Wintersemester 2018/19
Sheet 13

Exercise 1: W pair production in the high-energy limit

We consider the scattering process

$$
e^{-}\left(p_{1}\right) e^{+}\left(p_{2}\right) \rightarrow W^{-}\left(p_{3}\right) W^{+}\left(p_{4}\right)
$$

in the high-energy limit with $s:=k^{2} \gg m_{W}^{2}$, with $k=p_{1}+p_{2}=p_{3}+p_{4}$. The gauge-boson masses cannot be neglected, in contrast to the fermion masses, which we set to zero.
(a) Assume that there is no three gauge-boson self interaction in the Standard Model. Show that in leading order in $\frac{m_{W}^{2}}{s}$, i.e. $m_{W}^{2} \ll s, t, u$, the averaged squared amplitude, which only emerges from a t-channel neutrino exchange, is given by

$$
\overline{\sum|\mathcal{M}|^{2} \approx-\frac{e^{4}}{16 s_{W}^{4} m_{W}^{4}} t(s+t)=\frac{\alpha^{2} \pi^{2}}{4 s_{W}^{4}} \frac{s^{2}}{m_{W}^{4}}\left(1-\cos ^{2} \theta\right), ~, ~, ~}
$$

where s and $t=\left(p_{1}-p_{3}\right)^{2}=m_{W}^{2}-2 p_{1} \cdot p_{3}=\left(p_{2}-p_{4}\right)^{2}=m_{W}^{2}-2 p_{2} \cdot p_{4}$ are Mandelstam variables and θ denotes the scattering angle between the incoming electron e^{-}and the outgoing W^{-}in the center-of-mass frame. The sine of the weak mixing angle is $s_{W}:=\sin \theta_{W}$ and the fine structure constant is defined by $\alpha=\frac{e^{2}}{4 \pi}$.
Hint: Argue why the polarisation sum of the W bosons can be approximated by $\sum_{\lambda} \epsilon_{\mu}(p, \lambda) \epsilon_{\nu}^{*}(p, \lambda) \approx \frac{p_{\mu} p_{\nu}}{m_{W}^{2}}$. Neglect all non-leading terms in $\frac{m_{W}^{2}}{s}$ in the calculation of the trace. A collection of relevant Feynman rules is given at the end of this exercise.
(b) Determine the total cross section in leading order in $\frac{m_{W}^{2}}{s}$ in the center-of-mass system of the incoming particles, based on the calculation of the squared amplitude in the previous exercise. What happens to the cross section in the high-energy limit, i.e. $s \rightarrow \infty$?
(c) The correct high-energy behaviour is obtained, when the three gauge-boson self-interaction is added. The calculation of the total cross section for this case is however quite lengthy, such that we consider the high-energy limit only for one helicity combination. Examine the amplitude for $e_{R}^{-} e_{L}^{+} \rightarrow W_{L}^{-} W_{L}^{+}$for an incoming right-handed electron and left-handed positron and two outgoing longitudinally polarised W bosons and show that in leading order in $\frac{m_{W}^{2}}{s}$ the sum of all diagrams yields

$$
\mathcal{M}\left(e_{R}^{-} e_{L}^{+} \rightarrow W_{L}^{-} W_{L}^{+}\right) \approx \frac{i e^{2}}{2 c_{W}^{2}} \frac{1}{s} \bar{v}_{R}\left(p_{2}\right)\left(p_{4}-\not p_{3}\right) u_{R}\left(p_{1}\right) .
$$

Hint: Use the equation of motions for massless fermions being $\bar{v}\left(p_{2}\right) \not p_{2}=0$ and $\not p_{1} u\left(p_{1}\right)=0$ as well as the approximation, that the polarisation vector of the longitudinal W boson in the high-energy limit is given by $\epsilon_{L}^{\mu}(p) \approx \frac{p^{\mu}}{m_{W}}$. If you failed in (a) or (b), you can also restart here.
(d) Determine the total cross section for $e_{R}^{-} e_{L}^{+} \rightarrow W_{L}^{-} W_{L}^{+}$and examine the behaviour in the high-energy limit, i.e. $s \rightarrow \infty$.
(e) The Goldstone-boson equivalence theorem states that the amplitudes of longitudinally polarised gauge bosons in the high-energy limit equal the amplitudes, in which the gauge bosons are replaced through their Goldstone bosons (except from an unobservable phase). Show the equivalence of

$$
\mathcal{M}\left(e_{R}^{-} e_{L}^{+} \rightarrow \phi^{-} \phi^{+}\right)=\mathcal{M}\left(e_{R}^{-} e_{L}^{+} \rightarrow W_{L}^{-} W_{L}^{+}\right)
$$

in leading order in $\frac{m_{V}^{2}}{s}$.
(f) Determine the amplitude for $e_{L}^{-} e_{R}^{+} \rightarrow W_{L}^{-} W_{L}^{+}$for an incoming left-handed electron and right-handed positron and two outgoing longitudinally polarised W bosons using the Goldstone-boson equivalence theorem and lastly obtain the total cross section for $e^{-} e^{+} \rightarrow W_{L}^{-} W_{L}^{+}$.

Relevant Feynman rules for the interactions are given by the following expressions:

Therein the momentum flow is indicated through the additional arrows. The left- and right-handed projection operators are given by $P_{L}=\frac{1-\gamma_{5}}{2}$ and $P_{R}=\frac{1+\gamma_{5}}{2}$. Moreover it yields $f^{\mu \nu \rho}=g^{\mu \nu}\left(p_{-}-p_{+}\right)^{\rho}+g^{\nu \rho}\left(-q-p_{-}\right)^{\mu}+g^{\rho \mu}\left(q+p_{+}\right)^{\nu}$. Again s_{W} and c_{W} are defined through $\sin \theta_{W}$ and $\cos \theta_{W}$, respectively. The propagators of the photon and the Z boson in R_{ξ} gauge (see sheet 5) are given by

$$
\frac{-i\left(g_{\mu \nu}-(1-\xi) \frac{k_{\mu} k_{\nu}}{k^{2}}\right)}{k^{2}} \quad \text { and } \quad \frac{-i\left(g_{\mu \nu}-(1-\xi) \frac{k_{\mu} k_{\nu}}{k^{2}-\xi m_{Z}^{2}}\right)}{k^{2}-m_{Z}^{2}} \text {, respectively. }
$$

Make a convenient gauge choice. Goldstone bosons do not couple to massless fermions.

