Wintersemester 2018/19
Sheet 3

Exercise 1: Harmonic oscillator with external force

We again consider the one-dimensional harmonic oscillator in the path integral formalism of quantum mechanics and allow it to be influenced by an external driving force $J(t)$. The propagator then takes the form

$$
\begin{equation*}
\left\langle q_{f}, t_{f} \mid q_{i}, t_{i}\right\rangle_{J}=\int \mathcal{D} q \exp \left[i \int_{t_{i}}^{t_{f}} d t\left(\frac{1}{2} \dot{q}^{2}-\frac{1}{2} \omega^{2} q^{2}+J(t) q(t)\right)\right] \tag{1}
\end{equation*}
$$

with the boundary conditions $q\left(t_{i}\right)=q_{i}$ and $q\left(t_{f}\right)=q_{f}$. We set $\hbar=1$.
(a) Show that for $\omega^{2} \rightarrow \omega^{2}-i \epsilon$ the propagator in Eq. 1 can be rewritten in the form

$$
\begin{equation*}
Z[J]=\left\langle q_{f}, \infty \mid q_{i},-\infty\right\rangle_{J}=\left\langle q_{f}, \infty \mid q_{i},-\infty\right\rangle_{0} \exp \left[-\frac{i}{2} \int d E \frac{\tilde{J}(E) \tilde{J}(-E)}{E^{2}-\omega^{2}+i \epsilon}\right] \tag{2}
\end{equation*}
$$

where we have introduced

$$
\tilde{J}(E)=\int_{-\infty}^{\infty} \frac{d t}{\sqrt{2 \pi}} e^{-i E t} J(t) \quad \leftrightarrow \quad J(t)=\int_{-\infty}^{\infty} \frac{d E}{\sqrt{2 \pi}} e^{i E t} \tilde{J}(E) .
$$

Hints: Make use of a Fourier transform $(t \leftrightarrow E)$ in the exponent of Eq. 1 for both $J(t)$ and $q(t)$, write $J q=\frac{1}{2}[J q+q J]$, use $\int d t \exp \left[i\left(E+E^{\prime}\right) t\right]=2 \pi \delta\left(E+E^{\prime}\right)$ and motivate a $\operatorname{shift} \tilde{q}(E) \rightarrow \tilde{q}(E)-\frac{\tilde{J}(E)}{E^{2}-\omega^{2}}$.
(b) Transform the exponent in Eq. 2 into a time integral, i.e.

$$
-\frac{i}{2} \int d t d t^{\prime} J(t) \Delta\left(t-t^{\prime}\right) J\left(t^{\prime}\right) \quad \text { with } \quad \Delta\left(t-t^{\prime}\right)=\int \frac{d E}{2 \pi} \frac{e^{-i E\left(t-t^{\prime}\right)}}{E^{2}-\omega^{2}+i \epsilon}
$$

and discuss its physical meaning.
(c) We define the functional in Euclidean space through

$$
Z_{E}[J]=\int \mathcal{D} q \exp \left[-\int d \tau\left(\frac{1}{2}\left(\frac{d q}{d \tau}\right)^{2}+\frac{1}{2} \omega^{2} q^{2}+J(\tau) q(\tau)\right)\right] .
$$

Show again that

$$
Z_{E}[J]=Z_{E}[0] \exp \left[\frac{1}{2} \int d \tau d \tau^{\prime} J(\tau) \Delta_{E}\left(\tau-\tau^{\prime}\right) J\left(\tau^{\prime}\right)\right]
$$

and compare it with $Z[J]$. Hint: Discuss the two options $\tau=\mp i t$.

Exercise 2: Gaussian integral

We define

$$
G(A)=\int \prod_{i} d x_{i} e^{-x^{T} A x}=\int_{-\infty}^{\infty} d x_{1} d x_{2} \ldots d x_{n} e^{-x_{i} A_{i j} x_{j}}
$$

with A being a symmetric, real $(n \times n)$ matrix with positive eigenvalues. Show that

$$
G(A)=\pi^{n / 2} \operatorname{det}(A)^{-1 / 2} .
$$

Hint: Diagonalize the matrix through an orthogonal rotation.
Note: It yields $\int \prod_{i} d x_{i} \exp \left[-x^{T} A x+\omega^{T} x\right]=\pi^{n / 2} \exp \left[\omega^{T} A^{-1} \omega\right] \operatorname{det}(A)^{-1 / 2}$. For a hermitian, non-singular matrix C one can use $\int \prod_{i} d z_{i} d z_{i}^{*} \exp \left[-z^{\dagger} C z\right]=\pi^{n} \operatorname{det}(C)^{-1}$.

Exercise 3: Saddle-point approximation for a path integral

Commonly a path integral is evaluated by expanding around a stationary phase for real times. As an alternative we consider again an imaginary time and then perform a saddle point approximation instead. The real-time propagator can afterwards be obtained from the imaginary-time propagator through analytic continuation. In order to perform the saddle-point approximation we will work with the Euclidean path integral throughout this exercise.
We consider the generating functional in Euclidean space with $x^{2}=x_{0}^{2}+\sum_{i} x_{i}^{2}$ of a generic scalar field theory, which is given by

$$
Z_{E}[J]=\mathcal{N} \int \mathcal{D} \phi \exp \left[-\frac{1}{\hbar} S_{E}[\phi, J]\right]
$$

Therein the action reads

$$
S_{E}[\phi, J]=\int d^{4} x\left[\frac{1}{2}\left(\partial_{\mu} \phi\right)^{2}+\frac{1}{2} m^{2} \phi^{2}+V(\phi)-J(x) \phi(x)\right] .
$$

The classical field configuration ϕ_{0} is determined by

$$
\left.\frac{\delta S_{E}[\phi, J]}{\delta \phi}\right|_{\phi=\phi_{0}}=0
$$

such that we can expand $S_{E}[\phi, J]$ around ϕ_{0} in the form

$$
\begin{aligned}
S_{E}[\phi, J]=S_{E}\left[\phi_{0}, J\right] & +\int d^{4} x \Delta S_{J}^{(1)}(x)\left(\phi(x)-\phi_{0}(x)\right) \\
& +\frac{1}{2} \int d^{4} x d^{4} y \Delta S_{J}^{(2)}(x, y)\left(\phi(x)-\phi_{0}(x)\right)\left(\phi(y)-\phi_{0}(y)\right)+\ldots
\end{aligned}
$$

Show that in the limit in which we neglect the dots in the previous equation the functional $Z_{E}[J]$ is given by

$$
Z_{E}[J] \approx \mathcal{N}^{\prime} \exp \left[-\frac{1}{\hbar} S_{E}\left[\phi_{0}, J\right]\right](\operatorname{det} \hat{K})^{-1 / 2} \quad \text { with } \quad \hat{K}=\int d^{4} x\left[-\partial_{\mu}^{2}+m^{2}+V^{\prime \prime}\left(\phi_{0}\right)\right] .
$$

Discuss the physical meaning of this approximation.
Hint: Define $\delta \phi=\phi-\phi_{0}$ and thus replace $\mathcal{D} \phi=\mathcal{D} \delta \phi$. Lastly define $\delta \phi^{\prime}=\frac{1}{\sqrt{\hbar}} \delta \phi$ and count the orders in \hbar. Use the previous exercise to replace $\int \mathcal{D} \delta \phi^{\prime} \exp \left[-\int d^{4} x \delta \phi^{\prime}\left[-\partial_{\mu}^{2}+m^{2}+V^{\prime \prime}\left(\phi_{0}\right)\right] \delta \phi^{\prime}\right]$.

