbwSBos7yr18VxoboOOd+nasEMisPO7g+mQ0/OjaKeyQR aEQ3KM2ojg11doMnRO8T6PhXEbv2BjbksY1IgwcE+nA1Q3n/MzY0JVSUnykg 0KtP1Q9NX7DhjJRiY1shgcqCWXUW79jw9x4fRe8yAgU2Xfh6cpgNyxXqTW9W E0hyr6d6mBgHpCZS1WQ7CJTVKL5UV5IDM2UWZug1gTS3FI5OERzYeX1i98lO Apmofs+zl+FAvG1KZsFbAkUvsVXcpsIB18z7Amo9BFr8zGgZjy4HhPWva/0c INAfPUWe4JMcyONluadMEii8vG5gszMHeFwqtqcyCUSus66dcOHAs6aOmZQp Av0jm+Jv48GB9CT+3zemCeQxJzKjH8CBe5c+nQyeJdBoxdwo+xoHAimTK/I0 gT6tf9PlV8MBCYd4mShREt0ekwziq+fAxuNtfUfESORw/9Ca2EYOXONrzFcR J9GoSq9v1nMOjLQ6+9RKkOjPigH51jccuH5W8stXgkSSwuOnyG8cqEhSg8Wy JNo1LMApEuUCK2VTRdJqEgnlGOXqSHCB/xZHafcaEr2yv2rSxODCn4J9hbPY h/rFst8v54KpyazUEVUSHe+W2sVR5MJfBde3Ca4jUUCT8jUjLS4oyFubGWqS qCQTVP6z5YJV8tc+cV0STftPC9jbc+F8/sWAO9haFvlj/Se4MHXaZ/8mPRJV i4uX9zrj9cObQw7rk+h5yMC2dk8uSO2R3BBnQKKPDkF2ZRFc8FSOG+8zJNGS v6rTQoqwR5Zv7dlLIiO+s8HcEi7wIV23A8YkihlUcvAv50JInsj7VmzJ1Oi1 559woesz/+HH+0gkJ3TsyakmLiyOUVoebUKijWNz7016uJCY7/tDxIxENsVa kvIUF3Zv1+aEWpLo8bE5sTc8FMxH2v09hi22pErkEh8FJF9v1KGjJGqw3io4 KkhBvZxhluIxEikJ76ArCAryhEYCyq1INOx4cGLfWgrkNSb1i2xJZCBBjNHr KJAL9m0RsiNRSnX397INFGT3BPg4Yu9hWP4nvYmC7899Di0/TqIH9bYf/zOg 4Ov+L3xe9iRyl3VrCzSngE98yw1eR5xXy/pWDQsKRlb2vDHFXnVusnnoKAX5 JX/0M7HftHo27LGjIGgDuqN1Evfr7VdJulCgqmZbYONEotnOiNyHFymIj8kT DncmkWnAnrt2YRT8MP1j/Rz73hrhbEY4BfdnS78uOU2iY0GxGb7RFOiHD8WH Y9eoJd7YkYTzyLU84+dCopDw7NBPDyi43VUYq+dGItELAnvtCyloUGW8dcNO cz7DGC6mQCxFy/kWdrnxlruTFRS4Vn5P4GAPS75t5q2nwMlj6VDZGRJ58mnH RjZS4JYT3T6ATf/OOCzSTMHpEzJLhd1JJN3nPCzVhvM9fTXWFts4k0dwbRcF S6Jb8mnsvninN4XvKSivbDFac5ZEjqGvUjf2UZDStHLHPuxgx9S1+v0UFBlR hsnYJWqaxgdGKLCutT+n5EGirXLJRPcoBdQq6YHt2C9FOR8txykYTHPJdcT+ ymx1c5ii4MV9vp052Msq7eK82RSgxMHOFedIdPdeyxEWl4LrL01ldLA109at ushDg9nO9PpD2EZBs8VR/DSwu/qUr2AHbo9/my5OQ+LdKrNxbKHNMzcVGDQk /a6K5vMkUfIaK4dckoatJe2KstjFQn9NF8nQsOgfHfed2EOddWSTMg0hT8cj E7HPNqr071pDg42VQkMeNqcsOrddlQaV60lHn2BLJR/Rer+ehk+RVqX/Yt+J rKGOatKwzFvbYxR7g59S68BGGtpNXK/PYe+x/mnxXZsGjiyTTXqRqHu/ucIZ XRreB7TvVMK2h6rvU/o08OQR0xuw/ZUi/NjbaAjcQPnuwhYgx7eF7KBhYqua 2UHsRH4zYf7duN63J94Ku/C7fLrYPhpKOhu3uGNH3Qo/PmBCg/JLi5QL2I5m E6uLDtKg6Rq5KQQbCRweCzKnIT+jWDIKW66mpmS/BQ3Tyhoa8dhzHio+8sdo oLMdY5Owu1bH6E1Y07D/RpF6OnbRh2meWjsaJE1dRbOwo+Otnsc40CArMq+R g+2049lV65M0DPU8SszHNpxXO6juTENpOq33AHtlUcIyjgsNvoqb1jzEnndg fWw/Q4Pw0tJDhQv5LHfITveggdXT1bzgkldtTq5eNLwcnPdbcEzo3+p6PjS8 swrxWqh31ro5JexHg5VNc+nC+jvGeCo/BNCQ/U5p8z3sVVnOgQ+CafgZPsdd 2B/L/M02/1AaouTviGRj9wjpCOy9TMPTFYH2GdhldbdfyUTSQA0McZKx47wE Ekav0DCcvXHwGraL6lmLpzE0qAa0CkZj7+zvkbsSj+ttuH5h2AoJBkOWCTS0 SGv+44/N2ZWXr5pEQ6NF9aZz2H1s0TNzKTS43GEFn8KuKPHe+CKNhtfWRgwb 