Sheet 5
Release: 14.11.18
Tutorial: 21.11.18

Exercises: Stefan Liebler (stefan.liebler@kit.edu) (Office 12/03 - Build. 30.23) Shruti Patel (shruti.patel@kit.edu) (Office 12/14 - Build. 30.23)

Exercise 1: Propagator of the gauge field in the Stueckelberg Lagrangian

We consider the Stueckelberg Lagrangian of a single free massive gauge field given by

$$\mathcal{L} = -\frac{1}{4} F^{\mu\nu} F_{\mu\nu} - \frac{1}{2\xi} (\partial^{\mu} A_{\mu})^2 + \frac{m^2}{2} A^{\mu} A_{\mu} \,.$$

Therein we use the Abelian field strength tensor defined by $F^{\mu\nu} = \partial^{\mu}A^{\nu} - \partial^{\nu}A^{\mu}$ as well as a covariant gauge fixing term employing the free parameter ξ and a mass term with mass m.

(a) Derive the equation of motion for the gauge field, for which you should obtain

$$\left[(\Box + m^2) g^{\mu\nu} - \left(1 - \frac{1}{\xi} \right) \partial^{\mu} \partial^{\nu} \right] A_{\nu} = 0 \, .$$

Hint: You can use the functional derivative of the action $S = i \int d^4x \mathcal{L}$ with respect to A_{ρ} or use the Euler-Lagrange equation for the pair A_{ρ} and $\partial_{\rho}A_{\sigma}$. Be careful to perform the derivatives with respect to a new index A_{ρ} and thus add $\delta^{\rho}_{\mu,\nu,...}$ where appropriate.

(b) Fourier transformation $(\partial_{\mu} \to ik_{\mu})$ of this equation allows to determine the Green's function $\Delta_{\nu\rho}(k)$ in momentum space

$$\left[(-k^2 + m^2)g^{\mu\nu} + \left(1 - \frac{1}{\xi}\right)k^{\mu}k^{\nu} \right] \Delta_{\nu\rho}(k) = \delta^{\mu}_{\rho}.$$

Make the ansatz $\Delta_{\nu\rho}(k) = A(k^2)g_{\nu\rho} + B(k^2)k_{\nu}k_{\rho}$ and determine $A(k^2)$ and $B(k^2)$ by equating the coefficients. You should obtain

$$\Delta_{\mu\nu}(k) = \frac{-g_{\mu\nu} + \frac{k_{\mu}k_{\nu}}{m^2}}{k^2 - m^2} - \frac{\frac{k_{\mu}k_{\nu}}{m^2}}{k^2 - \varepsilon m^2}.$$

(c) Discuss the cases $\xi \to 0$ (Landau gauge), $\xi \to 1$ (Feynman gauge) and $\xi \to \infty$ (unitary gauge) as well as $m \to 0$. Compare the latter result with the result of the gluon propagator obtained in the lecture.

Exercise 2: Propagator of the gluon field in axial gauge

Rather than choosing the gauge fixing term in the previous exercise an alternative choice is the axial gauge (Arnowitt-Fickler gauge), which in covariant form can be written in the form $n_{\mu}A^{\mu,a}=0$ with an arbitrary constant vector n_{μ} . The for our purposes relevant part of the action therefore takes the form

$$S = i \int d^4x \left[-\frac{1}{4} F^{\mu\nu,a} F^a_{\mu\nu} - \frac{1}{2\xi} (n_\mu A^{\mu,a})^2 - \overline{\eta}^a \left(\frac{1}{g} n^\mu \right) (D_\mu)_{ab} \eta^b \right]. \tag{1}$$

We now work in a non-Abelian theory, which explains the additional Roman color indices. The last term of Eq. 1, which due to the Abelian structure was omitted in the previous exercise, includes ghost fields η and $\overline{\eta}$ and the covariant derivative $(D_{\mu})_{bc} = \partial_{\mu}\delta_{bc} - igT^a_{bc}A^a_{\mu}$ in the adjoint representation.

(a) Derive the propagator of the gluon field from the first two terms in Eq. 1 in the same way it was done in the previous exercise. Use the ansatz

$$\Delta_{\mu\nu} = Ag_{\mu\nu} + Bk_{\mu}k_{\nu} + C(k_{\mu}n_{\nu} + k_{\nu}n_{\mu}) + Dn_{\mu}n_{\nu}$$

though. Take the limit $\xi \to 0$. The result might remind you of the polarization sum for massless gauge fields. Show that $n^{\mu}\Delta_{\mu\nu} = 0$ for $\xi \to 0$.

Hint: The term $+gf^{abc}A^b_{\mu}A^c_{\nu}$ in $F^{\mu\nu,a}$ is not of relevance for the propagator, since it leads to terms with three gauge fields.

(b) Motivate the form of the last term in Eq. 1 by looking in your lecture notes. Derive the equation of motion for the ghost field $\overline{\eta}$.

Note: Due to $n^{\mu}\Delta_{\mu\nu}=0$ for $\xi\to 0$ ghosts decouple, i.e. they don't interact, which is why the axial gauge for $\xi\to 0$ is also called "physical" gauge. For practical calculations however terms proportional to $\frac{1}{n\cdot k}$ lead to unpleasant spurious divergences.