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Exercise 1: Propagator of the gauge field in the Stueckelberg Lagrangian

We consider the Stueckelberg Lagrangian of a single free massive gauge field given by

L = −1

4
F µνFµν −

1

2ξ
(∂µAµ)2 +

m2

2
AµAµ .

Therein we use the Abelian field strength tensor defined by F µν = ∂µAν − ∂νAµ as well as a
covariant gauge fixing term employing the free parameter ξ and a mass term with mass m.

(a) Derive the equation of motion for the gauge field, for which you should obtain[
(� +m2)gµν −

(
1− 1

ξ

)
∂µ∂ν

]
Aν = 0 .

Hint: You can use the functional derivative of the action S = i
∫
d4xL with respect to

Aρ or use the Euler-Lagrange equation for the pair Aρ and ∂ρAσ. Be careful to perform
the derivatives with respect to a new index Aρ and thus add δρµ,ν,... where appropriate.

(b) Fourier transformation (∂µ → ikµ) of this equation allows to determine the Green’s
function ∆νρ(k) in momentum space[

(−k2 +m2)gµν +

(
1− 1

ξ

)
kµkν

]
∆νρ(k) = δµρ .

Make the ansatz ∆νρ(k) = A(k2)gνρ + B(k2)kνkρ and determine A(k2) and B(k2) by
equating the coefficients. You should obtain

∆µν(k) =
−gµν + kµkν

m2

k2 −m2
−

kµkν
m2

k2 − ξm2
.

(c) Discuss the cases ξ → 0 (Landau gauge), ξ → 1 (Feynman gauge) and ξ →∞ (unitary
gauge) as well as m→ 0. Compare the latter result with the result of the gluon propagator
obtained in the lecture.

Exercise 2: Propagator of the gluon field in axial gauge

Rather than choosing the gauge fixing term in the previous exercise an alternative choice is
the axial gauge (Arnowitt-Fickler gauge), which in covariant form can be written in the form
nµA

µ,a = 0 with an arbitrary constant vector nµ. The for our purposes relevant part of the
action therefore takes the form

S = i

∫
d4x

[
−1

4
F µν,aF a

µν −
1

2ξ
(nµA

µ,a)2 − ηa
(

1

g
nµ
)

(Dµ)abη
b

]
. (1)
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We now work in a non-Abelian theory, which explains the additional Roman color indices. The
last term of Eq. 1, which due to the Abelian structure was omitted in the previous exercise,
includes ghost fields η and η and the covariant derivative (Dµ)bc = ∂µδbc− igT abcAaµ in the adjoint
representation.

(a) Derive the propagator of the gluon field from the first two terms in Eq. 1 in the same
way it was done in the previous exercise. Use the ansatz

∆µν = Agµν +Bkµkν + C(kµnν + kνnµ) +Dnµnν

though. Take the limit ξ → 0. The result might remind you of the polarization sum for
massless gauge fields. Show that nµ∆µν = 0 for ξ → 0.
Hint: The term +gfabcAbµA

c
ν in F µν,a is not of relevance for the propagator, since it leads

to terms with three gauge fields.

(b) Motivate the form of the last term in Eq. 1 by looking in your lecture notes. Derive the
equation of motion for the ghost field η.
Note: Due to nµ∆µν = 0 for ξ → 0 ghosts decouple, i.e. they don’t interact, which is
why the axial gauge for ξ → 0 is also called “physical” gauge. For practical calculations
however terms proportional to 1

n·k lead to unpleasant spurious divergences.
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