7Gsn+2dTbtHg1so7uXDerrI7a09l0aBOh0otzIPSZXKPQB4N91K2blPHpnQC RXvv0XA1RGP3Sux/J76+yyugoWOXWar4wnoW5Ta7SvF5zNyQZ+J5dBNZobys ggY/41Nmgwvz2Rj2/dtjGuQsu7s6sGk1M6/wGpz32FDtPewPg091DtfT4Nmi /VcS9uNERUqliQZXdsxACLY7xYxqbsX9Z97SOYL96W18Jl8XDX8LkTlz+Ht8 EjF7ous9DTcXrY0cxE7Us1t7t4+GzyL81S3YxrkbKgwHaHiwymvZNewq3462 0FEarsw058phJ6/fHH9wHM+/dqk0hf8X54YyzBUnaXgWqzQ4gK26z22w4Tfu 9wvzVCb24kXdOddmaZhpYKsFYX9+pOdynEWDqfeIoRV2jctdDU0uDbtvCpfo YKesWjpD0zS05lR7SmH/DyT7lE8= "]]}, { Directive[ Opacity[1.], AbsoluteThickness[1.6], Dashing[{0, Small, Small, Small}], GrayLevel[0]], LineBox[CompressedData[" 1:eJxTTMoPSmViYGBQA2IQ7ZX64uKBl6l2DFDA4ixVcF/SxR7GN54/Y85myRA4 3/vs9U1zJVPg/PCU73snSZbA+Xf12517JVvg/AWi/m1dklPg/EaOzeqdkkvg /IjIhes/fNwC53P/b4xxl9sP56sGvntxuPsInF9+ztJ+xpeTcL74FsF7jIzn 4fxtj5zPnLe5BOcfyporHfnmCpz/Vc2Wf23udTif6edqAWnVW3C+2f+EbcHr 7sD5Z1pMzh3Tug/nQ8ADOF9+wuufK98h+K+/37931eARnL/k1e5TfH2P4Xw+ 2eXvnzx5Auf3ZG5NW6DyDM7/5rD6SUb9czi/xOjIFrHDL+D8++uOdF9UfAXn /866Mluz6jWcr+3I/i9t9xs4332RYvpG8XeI8JONV3oY8x7OTwowCLuTiOD7 NTN2XU9D8NVeLv54tgDBv7LlxYFdLQi+gU9R/JQ1CL69ybX2Y78QfABH8ZrF "]], LineBox[CompressedData[" 1:eJwd1Hk0V9v7B3CRMePnHIVIhroo8e0Wojy7SUnJVFSGKJIkERkilCEZSoYS MoZkTCkzkSRRhFuhVOTS9ZGEz3DOb/v9cdZer7XOs9ezn/PeR8npnIUzLw8P zxf8/P/6naxN42XCkTQhVamr+mCi8n2znBATxo3s9LOWO0FjbWdXiggTXkYL aewQPAM6h5+clhZjQtXa1SGd0V7wcCqD75YEE/iD5zZLMvxA+VpkuiSDCZsj B3XsxIPhtrKnbhzJBM2yE7VXDMJAvNbm7bIVTFgnvM0tJDscFv5T5xeUZ8Lr 5xUsGW4MeEQx7l1dxYSbRQVefL434JsSW49XiQmdebc8RcISoNvqtTt3DROs VpaWB/Umg9F/lQKBakxgqTZt9Ze9A7WR6ZnzGkyIMukrlPe8C/nVHr0zWkzY qHr+kKRaJgSvltr67xYmCN4Mn/7skgfrJw8t6z/ABPeigoZ/U8vgqdX+hmgz JujEqFxPulgOO+t2eBtaMkGgffRQo3UFHI3T+phnw4RtC55FpsqVcE1buOjC CSa0qepPXxmqgtELtfsY/kzg1fdpGR5tgEyucvSBXCZ0x5nF7P/9Eta7yBou yWfCR/nL2mRcO1S9kfhVWcgEkd39q8bVXsGbe5wj8qVM+DbtVPbQsQO42/vU J54x4VdLuabBcCccjbjWHtXFhDc9L73eX3kLhARTqIXFhBM7ezJ5uX3wri46 0pjLBLEqw+/V5v2Q4L5GoItmgvfci9Km+/3AeHWU78PSaejeXG1SZT4AjPBW 7pT4NKwSELbVKPoHJNmpv1aqTMOFj9FhPmc+gejY7k/eJtNQIqcbqyD+BZY2 3C1VSZsGM2nCMUB0DM5sqvlH2OQX3CBSLt/y/AVFxk6Z9X9+gdCQpJKZ6wLM TshJjibPAFeecU6ng4bHlnv4Enf9Bnj3uObcJj50eW/4vcrR31D3uFdTVUYA KQ3uG8gJnwVCZnWA4xMhpK97NVF24x9QShVdc3D/MmS7qmthSc8f+GulnEvh RTE0+yp2xDN0DmT0P7n/jJNAt5faX7BQnYdsDav4dTmSiBh6nM3bMg8ThgPn HztIIf6gUKst5xdA8WOCHL8kA1VOTy40eC9AwL4iRycGA510sbln5LsA7yIa NOtJBmo5qPWvZeACXJ7JP3xeloGuKg9e9ghfgKAyqflWZQZa+lKvKOfOAkgh pSG1zQzESzCXiDcvwGfOA/sBGwbiKbQvHWGwwPY24Tl3l4FeTPZ73JNmQdhF fh/VDAaK0TbfYCvDgjaH1qGDmQy04unO4vcKLGh3mh/JymWgDW1qRS/VWLDi