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Exercise 1: Propagator of a free particle

We want to evaluate the path integral of a free particle in one-dimension by parametrizing
all potential paths through a variation of the coefficients of a Fourier series. The propagator is
defined by
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with the boundary conditions ¢(t;) = ¢; and ¢(ty) = q;-
(a) Find the classical path of the particle ¢.(t) as a function of g;, ¢f,¢; and ;.

(b) In order to evaluate the path integral we allow for quantum mechanical perturbations
around the classical path, ¢(t) = q¢.(t) + 0q(t), and expand dq(t) in a Fourier series
knowing that the fluctuations vanish at ¢; and gy. We therefore obtain
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Using the orthogonality of different modes, show that the action S turns into
(qf - Qz m = 1
S = = -
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(¢) In this example the path integral can be rewritten in terms of integrals over the spectrum
of the Fourier coefficients, such that
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with a normalization constant c. Rearrange the integrals and show
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where the normalization constant é(t; — ¢;) can only be a function of the time difference.
Hint: You can use
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(d) Show that the normalization constant &(t) is given by

c(t) =4/ 5 mht from the requirement /dq(qf,tf|q, (g, tlqi, ti) = (qr, trlgi, ti) -
i

Hint: You can use
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(e) The wave-function of the particle thus evolves according to

blat) = / das{g: s, 0(q:, )

Show that (g, t) satisfies the Schrodinger equation and that 1 (q,t) — ¥(q,0) for t — 0.
Hint: Fresnel representation of the ¢ distribution.

Exercise 2: Propagator of the harmonic oscillator

We investigate the propagator (qy,t|¢;,0) of a one-dimensional system. In contrast to the
previous exercise we use h = 1.

(a) Show that due to the completeness relation of the energy eigenstates |n) with energy F,
we can write

(a7, T, 0) = Y ®algp) @ (gi)e " (1)

with @, (q) = (g|n).

(b) The propagator of the harmonic oscillator can be determined from the path integral
formalism and yields
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Determine the wave function of the ground state ®y(g). In order to do so, set the time
to an imaginary value T' = —it,t — 0o, rewrite sin and cos in terms of exponentials and
compare Eq. |l|and Eq. . For this purpose rewrite Eq. [2/in the form e=/% f(e=%*) and
expand around the argument of f(x). The first term corresponds to the ground state.
Hint: We refer to the literature for the derivation of the path integral representation of
the harmonic oscillator.

(c) Calculate the wave function of the first excited state ®,(q).

(d) Show that the energy levels are given by E, = w(n + 3).
Hint: Again compare Eq. [I] and Eq. [2]
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