uVr9xmIGsv3+636JIQs6poJAqJ6BnilFZgS4seBiK/N0xBADeaWWxjKaWTDm LiExJUegKk5qZHMLC842l7mUyxOIYx8R6tXGggM/uqy8VhEoUsXO591rFqQd z/4zpUSgtIcidgn9LMipNnX4oEag1nrn9YyfLFhjoKvvrkMgma8rO6Rk2DAo 5VMXaUagunVRQlIebJBOnxmrDiGQTu+KzgRPNsiqXIgRDyNQ2aX8m6Q3G264 iBKOVwiU3flCTsaPDXZaa1/yRhAo6hy/pmIYG2LiXAf1rhPI4lGYuWYyG/7t 3CjhmUSgMf2gVON6NtQ5DJ8QKyTQ8a+iDh2NbChgG5OGDwj04XqayoHnbGhN qHx0tohArz/VPDR7yQZ3aaWm9mICVQSz6q3fsUF7r6+STwWBLjVf/Oo8ivtd 3WB2p4ZAUvu81oeJc0Dm520NuU4CZTZJLNOX4sB8hbUFekMg7S3F49MEB3bd /LnHuYtApmo/7jvKciDGPiWj6C2BogXslbarcsAto1BQo49AS58bL+fR54Do 1ps6/w0R6I+BEk+wMwdyeVkeKVMECn9UP7TZlQNL3Cp33mYSiFxnW/fTjQON zZ2zKdME+lsuJcDOkwPpSfy/b80QyHNedHZrIAcKrnxyDp4j0Hjl/Dj7BgcC KdNrCjSBPml29/jXckDSKV42SoxE9yakgvgaOLDpePvAYXESORVaro1t4kAi X1O+qgSJxlX7/TJfcGC8zdW3TpJEf1YOKbR1cyD+nNSXrwSJpEQmT5HfOVCR pAFL5UhkNCrIKRHjAitlU2XSGhIJ5xrn6UlyQSCdo7xnLYleO143bWZw4U/R /uI5bMtB8az3K7hgaTonfViNRMd7pY04SlxYU3Rzu9A6EgU2q9ww1uGCooKt xQ5tEpVlgOo3ey44JH8dkNAn0UzAjKCjIxd88i8HZmPrWOdPDJ7gwsxp3wOb DEhUIyHxqN+VC2bhLSGHtpLoRcjQ9g4vLkjtldoQZ0iij05BDhURXPBViZsc 2EEigb9qUkNKuOA9tmJb3z4SGfOdC+aWcYEf6bsfNCFRzLCyU8AjLoTcF33f hi11O1r9wlMu9HzmP/RkP4nkhY8+PdWM349RXhFtSqKNE/PvTfu4kJzv96+o BYnsSnWkFCguGO3U5YTakOjJ0Xnxbh4KFiId/jeBLS5QLXqFjwIpvv4oyyMk arTdJjQuRMFz+R2ZSkdJpCyyi64kKMgWHgt8dIxEoyfNf+5Xp0BBa2priT2J DCWJCXodBYrBfq3CDiRKqen9UbGBgqy+QN+T2HsZNt9kNlEw8cLXcsVxEj1o sP/4zZCCzwe+8Hk7kshDzr39khUFSyS23OI9iefVqtmmZU3B2Kq+bjNsxfNT LSNHKMgr+7M1A7u7zatxrwMF/htQto4zPq+PfxXpRoG6hn2RnQuJ5roi8h5e piAu5r5IuCuJzAL35jiEUTBp9sf2BXbBWpEsRjgFhXPlXwVOk+hoUGyaXzQF BuEj8eHYtRqJt3YlUUDm2Zz1dyNRSHhW6KcHFGT0FMcauJNI7KLgPsdiCprU GG/dsVNdzzJGSykQT9FxTcd+ZLIlZ6qSgjNVPxI42KNSb1t4Gyhw9lw2UnGW RF58urGRTRR45EZ3DGHTv9MOibZQcOqE7DIRDxLJDLiOSrfjeZ6+HmuPbZLB I6TeQ4FQdGs+jT0Q79Jd/J6C8qpW47XnSHQy9PXtjQMUpDav2rUfO/jkbfWt gxSUGlM7krHLNLRNDo5RYFvneF7Zk0Tb5JOJ3nEKuIoyQzuxX4lxPtpMUvAx 1S3vJPZXZpu70zQFbYV8u3Oxl1c5xPmwKUCJw10rz5Mop6D1MItLwfVXZrJ6 2Nqp6xQv89BwePfdBkts46C50ih+GuZ7BlSuYV/aGf/2rgQNyTnVFpPYwptn 76xm0JDwuzqaz4tEyWuPOeWRNKCyDiU57FLhv2ZKZGng/1vPYzf2SFc92axC w+Vnk5GJ2OeaVAeN1tLgcGx1431sTkV0XocaDao3k448xZZOPqzzXpOGT5HH yv/Bzo6spY5o00D66HqOY2/wV24b2kjDK9MzN+ex99r+Z/1Dl4YFOSab9CZR 7wGr1Wf1aegL7NitjO0I1T+mt9LAyiNmNmAHKEf4s7fTELSB8jPCFiQnt4fs omFim4aFOXYiv4UI/x5c79cXfwy7+IfCXfH9NJR1NW3xwI5KDz8+ZIr7fWWd chH7pMXPNSXmNGididwUgo0ED00EWdFQmFYqFYUtX1tbdsCahmkVLa147HlP VV+FozRws07GJmH3rIkx+GlLw8FbJevvYpd8mOGpc6CBMDsjlokdHX/sRYwT DbKiC1q52C67nl+3dabha9/jxHzsHQsa5utdaSi5Sxs8wF5VkrCc40aDn9Km tQ+xF5xYHzvO0iC0rNyyeHE+K5yy7nrSwO7raVl02et2lzPeeJ7DC/6Ljgn9 33oDXxq6joV4L9a76tyZFvHH+bBrKV/cf9cET9WHQBqy3ylvLsBWzHS99CCY hl/h89zF/lhW3dsDQmmIUsgWzcLuE9YT3HeVhmcrLzmmYVfU33stG0kDNTTC ScaO8xZMGL9Gw2jWxuEb2G5q56yfxdCgEdgmFI29e7BP/lo8rrfj+odhr04w HLFJoKFNRvvvAGyO0f18tSQaGq1rNp3HHmCLnZ1PocE5mxV8CruyzGfjy1Qa 3tgaM+ywbzgPzqWk0+DZxju1+L3PyO2uO5VJgzodKr2YB+Wr5F7B+zQUpGzb vh6b0rsk1l9AQ3SI1p5V2P/8/PrufhENHUYWtyUW97N+ZGdUTsPQ7C0FJs6j u+hKleWVNASYnLIYXsxnU9iP709oULTp7enEpjUsvMNraeieGKkrwP4w/Ezv UAMNvq26fyVhP0lUolSbaXBlxwyFYHtQzKiWNhqqMtL1DmN/ehufwddDw3ph Mnce38enEXMnet7TkL5EPXIYO9HAQT1nAPcjyl/Tim2St6FyxxDOr6L38hvY 1X6d7aHjNETMtuTJYydrbo43n6RhSrdchsL/i/MjaVZKUzQ0xCoPD2Gr7Xcf bvyN8/CFeSoDe+mS3twbczTMNrI1grA/PzZwO86iwdxnbMcx7Fq3HC1tLg17 7oiU6WGnKC6bpWkaOnNrvKSx/w/I0ZXh "]]}, {}}, {{}, {}, {}, {}}}, {}, {}}, { DisplayFunction -> Identity, Ticks -> {Automatic, Automatic}, AxesOrigin -> {0, 0}, FrameTicks -> {{Automatic, Automatic}, {Automatic, Automatic}}, GridLines -> {None, None}, DisplayFunction -> Identity, PlotRangePadding -> {{ Scaled[0.02], Scaled[0.02]}, { Scaled[0.05], Scaled[0.05]}}, PlotRangeClipping -> True, ImagePadding -> All, DisplayFunction -> Identity, AspectRatio -> NCache[GoldenRatio^(-1), 0.6180339887498948], Axes -> {True, True}, AxesLabel -> { FormBox["\[Tau]", TraditionalForm], FormBox[ RowBox[{"Im", "(", SuperscriptBox["A", "2"], ")"}], TraditionalForm]}, AxesOrigin -> {0, 0}, DisplayFunction :> Identity, Frame -> {{False, False}, {False, False}}, FrameLabel -> {{None, None}, {None, None}}, FrameTicks -> {{Automatic, Automatic}, {Automatic, Automatic}}, GridLines -> {None, None}, GridLinesStyle -> Directive[ GrayLevel[0.5, 0.4]], Method -> { "DefaultBoundaryStyle" -> Automatic, "DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> None, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ (Part[{{Identity, Identity}, {Identity, Identity}}, 1, 2][#]& )[ Part[#, 1]], (Part[{{Identity, Identity}, {Identity, Identity}}, 2, 2][#]& )[ Part[#, 2]]}& ), "CopiedValueFunction" -> ({ (Part[{{Identity, Identity}, {Identity, Identity}}, 1, 2][#]& )[ Part[#, 1]], (Part[{{Identity, Identity}, {Identity, Identity}}, 2, 2][#]& )[ Part[#, 2]]}& )}}, PlotRange -> {{0, 2}, {-0.000013241592217659782`, 5.1129675630852445`}}, PlotRangeClipping -> True, PlotRangePadding -> {{ Scaled[0.02], Scaled[0.02]}, { Scaled[0.02], Scaled[0.02]}}, Ticks -> {Automatic, Automatic}}],FormBox[ FormBox[ TemplateBox[{ RowBox[{"Im", "(", SubsuperscriptBox["A", "FeynCalc", "2"], ")"}], RowBox[{"Im", "(", SubsuperscriptBox["A", "Literature", "2"], ")"}]}, "LineLegend", DisplayFunction -> (FormBox[ StyleBox[ StyleBox[ PaneBox[ TagBox[ GridBox[{{ TagBox[ GridBox[{{ GraphicsBox[{{ Directive[ EdgeForm[ Directive[ Opacity[0.3], GrayLevel[0]]], PointSize[0.5], Opacity[1.], AbsoluteThickness[1.6], Dashing[{Small, Small}], RGBColor[0, 1, 1]], { LineBox[{{0, 10}, {40, 10}}]}}, { Directive[ EdgeForm[ Directive[ Opacity[0.3], GrayLevel[0]]], PointSize[0.5], Opacity[1.], AbsoluteThickness[1.6], Dashing[{Small, Small}], RGBColor[0, 1, 1]], {}}}, AspectRatio -> Full, ImageSize -> {40, 10}, PlotRangePadding -> None, ImagePadding -> Automatic, BaselinePosition -> (Scaled[0.1] -> Baseline)], #}, { GraphicsBox[{{ Directive[ EdgeForm[ Directive[ Opacity[0.3], GrayLevel[0]]], PointSize[0.5], Opacity[1.], AbsoluteThickness[1.6], Dashing[{0, Small, Small, Small}], GrayLevel[0]], { LineBox[{{0, 10}, {40, 10}}]}}, { Directive[ EdgeForm[ Directive[ Opacity[0.3], GrayLevel[0]]], PointSize[0.5], Opacity[1.], AbsoluteThickness[1.6], Dashing[{0, Small, Small, Small}], GrayLevel[0]], {}}}, AspectRatio -> Full, ImageSize -> {40, 10}, PlotRangePadding -> None, ImagePadding -> Automatic, BaselinePosition -> (Scaled[0.1] -> Baseline)], #2}}, GridBoxAlignment -> { "Columns" -> {Center, Left}, "Rows" -> {{Baseline}}}, AutoDelete -> False, GridBoxDividers -> { "Columns" -> {{False}}, "Rows" -> {{False}}}, GridBoxItemSize -> { "Columns" -> {{All}}, "Rows" -> {{All}}}, GridBoxSpacings -> { "Columns" -> {{0.5}}, "Rows" -> {{0.8}}}], "Grid"]}}, GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete -> False, GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings -> {"Columns" -> {{1}}, "Rows" -> {{0}}}], "Grid"], Alignment -> Left, AppearanceElements -> None, ImageMargins -> {{5, 5}, {5, 5}}, ImageSizeAction -> "ResizeToFit"], LineIndent -> 0, StripOnInput -> False], { FontFamily -> "Arial"}, Background -> Automatic, StripOnInput -> False], TraditionalForm]& ), InterpretationFunction :> (RowBox[{"LineLegend", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"Directive", "[", RowBox[{ RowBox[{"Opacity", "[", "1.`", "]"}], ",", RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}], ",", RowBox[{"Dashing", "[", RowBox[{"{", RowBox[{"Small", ",", "Small"}], "}"}], "]"}], ",", InterpretationBox[ ButtonBox[ TooltipBox[ GraphicsBox[{{ GrayLevel[0], RectangleBox[{0, 0}]}, { GrayLevel[0], RectangleBox[{1, -1}]}, { RGBColor[0, 1, 1], RectangleBox[{0, -1}, {2, 1}]}}, AspectRatio -> 1, Frame -> True, FrameStyle -> RGBColor[0., 0.6666666666666666, 0.6666666666666666], FrameTicks -> None, PlotRangePadding -> None, ImageSize -> Dynamic[{ Automatic, 1.35 CurrentValue["FontCapHeight"]/ AbsoluteCurrentValue[Magnification]}]], "RGBColor[0, 1, 1]"], Appearance -> None, BaseStyle -> {}, BaselinePosition -> Baseline, DefaultBaseStyle -> {}, ButtonFunction :> With[{Typeset`box$ = EvaluationBox[]}, If[ Not[ AbsoluteCurrentValue["Deployed"]], SelectionMove[Typeset`box$, All, Expression]; FrontEnd`Private`$ColorSelectorInitialAlpha = 1; FrontEnd`Private`$ColorSelectorInitialColor = RGBColor[0, 1, 1]; FrontEnd`Private`$ColorSelectorUseMakeBoxes = True; MathLink`CallFrontEnd[ FrontEnd`AttachCell[Typeset`box$, FrontEndResource["RGBColorValueSelector"], { 0, {Left, Bottom}}, {Left, Top}, "ClosingActions" -> { "SelectionDeparture", "ParentChanged", "EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator -> Automatic, Method -> "Preemptive"], RGBColor[0, 1, 1], Editable -> False, Selectable -> False]}], "]"}], ",", RowBox[{"Directive", "[", RowBox[{ RowBox[{"Opacity", "[", "1.`", "]"}], ",", RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}], ",", RowBox[{"Dashing", "[", RowBox[{"{", RowBox[{"0", ",", "Small", ",", "Small", ",", "Small"}], "}"}], "]"}], ",", InterpretationBox[ ButtonBox[ TooltipBox[ GraphicsBox[{{ GrayLevel[0], RectangleBox[{0, 0}]}, { GrayLevel[0], RectangleBox[{1, -1}]}, { GrayLevel[0], RectangleBox[{0, -1}, {2, 1}]}}, AspectRatio -> 1, Frame -> True, FrameStyle -> GrayLevel[0.], FrameTicks -> None, PlotRangePadding -> None, ImageSize -> Dynamic[{ Automatic, 1.35 CurrentValue["FontCapHeight"]/ AbsoluteCurrentValue[Magnification]}]], "GrayLevel[0]"], Appearance -> None, BaseStyle -> {}, BaselinePosition -> Baseline, DefaultBaseStyle -> {}, ButtonFunction :> With[{Typeset`box$ = EvaluationBox[]}, If[ Not[ AbsoluteCurrentValue["Deployed"]], SelectionMove[Typeset`box$, All, Expression]; FrontEnd`Private`$ColorSelectorInitialAlpha = 1; FrontEnd`Private`$ColorSelectorInitialColor = GrayLevel[0]; FrontEnd`Private`$ColorSelectorUseMakeBoxes = True; MathLink`CallFrontEnd[ FrontEnd`AttachCell[Typeset`box$, FrontEndResource["GrayLevelColorValueSelector"], { 0, {Left, Bottom}}, {Left, Top}, "ClosingActions" -> { "SelectionDeparture", "ParentChanged", "EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator -> Automatic, Method -> "Preemptive"], GrayLevel[0], Editable -> False, Selectable -> False]}], "]"}]}], "}"}], ",", RowBox[{"{", RowBox[{#, ",", #2}], "}"}], ",", RowBox[{"LegendMarkers", "\[Rule]", "None"}], ",", RowBox[{"LabelStyle", "\[Rule]", RowBox[{"{", "}"}]}], ",", RowBox[{"LegendLayout", "\[Rule]", "\"Column\""}]}], "]"}]& ), Editable -> True], TraditionalForm], TraditionalForm]}, "Legended", DisplayFunction->(FormBox[ GridBox[{{ TagBox[ ItemBox[ PaneBox[ TagBox[#, "SkipImageSizeLevel"], Alignment -> {Center, Baseline}, BaselinePosition -> Baseline], DefaultBaseStyle -> "Labeled"], "SkipImageSizeLevel"], ItemBox[#2, DefaultBaseStyle -> "LabeledLabel"]}}, GridBoxAlignment -> {"Columns" -> {{Center}}, "Rows" -> {{Center}}}, AutoDelete -> False, GridBoxItemSize -> Automatic, BaselinePosition -> {1, 1}], TraditionalForm]& ), Editable->True, InterpretationFunction->(FormBox[ RowBox[{"Legended", "(", RowBox[{#, ",", RowBox[{"Placed", "[", RowBox[{#2, ",", "After"}], "]"}]}], ")"}], TraditionalForm]& )], TraditionalForm]], "Output", CellChangeTimes->{3.7571577664204216`*^9, 3.7572380975196877`*^9, 3.7572382022466774`*^9}] }, Open ]] }, Open ]] }, WindowSize->{1064, 1028}, WindowMargins->{{0, Automatic}, {0, 28}}, FrontEndVersion->"11.0 for Linux x86 (64-bit) (July 28, 2016)", StyleDefinitions->"Default.nb" ] (* End of Notebook Content *) (* Internal cache information *) (*CellTagsOutline CellTagsIndex->{} *) (*CellTagsIndex CellTagsIndex->{} *) (*NotebookFileOutline Notebook[{ Cell[558, 20, 70, 2, 32, "Input"], Cell[CellGroupData[{ Cell[653, 26, 258, 6, 72, "Input"], Cell[CellGroupData[{ Cell[936, 36, 2389, 64, 26, "Print"], Cell[3328, 102, 1126, 27, 26, "Print"], Cell[4457, 131, 1130, 30, 26, "Print"], Cell[5590, 163, 287, 5, 26, "Print"], Cell[5880, 170, 271, 5, 26, "Print"], Cell[6154, 177, 1899, 53, 26, "Print"], Cell[8056, 232, 219, 4, 26, "Print"], Cell[8278, 238, 257, 5, 26, "Print"], Cell[8538, 245, 1231, 34, 26, "Print"], Cell[9772, 281, 1156, 30, 26, "Print"], Cell[10931, 313, 324, 6, 46, "Print"], Cell[11258, 321, 274, 5, 26, "Print"], Cell[11535, 328, 979, 26, 26, "Print"], Cell[12517, 356, 995, 26, 26, "Print"] }, Open ]] }, Open ]], Cell[13539, 386, 196, 5, 50, "Input"], Cell[CellGroupData[{ Cell[13760, 395, 27, 0, 65, "Section"], Cell[CellGroupData[{ Cell[13812, 399, 708, 18, 59, "Input"], Cell[CellGroupData[{ Cell[14545, 421, 377, 8, 23, "Print"], Cell[14925, 431, 128, 2, 23, "Print"], Cell[15056, 435, 785, 21, 23, "Print"], Cell[15844, 458, 128, 2, 23, "Print"], Cell[15975, 462, 373, 8, 23, "Print"], Cell[16351, 472, 307, 7, 23, "Print"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[16707, 485, 402, 11, 35, "Input"], Cell[17112, 498, 56430, 1123, 520, "Print"] }, Open ]], Cell[73557, 1624, 110, 1, 29, "Item"], Cell[73670, 1627, 836, 24, 116, "Input"], Cell[74509, 1653, 217, 4, 29, "Item"], Cell[CellGroupData[{ Cell[74751, 1661, 1493, 37, 100, "Input"], Cell[76247, 1700, 405, 9, 23, "Print"] }, Open ]], Cell[CellGroupData[{ Cell[76689, 1714, 145, 3, 32, "Input"], Cell[76837, 1719, 5767, 190, 138, "Output"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[82653, 1915, 164, 2, 65, "Section"], Cell[82820, 1919, 140, 1, 29, "Item"], Cell[CellGroupData[{ Cell[82985, 1924, 499, 13, 32, "Input"], Cell[83487, 1939, 7343, 230, 98, "Output"] }, Open ]], Cell[90845, 2172, 212, 2, 29, "Item"], Cell[CellGroupData[{ Cell[91082, 2178, 280, 6, 35, "Input"], Cell[91365, 2186, 7799, 261, 245, "Output"] }, Open ]], Cell[99179, 2450, 504, 17, 32, "Item"], Cell[CellGroupData[{ Cell[99708, 2471, 174, 3, 32, "Input"], Cell[99885, 2476, 7803, 261, 245, "Output"] }, Open ]], Cell[107703, 2740, 157, 2, 29, "Item"], Cell[CellGroupData[{ Cell[107885, 2746, 329, 9, 35, "Input"], Cell[108217, 2757, 6192, 198, 151, "Output"] }, Open ]], Cell[114424, 2958, 166, 2, 29, "Item"], Cell[CellGroupData[{ Cell[114615, 2964, 447, 12, 35, "Input"], Cell[115065, 2978, 3971, 123, 166, "Output"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[119085, 3107, 100, 1, 65, "Section"], Cell[CellGroupData[{ Cell[119210, 3112, 397, 9, 32, "Input"], Cell[119610, 3123, 7928, 240, 327, "Output"] }, Open ]], Cell[127553, 3366, 134, 1, 29, "Item"], Cell[CellGroupData[{ Cell[127712, 3371, 832, 20, 52, "Input"], Cell[128547, 3393, 2338, 65, 106, "Output"] }, Open ]], Cell[130900, 3461, 319, 6, 47, "Item"], Cell[CellGroupData[{ Cell[131244, 3471, 1428, 42, 124, "Input"], Cell[132675, 3515, 2037, 60, 106, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[134749, 3580, 932, 24, 103, "Input"], Cell[135684, 3606, 1041, 31, 90, "Output"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[136774, 3643, 114, 1, 65, "Section"], Cell[CellGroupData[{ Cell[136913, 3648, 682, 19, 35, "Input"], Cell[137598, 3669, 732, 23, 86, "Output"] }, Open ]], Cell[138345, 3695, 2017, 59, 59, "Input"], Cell[140365, 3756, 126, 1, 29, "Item"], Cell[140494, 3759, 1693, 52, 59, "Input"], Cell[CellGroupData[{ Cell[142212, 3815, 2272, 68, 131, "Input"], Cell[144487, 3885, 24066, 459, 248, "Output"], Cell[168556, 4346, 31529, 584, 249, "Output"] }, Open ]] }, Open ]] } ] *)